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 The parallel batch-processing machine scheduling problem is widely present in industries such as 
manufacturing, service, and healthcare, and becomes more complex when incorporating flexible 
preventive maintenance (FPM). This paper presents a mixed-integer programming (MIP) model 
and a multi-objective artificial bee colony (MOABC) algorithm to tackle the unrelated parallel 
batch-processing machine scheduling problem with flexible preventive maintenance (UPBPM-
FPM). The objective is to simultaneously minimize the makespan, earliness and tardiness, and total 
energy consumption, providing a comprehensive solution to optimize both scheduling efficiency 
and energy use while incorporating preventive maintenance considerations. The MOABC 
algorithm integrates three key innovations: (1) a novel processing power-feature information (PP-
FI) heuristic to generate high-quality initial solutions, (2) a hybrid selection strategy combining the 
hypervolume index and roulette wheel approach to improve diversity and convergence, and (3) a 
set of random and goal-oriented neighborhood search methods to enhance Pareto frontier. 
Experimental results demonstrate that the MOABC algorithm outperforms three classical 
algorithms, NSGA-III, ABC, and PSO, in terms of convergence, diversity, and robustness of the 
Pareto solutions. This study provides a robust framework for energy-efficient scheduling in 
complex manufacturing environments. 
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1. Introduction 

Batch-processing machines (BPMs) are widely used in various industries, such as manufacturing, healthcare, and services, 
due to their ability to handle multiple jobs simultaneously, thus improving production efficiency and reducing operational 
costs (Fowler & Mönch, 2022). The scheduling of these machines is a critical task, especially when considering the dynamic 
nature of production environments and the necessity of preventive maintenance (PM) to ensure machine reliability. While PM 
plays a crucial role in extending the life of machinery and preventing unplanned breakdowns, it also introduces a significant 
challenge: downtime during maintenance directly affects machine availability, thereby impacting production efficiency. 
Consequently, production schedules must be carefully managed to balance the competing demands of maintaining machines 
and meeting production goals.  
 
The parallel batch-processing machine scheduling problem with flexible preventive maintenance (UPBPM-FPM) is an NP-
hard combinatorial optimization problem that has gathered attention in the field of industrial engineering due to its real-world 
relevance. In this problem, machines are required to process jobs in batches, with each machine capable of handling multiple 
jobs simultaneously. The objective is to minimize key performance metrics, such as makespan, earliness, tardiness, and total 
energy consumption, while simultaneously scheduling flexible preventive maintenance activities that ensure machines remain 
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in optimal working condition. This problem becomes particularly complex when machines are “unrelated,” meaning each 
machine has distinct processing capabilities, energy consumption rates, and maintenance schedules. 
 
Despite its significance in practical manufacturing systems, the UPBPM-FPM problem has not been extensively studied in 
the literature, particularly in the context of multi-objective optimization. To address this gap, this paper proposes a novel 
solution based on a Mixed-Integer Programming (MIP) model and a multi-objective artificial bee colony (MOABC) algorithm. 
The proposed algorithm incorporates three primary innovations that significantly enhance its ability to solve the UPBPM-
FPM problem effectively: 
 
Processing power-feature information (PP-FI) heuristic: This heuristic is designed to generate high-quality initial solutions by 
leveraging problem-specific characteristics, such as machine processing power and job features. By utilizing the processing 
power of machines and the specific characteristics of jobs, the PP-FI heuristic ensures that the initial solution is well-optimized, 
providing a strong starting point for further optimization. 
 
Hybrid selection strategy: To improve the diversity and convergence of the algorithm, we introduce a hybrid selection strategy 
that combines the hypervolume index and the roulette wheel method. This approach strikes a balance between global 
exploration and local exploitation, ensuring that the algorithm explores a wide solution space while also focusing on refining 
solutions near the Pareto-optimal front. 
 
Neighborhood search strategies: The MOABC algorithm employs both random and goal-oriented neighborhood search 
techniques to refine solutions and enhance the exploration and exploitation capabilities. These strategies allow the algorithm 
to navigate the solution space more effectively, ensuring that the Pareto frontier is well-distributed, and the objectives are 
appropriately balanced. 
 
By combining these innovations, the MOABC algorithm is able to achieve superior performance in terms of convergence, 
diversity, and robustness when compared to traditional approaches, such as NSGA-III, ABC, and PSO. The experimental 
results presented in this study demonstrate that the MOABC algorithm outperforms these classical methods in solving the 
UPBPM-FPM problem, leading to more efficient scheduling solutions for complex production environments. 
The remainder of this paper is organized as follows: Section 2 presents the literature review, Section 3 outlines the problem 
formulation and MIP model, Section 4 details the MOABC algorithm, Section 5 discusses experimental results, and Section 
6 concludes with directions for future research. 
 
2. Literature Review 
 
2.1 BPM scheduling with preventive maintenance 
 
BPM scheduling has been an area of extensive research, especially when coupled with PM. Several studies have explored 
various heuristics and metaheuristics to improve scheduling efficiency in the presence of maintenance activities. Huang et al. 
(2020) proposed a modified genetic algorithm to tackle the single BPM scheduling problem, incorporating flexible preventive 
maintenance to minimize downtime while maintaining production efficiency. Jang et al. (2022) developed a three-stage ant 
colony optimization (ACO) algorithm for parallel BPM scheduling that accounts for maintenance activities and job delays. 
Beldar et al. (2022) used simulated annealing (SA) and variable neighborhood search (VNS) approaches to minimize total 
tardiness in parallel BPMs, highlighting the importance of addressing maintenance while reducing delays. Real-world 
production systems often involve Unrelated Parallel Batch-Processing Machines (UPBPMs), where machines exhibit different 
processing times and capacities (Zeng & Liu, 2024). This adds complexity to scheduling problems, as it requires more 
sophisticated approaches. Jia et al. (2015) addressed the UPBPM scheduling problem by using a First-Fit-Decreasing heuristic 
along with the Max-Min Ant System (MMAS), accommodating the varying capacities of different machines. Suhaimi et al. 
(2016) used a Lagrangian relaxation approach for scheduling on UPBPMs, focusing on optimizing the overall makespan. 
Arroyo et al. (2019) introduced an iterative greedy algorithm for scheduling jobs of varying sizes and dynamic release times 
on UPBPMs, improving the flexibility of scheduling while reducing tardiness. 
 
2.2 Multi-objective optimization of scheduling problem 
 
While early research on BPM scheduling predominantly focused on single-objective optimization, there has been a growing 
shift toward multi-objective approaches that consider multiple conflicting objectives simultaneously. Minimizing makespan 
has traditionally been a primary focus, as seen in Xiao et al. (2024) , who introduced a tabu-based adaptive large neighborhood 
search algorithm for minimizing makespan on UPBPMs. Similarly, Zhang et al. (2020) applied a genetic algorithm combined 
with a heuristic placement strategy to achieve the same goal. Jia et al. (2020) proposed two heuristic algorithms and an ant 
colony optimization approach to minimize the total weighted delivery time on UPBPMs. However, modern manufacturing 
systems also face challenges related to energy consumption and environmental impact. 
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Wang et al. (2021) proposed a three-population co-evolutionary algorithm to solve a bi-objective problem involving makespan 
and total energy consumption on parallel BPMs, a common concern in the era of green manufacturing. Jia et al. (2017) 
introduced a Pareto-based ACO algorithm for minimizing both makespan and energy consumption on identical parallel BPMs, 
contributing to the multi-objective optimization field. Li et al. (2022) focused on discrete bi-objective evolutionary algorithms 
to minimize maximum lateness and pollution emission costs, showing the increasing importance of sustainability alongside 
traditional production efficiency. The incorporation of energy consumption into scheduling problems is particularly important 
in light of modern industrial practices, where reducing energy usage can lead to significant cost savings and environmental 
benefits. These studies laid the groundwork for the multi-objective scheduling problems addressed by this paper, which aims 
to simultaneously minimize makespan, tardiness, and energy consumption while incorporating flexible preventive 
maintenance. Metaheuristic algorithms, particularly population-based methods, have proven effective for solving complex 
optimization problems such as BPM scheduling. The Artificial Bee Colony (ABC) algorithm, introduced by Karaboga in 2005, 
is a well-established metaheuristic known for its simplicity and efficiency in handling multi-modal and multi-dimensional 
optimization problems. The ABC algorithm excels in maintaining solution diversity, preventing the search process from 
converging prematurely to suboptimal solutions. This feature is crucial when dealing with complex scheduling problems, 
where the solution space is vast and multi-objective. The ABC algorithm has been successfully applied to various scheduling 
and optimization problems, such as the one addressed in this paper. The algorithm requires fewer control parameters compared 
to other population-based methods, making it easier to implement and more reliable for industrial applications (Graham et al., 
1979). Recent adaptations of the ABC algorithm have focused on improving solution quality by introducing local search 
enhancements, multi-objective extensions, and hybrid approaches (Graham et al., 1979). These modifications enhance the 
algorithm’s performance in multi-objective scheduling, particularly in applications like the UPBPM-FPM problem, where 
multiple conflicting objectives must be balanced simultaneously.  
 
Table 1  
Comparison of the Proposed Method with Existing Batch Processing Machine Scheduling Methods 

Ref. Problem Characteristics Maintenance Objective Algorithms Single Identical Uniform Unrelated 
Huang et al. 

(2020) √    √ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Heuristics and Improved Genetic 
Algorithm 

Jang et al. 
(2022)  √   √ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Three-Stage ACO-Based Algorithm 

Beldar et al. 
(2022)    √ √ total tardiness Simulated Annealing and Variable 

Neighborhood Search 
Zeng and Liu 

(2024)    √  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Heuristic and Max-Min Ant System 

Jia et al. 
(2015)    √  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Lagrangian Relaxation approach 

Suhaimi et al. 
(2016)    √  total flow time Iterated Greedy Algorithm 

Arroyo et al. 
(2019)    √  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Tabu-based Adaptive Large 

Neighborhood Search 
Xiao et al. 

(2024)    √  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Genetic Algorithm 

Zhang et al.     √  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Full-batch longest processing time 

Zhang et al. 
(2020)    √  total weighted delivery time Heuristic and Ant Colony 

Optimization 
Jia et al. 
(2020)    √  total service completion time Heuristic and Improved Particle 

Swarm Optimization algorithm 
Wang et al. 

(2021)    √  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, the total energy 
consumption 

Three-populations Co-evolutionary 
Algorithm 

Jia et al. 
(2017)  √    𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, the total electric power 

cost 
Pareto-based Ant Colony 

Optimization 
Li et al. 
(2022)   √   maximum lateness, the total 

pollution emission costs C-NSGA-A 

This paper    √ √ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, earliness and tardiness, 
total energy consumption MOABC 

 
 
Table 1 summarizes the literature on BPM scheduling problems, highlighting their key characteristics, optimization objectives, 
and proposed algorithms. In summary, while BPM scheduling has advanced with a focus on single-objective optimization, 
recent research increasingly considers multi-objective approaches that balance traditional production metrics with energy 
consumption and maintenance. The integration of FPM adds complexity, reflecting real-world challenges in manufacturing. 
Metaheuristics such as genetic algorithms, and PSO have been widely used, but newer approaches like the MOABC algorithm 
offer enhanced performance in multi-objective scenarios. This paper contributes by introducing novel strategies to improve 
solution diversity, convergence, and robustness, addressing the complex trade-offs between makespan, tardiness, energy 
consumption, and maintenance. 
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3. Problem description 
 
3.1 Problem formation 
 
This study addresses a scheduling problem involving a set of jobs with varying processing times, sizes, and due dates on 
UPBPMs. Each machine has distinct capacity and unit energy consumption. The goal is to simultaneously minimize makespan 
(Cmax), earliness and tardiness (ET), and total energy consumption (TEC). To maintain the machines’ performance in the 
expected processing condition, flexible preventive maintenance (FPM) activities must be incorporated into the schedule. It is 
assumed that the continuous operation time of a machine cannot exceed a predefined maintenance threshold, and the 
maintenance duration is fixed. Using the three-field classification method (Graham et al., 1979), this problem can be denoted 
as𝑅𝑅𝑚𝑚�𝑑𝑑𝑗𝑗 , 𝑠𝑠𝑗𝑗 ,𝑄𝑄𝑖𝑖 ,𝐹𝐹𝐹𝐹𝐹𝐹�(𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐸𝐸𝐸𝐸,𝑇𝑇𝑇𝑇𝑇𝑇) , where 𝑅𝑅𝑚𝑚  represents the unrelated parallel batch-processing machines, 𝑑𝑑𝑗𝑗  and 𝑠𝑠𝑗𝑗 
represents the due date and size of the job 𝐽𝐽𝑗𝑗, 𝑄𝑄𝑖𝑖  represents the capacity of machine 𝑀𝑀𝑖𝑖. The primary decisions in this problem 
include: (1) Assigning jobs to unrelated machines. (2) Grouping jobs assigned to each machine into batches. (3) Scheduling 
the start time of batches on each machine. (4) Determining the start times of maintenance activities on each machine. The 
following assumptions apply to this problem: (1) All jobs are available for processing at time zero. (2) The total size of the 
jobs in a batch must not exceed the capacity of the machine to which it is assigned. (3) The processing time of a batch is 
determined by the job with the longest processing time within that batch. (4) Once a batch is initiated, it must be completed 
without interruption.  
 
3.2 Mixed-integer programming model 
 
The symbols and variables used to formulate the mathematical model are summarized in Table 2. 
 
Table 2  
Symbols and variables. 

Notations Meanings 
𝐽𝐽𝑗𝑗 The 𝑗𝑗th job in a job set 𝐽𝐽, 𝑗𝑗 = 1,2, … ,𝑛𝑛 
𝑀𝑀𝑖𝑖 The 𝑖𝑖th machine in machine set 𝑀𝑀, 𝑖𝑖 = 1,2, … ,𝑚𝑚 
𝐵𝐵𝑖𝑖,𝑏𝑏 the 𝑏𝑏th batch in 𝑀𝑀𝑖𝑖, 𝑏𝑏 = 1,2, … ,𝑛𝑛 
𝑝𝑝𝑖𝑖,𝑗𝑗 The processing time of 𝐽𝐽𝑗𝑗 in 𝑀𝑀𝑖𝑖 
𝑑𝑑𝑗𝑗 The due date of 𝐽𝐽𝑗𝑗 
𝑠𝑠𝑗𝑗 The size of 𝐽𝐽𝑗𝑗 
𝑄𝑄𝑖𝑖 The capacity of 𝑀𝑀𝑖𝑖 
𝑆𝑆𝑆𝑆𝑖𝑖,𝑏𝑏 The start time of 𝐵𝐵𝑖𝑖,𝑏𝑏 
𝑃𝑃𝑖𝑖,𝑏𝑏 The processing time of 𝐵𝐵𝑖𝑖,𝑏𝑏 
𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏 The completion time of 𝐵𝐵𝑖𝑖,𝑏𝑏 
𝐴𝐴𝑖𝑖,𝑏𝑏  The cumulative processing time or age of 𝑀𝑀𝑖𝑖 before processing  𝐵𝐵𝑖𝑖,𝑏𝑏 
𝑃𝑃𝑖𝑖
𝑝𝑝 The processing power of 𝑀𝑀𝑖𝑖 
𝑃𝑃𝑖𝑖𝑖𝑖 The idle power of 𝑀𝑀𝑖𝑖 
𝑃𝑃𝑖𝑖𝑚𝑚 The maintenance power of 𝑀𝑀𝑖𝑖 
𝑃𝑃𝑃𝑃 Total processing energy consumption 
𝐼𝐼𝐼𝐼 Total idle energy consumption 
𝑀𝑀𝑀𝑀 Total maintenance energy consumption 
𝐸𝐸𝐸𝐸𝑗𝑗 The earliness and tardiness of job 𝐽𝐽𝑗𝑗 
𝑈𝑈𝑈𝑈 The maintenance threshold 
𝑡𝑡𝑚𝑚 The maintenance duration 
𝛤𝛤 A very large positive integer 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Makespan 
𝐸𝐸𝐸𝐸 Earliness and tardiness 
𝑇𝑇𝑇𝑇𝑇𝑇 Total energy consumption 
𝑊𝑊𝑖𝑖,𝑏𝑏 Binary auxiliary variable, 1, if 𝐵𝐵𝑖𝑖,𝑏𝑏 is not empty, otherwise 0 
𝑋𝑋𝑖𝑖,𝑗𝑗,𝑏𝑏  Binary decision variable, 1, if 𝐽𝐽𝑗𝑗 is assigned to 𝐵𝐵𝑖𝑖,𝑏𝑏, otherwise 0 
𝑌𝑌𝑖𝑖,𝑏𝑏 Binary decision variable, 1, if maintenance of 𝑀𝑀𝑖𝑖 before processing 𝐵𝐵𝑖𝑖,𝑏𝑏, otherwise 0 

 

Building on Li's Li et al. (2022) model, the mixed-integer programming (MIP) model for the current problem is formulated 
as follows. 

𝑓𝑓1 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) (1) 

𝑓𝑓2 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐸𝐸𝐸𝐸) (2) 
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𝑓𝑓3 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑇𝑇𝑇𝑇𝑇𝑇) (3) 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏 , 𝑖𝑖 = 1,2, … ,𝑚𝑚;𝑏𝑏 = 1,2, … ,𝑛𝑛  (4) 

𝐸𝐸𝐸𝐸 ≥�𝐸𝐸𝐸𝐸𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 
(5) 

𝐸𝐸𝐸𝐸𝑗𝑗 ≥ 𝑑𝑑𝑗𝑗 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏 − 𝛤𝛤(1 − 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑏𝑏), 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑛𝑛;𝑏𝑏 = 1,2, … ,𝑛𝑛 (6) 

𝐸𝐸𝐸𝐸𝑗𝑗 ≥ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏 − 𝑑𝑑𝑗𝑗 − 𝛤𝛤(1 − 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑏𝑏), 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑛𝑛;𝑏𝑏 = 1,2, … ,𝑛𝑛 (7) 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑃𝑃𝑃𝑃 + 𝐼𝐼𝐼𝐼 + 𝑀𝑀𝑀𝑀 (8) 

𝑃𝑃𝑃𝑃 = � � 𝑃𝑃𝑖𝑖,𝑏𝑏 ∗ 𝑃𝑃𝑖𝑖
𝑝𝑝

𝑛𝑛

𝑏𝑏=1

𝑚𝑚

𝑖𝑖=1
 

(9) 

𝐼𝐼𝐼𝐼 = � (𝑆𝑆𝑆𝑆𝑖𝑖,1 + � (𝑆𝑆𝑆𝑆𝑖𝑖,𝑏𝑏 − 𝐶𝐶𝐶𝐶𝑖𝑖.𝑏𝑏−1 − 𝑡𝑡𝑚𝑚 ∗ 𝑌𝑌𝑖𝑖,𝑏𝑏)
𝑛𝑛

𝑏𝑏=2
∗ 𝑃𝑃𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1
) 

(10) 

𝑀𝑀𝑀𝑀 = � � 𝑌𝑌𝑖𝑖,𝑏𝑏 ∗ 𝑡𝑡𝑚𝑚 ∗ 𝑃𝑃𝑖𝑖𝑚𝑚
𝑛𝑛

𝑏𝑏=1

𝑚𝑚

𝑖𝑖=1
 

(11) 

��𝑋𝑋𝑖𝑖,𝑗𝑗,𝑏𝑏

𝑛𝑛

𝑏𝑏=1

= 1
𝑛𝑛

𝑖𝑖=1

, 𝑗𝑗 = 1,2, … ,𝑚𝑚 
(12) 

∑ 𝑠𝑠𝑗𝑗𝑋𝑋𝑖𝑖,𝑗𝑗,𝑏𝑏
𝑛𝑛
𝑗𝑗=1 ≤ 𝑄𝑄𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑚𝑚;𝑏𝑏 = 1,2, … ,𝑛𝑛     (13) 

𝑃𝑃𝑖𝑖,𝑏𝑏 ≥ 𝑝𝑝𝑖𝑖,𝑗𝑗𝑋𝑋𝑖𝑖,𝑗𝑗,𝑏𝑏 , 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑛𝑛; 𝑏𝑏 = 1,2, … ,𝑛𝑛 (14) 

𝑆𝑆𝑆𝑆𝑖𝑖,1 ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 (15) 

𝑆𝑆𝑆𝑆𝑖𝑖,𝑏𝑏+1 ≥ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏 + 𝑡𝑡𝑚𝑚 ∗ 𝑌𝑌𝑖𝑖,𝑏𝑏 , 𝑖𝑖 = 1,2, … ,𝑚𝑚;𝑏𝑏 = 1,2, … ,𝑛𝑛 − 1 (16) 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏 ≥ 𝑆𝑆𝑆𝑆𝑖𝑖 ,𝑏𝑏 + 𝑃𝑃𝑖𝑖,𝑏𝑏 , 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑏𝑏 = 1,2, … ,𝑛𝑛 (17) 

𝑌𝑌𝑖𝑖,1 = 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 (18) 

𝐴𝐴𝑖𝑖,1 = 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 (19) 

𝐴𝐴𝑖𝑖,𝑏𝑏+1 ≥ 𝐴𝐴𝑖𝑖,𝑏𝑏 + 𝑃𝑃𝑖𝑖,𝑏𝑏 − 𝛤𝛤 ∗ 𝑌𝑌𝑖𝑖,𝑏𝑏+1, 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑏𝑏 = 1,2, … ,𝑛𝑛 − 1 (20) 

𝐴𝐴𝑖𝑖,𝑏𝑏+1 ≥ 𝑃𝑃𝑖𝑖,𝑏𝑏 − 𝛤𝛤(1 − 𝑌𝑌𝑖𝑖,𝑏𝑏+1), 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑏𝑏 = 1,2, … ,𝑛𝑛 − 1 (21) 

𝐴𝐴𝑖𝑖,𝑏𝑏 ≤ 𝑈𝑈𝑈𝑈, 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑏𝑏 = 1,2, … ,𝑛𝑛 (22) 

𝑊𝑊𝑖𝑖,𝑏𝑏 = �1, 𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖,𝑗𝑗,𝑏𝑏

𝑛𝑛

𝑗𝑗=1

≥ 1

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑏𝑏 = 1,2, … ,𝑛𝑛 

(23) 

𝑊𝑊𝑖𝑖,𝑏𝑏 ≥ 𝑊𝑊𝑖𝑖,𝑏𝑏+1, 𝑖𝑖 = 1,2, … ,𝑚𝑚;𝑏𝑏 = 1,2, … ,𝑛𝑛 − 1  (24) 

𝑋𝑋𝑖𝑖,𝑗𝑗,𝑏𝑏 ∈ {0,1}, 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑛𝑛;𝑏𝑏 = 1,2, … ,𝑛𝑛  (25) 

𝑌𝑌𝑖𝑖,𝑏𝑏 ∈ {0,1}, 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑏𝑏 = 1,2, … ,𝑛𝑛  (26) 
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The three objectives to be minimized simultaneously are 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, ET and TEC, as expressed in Eqs. (1-3), respectively. The 
calculations for 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, ET and TEC are summarized in Eqs. (4-11), where Eqs. (67) define the earliness and tardiness of jobs, 
and Eqs. (9-11) specify the machines' processing, idle, and maintenance energy consumption, respectively. Constraint (12) 
ensures that each job is assigned to a batch and processed on a single machine. Constraint (13) guarantees that the total size 
of jobs in a batch does not exceed the machine’s capacity. Constraint (14) defines the processing time of the batch. Constraints 
(15)-(16) determine the start time of the batch. Constraint (17) specifies the completion time of the batch. Constraint (18) 
ensures that maintenance will not be performed before processing the first batch on each machine. Constraints (19)-(21) define 
the cumulative processing time of the machine before starting the batch. Constraint (22) ensures that the cumulative processing 
time of the machine does not exceed the maintenance threshold. Constraint (23)-(24) ensures that the allocation of batches 
must follow a continuous sequence, and no empty batches are allowed in between. Finally, Constraints (25)-(26) represent the 
binary decision variables. 
 
3.3 An illustrative instance 
 
This section describes a specific, simple instance consisting of two machines and 10 jobs, which helps to illustrate the proposed 
problem. The parameters for this problem instance are defined as follows: 𝑃𝑃1

𝑝𝑝 = 12, 𝑃𝑃2
𝑝𝑝 = 15, 𝑃𝑃1𝑖𝑖 = 4, 𝑃𝑃2𝑖𝑖 = 5, 𝑃𝑃1𝑚𝑚 = 132, 

𝑃𝑃2𝑚𝑚 = 165, 𝑄𝑄1 = 12, 𝑄𝑄2 = 15, 𝑈𝑈𝑈𝑈 = 40, 𝑡𝑡𝑚𝑚 = 5. Additional details about the jobs are provided in Table 3. 
 
Table 3  
The details of the ten jobs 

 𝐽𝐽1 𝐽𝐽2 𝐽𝐽3 𝐽𝐽4 𝐽𝐽5 𝐽𝐽6 𝐽𝐽7 𝐽𝐽8 𝐽𝐽9 𝐽𝐽10 
𝑝𝑝1,𝑗𝑗 25 25 47 32 7 10 40 26 3 4 
𝑝𝑝2,𝑗𝑗 12 27 23 39 6 21 17 32 12 37 
𝑠𝑠𝑗𝑗 4 8 6 1 10 6 2 7 10 3 
𝑑𝑑𝑗𝑗 124 129 142 141 111 118 138 134 108 126 

 
We solved the instance using CPLEX with the objective of minimizing the 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. The Gantt chart of solution for this case is 
shown in Fig.1. The solution obtained from the CPLEX model consists of three batches on machine 𝑀𝑀1 and two batches on 
machine 𝑀𝑀2. In this instance, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is 50, ET is 958, and TEC is 2700. 
 

0

J9 J6   ,   J10

J5   ,   J7

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

M1

M2

FPM

FPMJ2   ,   J3

J1   ,   J4   ,   J8

 
Fig. 1. Gantt chart of a solution for an example. 

 
4. Multi-objective artificial bee colony algorithm 
 
The UPBPM-FPM problem involves a large number of decision variables and a vast solution space, posing significant 
computational challenges. To address these issues, the MOABC algorithm was specifically designed to enhance the efficiency 
and effectiveness of the conventional ABC algorithm (Graham et al., 1979). The flowchart of the MOABC algorithm is shown 
in Fig. 2. This algorithm incorporates three key features to improve its performance: (1) PP-FI heuristic is introduced to 
generate a high-quality initial population by leveraging problem-specific characteristics. The integration of the FF heuristic 
ensures both the convergence and diversity of the initial solutions. (2) The algorithm incorporates a selection strategy 
combining hypervolume metrics with roulette wheel methods, striking a balance between global exploration and local 
exploitation to improve solution quality. (3) A diverse set of random and targeted neighborhood search operators enhances 
the algorithm's ability to refine solutions, ensuring a well-distributed Pareto frontier. These features collectively improve the 
computational efficiency, solution quality, and robustness of the MOABC algorithm, making it well-suited for solving the 
complex UPBPM-FPM problem. 
 
4.1 Chromosome representation 
 
A two-layer encoding method is proposed to represent the results of job allocation and batch formation. The first layer denotes 
the machine index, indicating the assigned machine for each job. The second layer represents the batch index, specifying the 
batch to which each job belongs on the corresponding machine. An example of this encoding method for a problem with ten 
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jobs and two UPBPMs is illustrated in Fig. 3. In this example, 𝐽𝐽1, 𝐽𝐽3, 𝐽𝐽6 and 𝐽𝐽8 are assigned to 𝑀𝑀1, while the remaining jobs 
are assigned to 𝑀𝑀2. on 𝑀𝑀1, the first batch consists of 𝐽𝐽1 and 𝐽𝐽6, while the second batch includes 𝐽𝐽3 and 𝐽𝐽8. Similarly, on 𝑀𝑀2 the 
first batch consists of 𝐽𝐽4 and 𝐽𝐽9, and the second batch contains 𝐽𝐽2, 𝐽𝐽5, 𝐽𝐽7 and 𝐽𝐽10. 
 

Start

Generate initial populations 
with PP-FI and FF heuristic

Use one of the six random neighborhood 
structures to search for a new solution

Stop

Employed Bee Stage

Initialization Phase
Initialization algorithm parameters

Non-dominated sorting and
 update external archive

Select a solution by non-dominated sorting

Non-dominated sorting and
 update external archive

Combine the employed bee population with the 
external archive

Search count reaches the limit ？

YES

NO

Calculate the hypervolume
 value of each food source

Onlooker Bee Stage
Determine reference points based on the 

extremum values of each objective

Use the roulette wheel strategy
 to select the food source

Use six random neighborhood structures
 for every solutions

Retain all current solutions and new feasible 
solutions in a temporary set

Scount Bee Stage

Use six goal-oriented Neighborhood structures 
for non-dominated solutions and EP

Non-dominated sorting and
 update external archive

Reach the termination time ?

YES

NO

Use the same structure for the better new 
solution, otherwise the next structure

If stagnation exceeds threshold, 
use PP-FI to generate a new solution.

 

Fig. 2. Flowchart of the proposed MOABC Algorithm. 
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Fig. 3. Example of encoding. 

4.2 Initial population generation methods 
 
To ensure diversity and quality in the initial population, a portion  𝑃𝑃𝑝𝑝 of the individuals is generated using the First-Fit (FF) 
heuristic (Graham et al., 1979), while the remaining individuals are created using the PP-FI heuristic. This hybrid strategy 
leverages the simplicity of the FF heuristic to ensure rapid generation of diverse initial solutions while integrating the PP-FI 
heuristic to enhance the overall solution quality. 
 
4.2.1 PP-FI heuristic 
 
To improve the quality of batch formation, the PP-FI heuristic begins by selecting a machine based on its processing power 
characteristic values using the roulette wheel method to initiate an empty batch. Subsequently, three job candidate sets 
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including the jobs that can be assigned to this batch are generated. A job is then selected from one of these sets using the 
roulette wheel method, and all job candidate sets are updated accordingly. This iterative process continues until the batch is 
fully formed. If any jobs remain unassigned to a batch, the procedure restarts from the beginning. The flow of this heuristic is 
illustrated in Fig. 4, ensures a balanced assignment of jobs to batches while leveraging machine processing power to optimize 
overall performance. 
 

 

Fig. 4. The flow of PP-FI heuristic. 

The processing power characteristic value (𝑝𝑝𝑝𝑝𝑖𝑖) of the machine 𝑀𝑀𝑖𝑖 is calculated by Equation (23). 

𝑝𝑝𝑝𝑝𝑖𝑖 =

1
𝑃𝑃𝑖𝑖
𝑝𝑝

∑ 1
𝑃𝑃𝑖𝑖
𝑝𝑝

𝑚𝑚
𝑖𝑖=1

 (23) 

To efficiently allocate all feasible unassigned jobs to batch 𝐵𝐵𝑖𝑖 ,𝑏𝑏𝑖𝑖, the candidate jobs are divided into three candidate sets: 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
1 , 

𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
2 , and 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

3 . The first set 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
1  includes jobs whose sizes do not exceed the remaining capacity of the machine 𝑀𝑀𝑖𝑖 in the 

current batch 𝑏𝑏𝑖𝑖 , as defined in Eq. (24). The second set 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
2   is derived from 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

1  and consists of jobs whose cumulative 
processing time remains below the maintenance threshold, as shown in Eq. (25). Finally, the third set 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

3  is a subset of 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
2  

and includes jobs that do not increase the batch processing time, as illustrated in Eq. (26). By prioritizing the inner sets, this 
approach ensures a balanced trade-off between machine capacity, maintenance constraints, and batch processing efficiency, 
facilitating a more effective allocation strategy. 
 
𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
1 = {𝐽𝐽𝑗𝑗|𝑠𝑠𝑗𝑗 ≤ (𝑄𝑄𝑖𝑖 −� 𝑠𝑠𝑗𝑗

𝐽𝐽𝑗𝑗∈𝐵𝐵𝑖𝑖,𝑏𝑏𝑖𝑖

), 𝐽𝐽𝑗𝑗 ∈ 𝐽𝐽} (24) 

𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
2 = {𝐽𝐽𝑗𝑗|𝑚𝑚𝑚𝑚𝑚𝑚 {𝑝𝑝𝑖𝑖,𝑗𝑗 ,𝑃𝑃𝑖𝑖,𝑏𝑏𝑖𝑖} + 𝐴𝐴𝑖𝑖,𝑏𝑏𝑖𝑖 ≤ 𝑈𝑈𝑈𝑈, 𝐽𝐽𝑗𝑗 ∈ 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

1 } (25) 
𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
3 = {𝐽𝐽𝑗𝑗|𝑝𝑝𝑖𝑖 ,𝑗𝑗 ≤ 𝑃𝑃𝑖𝑖,𝑏𝑏𝑖𝑖 , 𝐽𝐽𝑗𝑗 ∈ 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

2 } (26) 
 
To address the multi-objective optimization nature of the problem studied in this paper, three key factors are considered when 
selecting a job from the candidate sets. 
 
(1) Batch-processing machine characteristics: Jobs with processing times closest to the current batch-processing time are 
prioritized. This strategy enhances batch utilization and contributes to optimizing the total energy consumption (TEC) 
objective. 
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(2) Unrelated parallel machine characteristics: Priority is given to the job with the most significant time difference (TD) in 
processing time, defined as the difference between the minimum and second minimum processing times across machines. 
This approach reduces the total processing time and optimizes the 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 objective. 
 
(3) Due date characteristics: Jobs with earlier due dates are prioritized over those with later due dates, ensuring better control 
over ET objective.  
 
Combining these three factors, the calculation method for the job feature information (FI) value when a job 𝐽𝐽𝑗𝑗 is assigned to 
batch 𝐵𝐵𝑖𝑖 ,𝑏𝑏𝑖𝑖 is formulated, as shown in Eq. (27). Two specific conditions are defined for special cases: (1) When batch 𝐵𝐵𝑖𝑖,𝑏𝑏𝑖𝑖  is 
empty, �𝑃𝑃𝑖𝑖,𝑏𝑏𝑖𝑖 − 𝑝𝑝𝑖𝑖,𝑗𝑗� is set to zero; (2) When job 𝐽𝐽𝑗𝑗 is not assigned to the machine corresponding to its minimum processing 
time, 𝑇𝑇𝑇𝑇𝑗𝑗  is set to zero. The percentage representation of the job feature information value is defined in Eq. (28).  
 

𝑓𝑓𝑓𝑓𝑖𝑖,𝑗𝑗,𝑏𝑏𝑖𝑖 =
𝑇𝑇𝑇𝑇𝑗𝑗 + 1

(�𝑃𝑃𝑖𝑖,𝑏𝑏𝑖𝑖 − 𝑝𝑝𝑖𝑖,𝑗𝑗� + 1) ∗ 𝑑𝑑𝑗𝑗
, 𝐽𝐽𝑗𝑗 ∈ 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖  

(27) 

𝑓𝑓𝑓𝑓𝑖𝑖,𝑗𝑗,𝑏𝑏𝑖𝑖
∗ =

𝑓𝑓𝑓𝑓𝑖𝑖,𝑗𝑗,𝑏𝑏𝑖𝑖
∑ 𝑓𝑓𝑓𝑓𝑖𝑖,𝑗𝑗,𝑏𝑏𝑖𝑖

, 𝐽𝐽𝑗𝑗 ∈ 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖  
(28) 

  
When both set 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

2  and set 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
3  are empty, a 0-1 decision variable is introduced to determine whether to select a job from 

set 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
1 . This decision is designed to balance two key factors: the capacity utilization of the machine and the continuity of 

the batch's machining time. The procedure of the PP-FI heuristic is outlined in Algorithm 1. 
 

Algorithm 1: PP-FI heuristic 
1 Set 𝑈𝑈𝑈𝑈𝑈𝑈(set of unassigned jobs) = 𝐽𝐽𝑗𝑗 , 𝑏𝑏𝑖𝑖(batch index of 𝑀𝑀𝑖𝑖) = 0, 

𝐴𝐴𝑖𝑖,𝑏𝑏𝑖𝑖(cumulative machining time of 𝑀𝑀i prior to processing 𝐵𝐵𝑖𝑖,𝑏𝑏𝑖𝑖) = 0 
2 Calculate the 𝑝𝑝𝑝𝑝𝑖𝑖  of machine 𝑀𝑀𝑖𝑖 according to Equation (23) 
3 While 𝑈𝑈𝑈𝑈𝑈𝑈 ≠ ∅ do 
4   Select a machine 𝑀𝑀𝑖𝑖  using the roulette wheel strategy according to the value of 𝑝𝑝𝑝𝑝𝑖𝑖  
5   𝑆𝑆𝑆𝑆𝑆𝑆 𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑖𝑖 + 1 
6   Update job candidate sets 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

1 , 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖
2 , 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

3 according to Equations (24) − (26) 
7        While 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

3 ≠ ∅ do 
8            Select 𝐽𝐽𝑗𝑗  from 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

3  using the roulette wheel strategy based on 𝑓𝑓𝑓𝑓𝑖𝑖,𝑗𝑗,𝑏𝑏𝑖𝑖
∗  

9            Perform the UpdateCandidateSets operation, which includes removing 𝐽𝐽𝑗𝑗 from 𝑈𝑈𝑈𝑈𝑈𝑈 and updating all candidate 
sets 

10       End while 
11      While 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

2 ≠ ∅ do 
12            Select 𝐽𝐽𝑗𝑗  from 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

2  using the roulette wheel strategy based on 𝑓𝑓𝑓𝑓𝑖𝑖,𝑗𝑗,𝑏𝑏𝑖𝑖
∗  

13            UpdateCandidateSets 
14       End while 
15      While 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

1 ≠ ∅ and random{0,1} = 0 do 
16            Select 𝐽𝐽𝑗𝑗  from 𝐿𝐿𝑖𝑖,𝑏𝑏𝑖𝑖

1  using the roulette wheel strategy based on 𝑓𝑓𝑓𝑓𝑖𝑖,𝑗𝑗,𝑏𝑏𝑖𝑖
∗  

17             UpdateCandidateSets 
18       End while 
19       If 𝑃𝑃𝑖𝑖,𝑏𝑏𝑖𝑖 + 𝐴𝐴𝑖𝑖,𝑏𝑏𝑖𝑖 > UT 
20             𝐴𝐴𝑖𝑖,𝑏𝑏𝑖𝑖+1 = 0 
21       Else 
22             𝐴𝐴𝑖𝑖,𝑏𝑏𝑖𝑖+1 = 𝐴𝐴𝑖𝑖,𝑏𝑏𝑖𝑖 + 𝑃𝑃𝑖𝑖,𝑏𝑏𝑖𝑖 
23       End if 
24 End while 

 
4.2.2 An illustrative example problem of PP-FI heuristic 
 
This section presents a small example to demonstrate the procedure of job allocation and batch formation using the PP-FI 
heuristic. In this example, ten jobs are allocated to two UPBPMs. The parameters of this problem instance are identical to 
those described in Section 3.1. A Gantt chart of one feasible solution is shown in Fig. 5. 
 
The processing power characteristic values 𝑝𝑝𝑝𝑝1 and 𝑝𝑝𝑝𝑝2 of machine 𝑀𝑀1 and 𝑀𝑀2 are 44.44% and 55.56%, respectively. Using 
the roulette wheel strategy, machine 𝑀𝑀1 is selected, and 𝑏𝑏1 = 𝑏𝑏1 + 1 = 0 + 1 = 1, an empty batch 𝐵𝐵1,1 is created. The job 
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candidate sets are generated as 𝐿𝐿1,1
2 = 𝐿𝐿1,1

1 = {𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽3, 𝐽𝐽4, 𝐽𝐽5, 𝐽𝐽6, 𝐽𝐽7, 𝐽𝐽8, 𝐽𝐽9, 𝐽𝐽10}. Since there is no job in 𝐵𝐵1,1, 𝐿𝐿1,1
3 = ∅, a job is 

selected from 𝐿𝐿1,1
2  . The feature information percentage values of jobs are 10.16%, 9.77%, 8.88%, 8.94%, 11.36%,

10.68%, 9.13%, 9.41%, 11.67%, 10.00% , and job 𝐽𝐽6  is selected. Updating the job candidate sets, 𝐿𝐿1,1
2 = 𝐿𝐿1,1

1 =
{𝐽𝐽1, 𝐽𝐽3, 𝐽𝐽4, 𝐽𝐽7, 𝐽𝐽10} , 𝐿𝐿1,1

3 = {𝐽𝐽10} . Selecting job 𝐽𝐽10  from 𝐿𝐿1,1
3   and update job candidate sets 𝐿𝐿1,1

2 = 𝐿𝐿1,1
1 = {𝐽𝐽4, 𝐽𝐽7} , 𝐿𝐿1,1

3 = ∅ . 
Selecting job 𝐽𝐽4  from 𝐿𝐿1,1

2  , and update the job candidate sets, 𝐿𝐿1,1
2 = 𝐿𝐿1,1

1 = {𝐽𝐽7} , 𝐿𝐿1,1
3 = ∅ . Selecting job 𝐽𝐽7  from 𝐿𝐿1,1

2  , and 
update the job candidate sets, 𝐿𝐿1,1

1 = ∅. Therefore, 𝐵𝐵1,1 consists of job 𝐽𝐽6, 𝐽𝐽10, 𝐽𝐽4, 𝐽𝐽7. Since 𝐴𝐴1,1 + max {𝑝𝑝1,6,𝑝𝑝1,10, 𝑝𝑝1,4, 𝑝𝑝1,7} ≤
𝑈𝑈𝑈𝑈, update 𝐴𝐴1,2 = 𝐴𝐴1,1 + max {𝑝𝑝1,6, 𝑝𝑝1,10,𝑝𝑝1,4, 𝑝𝑝1,7} = 0 + {10, 4, 32,48} = 48. 
 
Since UJS ≠ ∅, the machine 𝑀𝑀1 is selected and 𝑏𝑏2 = 𝑏𝑏2 + 1 = 0 + 1 = 1, an empty batch 𝐵𝐵2,1 is created. The job candidate 
sets are generated as 𝐿𝐿2,1

2 = 𝐿𝐿2,1
1 = {𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽3, 𝐽𝐽5, 𝐽𝐽8, 𝐽𝐽9}. Since there is no job in 𝐵𝐵1,1, 𝐿𝐿1,1

3 = ∅, a job is selected from 𝐿𝐿2,1
2 . Since 

the feature information percentage value of jobs are 16.60%, 15.59%, 14.49%, 18.54%, 15.36%, 19.06%, job 𝐽𝐽5 is selected 
from 𝐿𝐿2,1

2  .Updating the job candidate sets, 𝐿𝐿2,1
2 = 𝐿𝐿2,1

1 = {𝐽𝐽7} , 𝐿𝐿1,1
3 = ∅ . Selecting job 𝐽𝐽7  from 𝐿𝐿2,1

2  , and update the job 
candidate sets, 𝐿𝐿2,1

1 = ∅ . Therefore, 𝐵𝐵2,1  consists of job 𝐽𝐽5, 𝐽𝐽1 . Since 𝐴𝐴2,1 + max {𝑝𝑝2,5, 𝑝𝑝2,1} ≤ 𝑈𝑈𝑈𝑈 , update 𝐴𝐴2,2 = 𝐴𝐴2,1 +
max {𝑝𝑝2,5, 𝑝𝑝2,1} = 0 + {12} = 12. 
 
Since 𝑈𝑈𝑈𝑈𝑈𝑈 ≠ ∅, the machine 𝑀𝑀2 is selected and 𝑏𝑏2 = 𝑏𝑏2 + 1 = 1 + 1 = 2, an empty batch 𝐵𝐵2,2 is created. The job candidate 
sets are generated as 𝐿𝐿2,2

2 = 𝐿𝐿2,2
1 = {𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽3, 𝐽𝐽8, 𝐽𝐽9} , 𝐿𝐿2,1

3 = ∅ . Since the feature information percentage value of jobs are 
20.37%, 19.59%, 17.79%, 18.85%, 23.39% , the job 𝐽𝐽2  is selected. Updating the job candidate sets, 𝐿𝐿2,2

1 = {𝐽𝐽3, 𝐽𝐽8} , 𝐿𝐿2,2
3 =

𝐿𝐿2,2
2 = {𝐽𝐽3}, the job 𝐽𝐽3 is selected. Updating the job candidate sets, 𝐿𝐿2,2

1 = ∅. Therefore, 𝐵𝐵2,2 consists of job 𝐽𝐽2, 𝐽𝐽3. Since 𝐴𝐴2,2 +
max {𝑝𝑝2,2, 𝑝𝑝2,3} ≤ 𝑈𝑈𝑈𝑈, update 𝐴𝐴2,3 = 𝐴𝐴2,2 + max {𝑝𝑝2,2, 𝑝𝑝2,3} = 12 + {27, 23} = 39. 
 
Since 𝑈𝑈𝑈𝑈𝑈𝑈 ≠ ∅, the machine 𝑀𝑀1 is selected and 𝑏𝑏1 = 𝑏𝑏1 + 1 = 1 + 1 = 2, an empty batch 𝐵𝐵1,2 is created. The job candidate 
sets are generated as 𝐿𝐿1,2

2 = 𝐿𝐿1,2
1 = {𝐽𝐽8, 𝐽𝐽9}, 𝐿𝐿1,3

3 = ∅, a job is selected from 𝐿𝐿1,2
2 . The feature information percentage values of 

jobs are 44.63%, 55.37%, and the job 𝐽𝐽8 is selected. After processing 𝐵𝐵1,2 the accumulated processing time of the machine 
will exceed 𝑈𝑈𝑈𝑈. Therefore, 𝐴𝐴1,2 = 0 . Updating the job candidate sets, 𝐿𝐿1,2

1 = ∅ . Therefore, and 𝐵𝐵1,2  consists of 𝐽𝐽8 . Since 
𝐴𝐴1,2 + max {𝑝𝑝1,8} ≤ 𝑈𝑈𝑈𝑈, update 𝐴𝐴1,3 = 0 + max {𝑝𝑝1,8} = 0 + {26} = 26. 
 
Since 𝑈𝑈𝑈𝑈𝑈𝑈 ≠ ∅, the machine 𝑀𝑀1 is selected and 𝑏𝑏1 = 𝑏𝑏1 + 1 = 2 + 1 = 3, an empty batch 𝐵𝐵1,3 is created. The job candidate 
sets are generated as 𝐿𝐿1,3

2 = 𝐿𝐿1,3
1 = {𝐽𝐽9} , 𝐿𝐿1,3

3 = ∅ , job𝐽𝐽9  is selected from 𝐿𝐿1,3
2  . Updating the job candidate sets, 𝐿𝐿1,3

1 = ∅ . 
Therefore, and 𝐵𝐵1,3 consists of 𝐽𝐽9. Since 𝐴𝐴1,3 + max {𝑝𝑝1,9} ≤ 𝑈𝑈𝑈𝑈, update 𝐴𝐴1,4 = 𝐴𝐴1,3 + max {𝑝𝑝1,9} = 26 + {3} = 29. 
 

0

J8 J9

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 61 64 67 71 74

M1

M2 J5   ,   J1

J6   ,   J10   ,   J4   ,   J7

J2   ,   J3

FPM

 
Fig. 5. Instance solution based on PP-FI heuristic. 

 
Following the PP-FI procedure, the solution obtained is with three batches in the machine 𝑀𝑀1 and two batches in the machine 
𝑀𝑀2. In this instance, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is 74, ET is 864, and TEC is 2073. 
 
4.3 Decoding with RLS rule 
 
Since the objective of the ET is related to the start time of batch and maintenance, after determining the job allocation and 
batch formation, a Right-Left Shifting (RLS) rule is proposed to adjust the start times of batches and maintenance activities. 
Equation (28) defines the median due date 𝑑̃𝑑 of jobs in batch 𝐵𝐵𝑖𝑖 ,𝑏𝑏, where 𝑛𝑛𝑖𝑖,𝑏𝑏 represents the number of jobs in batch 𝐵𝐵𝑖𝑖 ,𝑏𝑏. 
 

𝑑̃𝑑 = �
𝑑𝑑(𝑛𝑛𝑖𝑖,𝑏𝑏+1)/2 ,   𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖,𝑏𝑏 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜
   𝑑𝑑𝑛𝑛𝑖𝑖,𝑏𝑏/2 ,      𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖,𝑏𝑏 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (28) 

 
Since the batch completion time 𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏  approaches 𝑑̃𝑑, the batch’s ET value decreases (Zhang et al., 2021). When 𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏 ≤ 𝑑̃𝑑, 
𝐵𝐵𝑖𝑖,𝑏𝑏 is shifted to the right, to further reduce the ET value among different batches. To formalize this, we  define a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 as a 
sequence of continuous processing batches (including maintenance) without idle time (Zhang et al., 2022). Let |𝐴𝐴𝑝𝑝t |, |𝐴𝐴𝑝𝑝i | and 
|𝐴𝐴𝑝𝑝e | denote the number of tardy jobs, punctual jobs, and early finished jobs in 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 p, respectively. Define ∆𝑝𝑝= |𝐴𝐴𝑝𝑝t | −
|𝐴𝐴𝑝𝑝i | − |𝐴𝐴𝑝𝑝e |, where ∆𝑝𝑝≥ 0 indicates that the number of punctual and early jobs exceeds the number of tardy jobs. When 
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𝐶𝐶𝑇𝑇𝑖𝑖,𝑏𝑏 > 𝑑̃𝑑 and ∆𝑝𝑝≥ 0, shifting 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝 to the left can potentially yield a new solution with a smaller makespan compared to 
the current solution. Although shifting a block left or right moves 𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏 closer to 𝑑̃𝑑 and reduces the ET value, it may also 
increase the 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and the TEC. To address this trade-off, a binary variable is randomly generated to determine whether the 
shift will occur. Additionally, If the cumulative processing time of the machine after processing the batch exceeds the 
maintenance threshold, maintenance will be scheduled immediately after the previous batch is completed. The detailed 
procedure for decoding based on the RLS rule is presented in Algorithm 2. 
 

Algorithm 2: Decoding based on RLS rule 
Input: 𝑛𝑛𝑖𝑖𝑏𝑏(the number of batches in the machine 𝑀𝑀𝑖𝑖) 
Output: 𝑆𝑆𝑆𝑆𝑖𝑖,𝑏𝑏(the start time of 𝐵𝐵𝑖𝑖,𝑏𝑏), 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, 𝐸𝐸𝐸𝐸 and 𝑇𝑇𝑇𝑇𝑇𝑇 values of the solution 
1  Set  𝑖𝑖(machine index) = 1, 𝑏𝑏(batch index) = 1 
2  For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑚𝑚 then 
3        For 𝑏𝑏 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛𝑖𝑖𝑏𝑏 then 
4              If 𝐴𝐴𝑖𝑖,𝑏𝑏 + 𝑃𝑃𝑖𝑖,𝑏𝑏 > 𝑈𝑈𝑈𝑈 then 
5                    𝑌𝑌𝑖𝑖,𝑏𝑏 = 1, 𝐴𝐴𝑖𝑖,𝑏𝑏 = 0 
6              Else 
7                    𝑌𝑌𝑖𝑖,𝑏𝑏 = 0, 𝐴𝐴𝑖𝑖,𝑏𝑏 = 𝐴𝐴𝑖𝑖,𝑏𝑏−1 + 𝑃𝑃𝑖𝑖,𝑏𝑏 
8              End if 
9              If random{0,1} = 1 then 
10                   If 𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏 ≤ 𝑑̃𝑑 then 
11                        𝑆𝑆𝑆𝑆𝑖𝑖 ,𝑏𝑏 = 𝑑̃𝑑 − 𝑃𝑃𝑖𝑖,𝑏𝑏 
12                  While ∆p≥ 0 and 𝑆𝑆𝑆𝑆𝑖𝑖,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝 ≥ 𝐶𝐶𝐶𝐶𝑖𝑖,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝−1 + 1 then 
13                        𝑆𝑆𝑆𝑆𝑖𝑖 ,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝 = 𝑆𝑆𝑆𝑆𝑖𝑖,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝 − 1, Update 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝, �𝐴𝐴𝑝𝑝𝑡𝑡 �, �𝐴𝐴𝑝𝑝𝑖𝑖 �, �𝐴𝐴𝑝𝑝𝑒𝑒 � 
14                        If 𝑆𝑆𝑆𝑆𝑖𝑖 ,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝 = 𝐶𝐶𝐶𝐶𝑖𝑖,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝−1 then 
15                              Update 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝, �𝐴𝐴𝑝𝑝𝑡𝑡 �, �𝐴𝐴𝑝𝑝𝑖𝑖 �, �𝐴𝐴𝑝𝑝𝑒𝑒 � 
16                              Break 
17                        End if 
18                  End while 
19            Else 
20                     𝑆𝑆𝑆𝑆𝑖𝑖,𝑏𝑏 = 𝐶𝐶𝐶𝐶𝑖𝑖,𝑏𝑏−1 + 𝑌𝑌𝑖𝑖,𝑏𝑏−1 ∗ 𝑡𝑡𝑚𝑚 
21            End if 
22       End for 
23  End for 
24  Calculate the values of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, 𝐸𝐸𝐸𝐸, 𝑇𝑇𝑇𝑇𝑇𝑇 

 
4.4 Employed Bee Phase 
 
During the employed bee phase, each employed bee utilizes a neighborhood structure to search for new food sources. A total 
of six types of neighborhood structures are designed, balancing the exploration and exploitation capabilities of the algorithm. 
Sequential neighborhood (SN) searches are performed SN times for each employed bee. These neighborhood structures are 
described as follows, with a detailed demonstration provided in Fig. 6. The procedure for the employed bee phase is outlined 
in Algorithm 3. 
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Fig. 6. Example of neighborhood structure. 

(1) Single-machine job swap: Select one job randomly from each of two batches on the same machine and swap them. 
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(2) Between machine job swap: Select one job randomly from each batch on two different machines and swap them. 
(3) Single-machine job insert: Select one job randomly from a batch on a machine and insert it into another batch on the same 
machine. 
(4) Between-machine job insert: Select one job randomly from one machine and insert it into a random batch on another 
machine. 
(5) Single-machine batch swap: Select two batches randomly from a machine and swap them. 
(6) Between machine batch swap: Select one batch randomly from each machine and swap them. 
 

Algorithm 3: Employed Bee Phase 
Input: 𝑃𝑃�(initial population), 𝑁𝑁𝑁𝑁(population size), 𝑆𝑆𝑆𝑆(number of searches) 
Output: EBP (employed bee population) 
1 Set 𝑝𝑝(individual index) = 1, 𝑙𝑙(search index ) = 1, 𝑘𝑘(structure index) = 1 
2 For 𝑝𝑝 = 1 𝑡𝑡𝑡𝑡 𝑁𝑁𝑁𝑁 then 
3        For 𝑙𝑙 = 1 𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆 then 
4                𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝 ←Apply the kth neighborhood structure to generate a new feasible solution 
5               If 𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝 ≺ 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝  (𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝  dominate 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝 )then 

6                     𝜋𝜋𝑝𝑝 ← 𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝 (update the current solution)  

7               Else if 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝 ≺ 𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝  then 
8                     𝜋𝜋𝑝𝑝 ← 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜

𝑝𝑝 , 𝑘𝑘 = 𝑘𝑘 + 1 
9               Else 
10                    𝜋𝜋𝑝𝑝 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟{𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝 ,𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝 }, 𝑘𝑘 = 𝑘𝑘 + 1 

11              End if 
12              If 𝑘𝑘 > 6 then 
13                    𝑘𝑘 = 1 
14        End for 
15        𝑙𝑙 = 1 
16 End for 

 
4.5 Onlooker Bee Phase  
 
During the scout bee phase, additional exploitation is performed based on the optimal solutions identified in the employed 
bee phase. To facilitate this, the objective value of the food source from the employed bee phase are normalized using Equation 
(29). Here, 𝑓𝑓𝑟𝑟(𝑥𝑥)  denotes the 𝑟𝑟 th objective value of solution 𝑥𝑥 , where 𝑟𝑟 = 1,2,3 . The minimum and maximum objective 
values across all individuals in the population are represented as 𝑧𝑧𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = min𝑓𝑓𝑟𝑟(𝑥𝑥) and 𝑧𝑧𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = max𝑓𝑓𝑟𝑟(𝑥𝑥), respectively, with 
X  denoting the entire population. A reference point 𝑧𝑧𝑟𝑟∗ , utilized for hypervolume value, is defined in Equation (30). The 
hypervolume percentage of each individual is then determined using Equation (31), which provides a measure of solution 
quality. Food source selection during this phase integrates hypervolume values with a roulette wheel strategy to ensure a 
balance between exploration and exploitation. 
 
𝑓𝑓𝑟𝑟′(𝑥𝑥) = 𝑓𝑓𝑟𝑟(𝑥𝑥)−𝑧𝑧𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 , x ∈ X (29) 

𝑧𝑧𝑟𝑟∗ = 𝑓𝑓𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜎𝜎(𝑓𝑓𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚) , 𝜎𝜎 ∈ (0,1) (30) 

ℎ𝑣𝑣𝑝𝑝∗ =
ℎ𝑣𝑣𝑝𝑝

∑ ℎ𝑣𝑣𝑝𝑝𝑁𝑁𝑁𝑁
𝑝𝑝=1

 
(31) 

  
To address the limited capacity, which can lead to local optima (Li et al., 2022), six goal-oriented neighborhoods are designed 
to search for non-dominated solutions, ensuring solution are as close as possible to the Pareto frontier. All feasible solutions 
are stored in a temporary set, followed by non-dominated sorting and updating the external pareto archive (EPA). The key 
terms are defined as follows: 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 represents the machine with the longest completion time, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 denotes the machine 
with the shortest completion time, 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 refers to the machine with the highest processing energy consumption, and 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 
denotes the one with the lowest processing energy consumption. The six goal-oriented neighborhoods are detailed below. 
 

(1) Cmax job search: Swap the job with the largest 𝑝𝑝𝑖𝑖,𝑗𝑗 in each batch on 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 with each job on 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, retaining all feasible 
solution. 
(2) Cmax batch search: Swap each batch on 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 with each batch on 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, retaining all feasible solutions. 
(3) TEC job search: Swap the job with the largest 𝑝𝑝𝑖𝑖,𝑗𝑗 in each batch on 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 with each job on 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, retaining all feasible 
solution.  
(4) TEC batch search: Swap each batch on 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  with each batch on 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 , retaining all feasible solutions. 
(5) ET job search: Swap the job with the largest ET value with each job within the remaining batch on the same machine, 
retaining all feasible solutions. 
(6) ET batch search: Swap the batch with the largest ET value with all other batches, retaining all feasible solutions.   
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These neighborhood strategies are designed to effectively balance the trade-offs between the objectives, including Cmax, TEC, 
and ET. The procedure for the onlooker bee phase is outlined in Algorithm 4, which ensures thorough exploration of the 
solution space while maintaining a balance between exploration and exploitation. 
 

Algorithm 4: Onlooker Bee Phase 
Input: EBP (employed bee population), 𝑁𝑁𝑁𝑁(population size), 𝑆𝑆𝑆𝑆(number of searches) 
Output: 𝑂𝑂𝑂𝑂𝑂𝑂(onlooker bee population) 
1 Set 𝑝𝑝(individual index) = 1, 𝑙𝑙(search index ) = 1, 𝑘𝑘(structure index) = 1,the feasible solution set 𝑇𝑇𝑇𝑇 = ∅ 
2 For 𝑝𝑝 = 1 𝑡𝑡𝑡𝑡 𝑁𝑁𝑁𝑁 then 
3        For 𝑙𝑙 = 1 𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆 then 
4                𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝 ←Apply the kth neighborhood structure to generate a new feasible solution 
5               If 𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝 < 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝  then 

6                     𝜋𝜋𝑝𝑝 ← 𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝  

7               Else if 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝 < 𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝  then 
8                     𝜋𝜋𝑝𝑝 ← 𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜

𝑝𝑝 , 𝑘𝑘 = 𝑘𝑘 + 1 
9               Else 
10                    𝜋𝜋𝑝𝑝 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟{𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝 ,𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝 }, 𝑘𝑘 = 𝑘𝑘 + 1 

11              End if 
12              If 𝑘𝑘 > 6 then 
13                    𝑘𝑘 = 1 
14        End for 
15        𝑙𝑙 = 1 
16 End for  
16 Set 𝑝𝑝 = 1, 𝑘𝑘 = 1 
17 𝐸𝐸𝐸𝐸𝐸𝐸∗ ← non-dominated sorting 𝐸𝐸𝐸𝐸𝐸𝐸 and retain non-dominated solutions 
18 For 𝑝𝑝 = 1 𝑡𝑡𝑡𝑡 |𝐸𝐸𝐸𝐸𝐸𝐸∗ ∪ 𝐸𝐸𝐸𝐸𝐸𝐸| then 
19       For 𝑘𝑘 = 1 𝑡𝑡𝑡𝑡 6 then 
20             𝑇𝑇𝑇𝑇 ←  𝐸𝐸𝐸𝐸𝐸𝐸∗ ∪ 𝐸𝐸𝐸𝐸𝐸𝐸 use 𝑘𝑘th goal-oriented neighborhood until a feasible solution 
21       End for 
22 End for 
23 Non-dominated sorting { 𝑇𝑇𝑇𝑇 ∪ 𝐸𝐸𝐵𝐵𝐵𝐵 ∪ 𝐸𝐸𝐸𝐸𝐸𝐸} 
24 Update 𝑂𝑂𝑂𝑂𝑂𝑂 and EPA 

 
4.6 Scout Bee Phase 
 

The scout bee phase plays a critical role in maintaining population diversity and preventing premature convergence. During 
this phase, the algorithm monitors the number of iterations for which each food source remains stagnant, i.e., without being 
updated. If a food source remains unchanged for a specified number of iterations, known as the limit, it indicates that the 
source is no longer yielding new or beneficial solutions. To mitigate this issue, the algorithm replaces stagnant food sources 
with new ones generated using the PP-FI heuristic. This ensures that the search process is reinvigorated by introducing new 
candidate solutions into the population. By regenerating stagnant food sources, the scout bee phase facilitates the exploration 
of previously unvisited areas in the search space. This not only enhances the algorithm’s global search capability but also 
increases the likelihood of escaping local optimum and finding the global optimum, thereby improving the overall robustness 
and performance of the algorithm. 
 

5. Experimental design and result analysis 
 

5.1 Experimental design 
 

Based on actual production data from an enterprise (Li et al., 2022), we categorized the test problem instances into three 
groups: small, medium, and large. The categories are defined as follows: Small size(n={10,15,20}, m=2, UT=60, 𝑡𝑡𝑚𝑚=10), 
Medium size (n={40,60,80}, m={2,3}, UT=60, 𝑡𝑡𝑚𝑚=10), and Large size (n={100,150,200,250}, m={3,5}, UT=120, 𝑡𝑡𝑚𝑚=20). 
Each parameter combination generated ten instances, resulting in a total of 170 instances. The processing times (𝑝𝑝𝑖𝑖,𝑗𝑗) were 
sampled from a uniform distribution U [1,50], the sizes (𝑠𝑠𝑗𝑗) from U [1,10], and the due dates (𝑑𝑑𝑗𝑗) were calculated using Eq. 
(32) and Eq. (33) with τ=0.5 and ρ=0.2. 

𝑑𝑑𝑗𝑗 = �
𝑝𝑝𝑖𝑖,𝑗𝑗
𝑚𝑚

𝑚𝑚

𝑖𝑖=1
+ 𝑈𝑈 �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜌𝜌 ∗� �

𝑝𝑝𝑖𝑖,𝑗𝑗
𝑚𝑚

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
� /2 

(32) 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = � �
𝑝𝑝𝑖𝑖,𝑗𝑗
𝑚𝑚

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
∗ (𝜏𝜏 − 𝜌𝜌/2) 

(33) 
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To ensure fairness in experimental comparisons, the maximum running time (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) was used as the termination condition (Jia 
et al., 2017), where 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚 ∗ 𝑛𝑛 ∗ 360 ms. Each instance of all algorithms was executed independently ten times. The 
population size of all comparison algorithms was kept identical to that of the MOABC algorithm, and the crossover and 
mutation probabilities of NSGA-III were set to 0.9 and 0.1, respectively (Yuan et al., 2014). Four metrics were used to assess 
the performance of the multi-objective optimization algorithm (Li & Yao, 2019). (1) Generational Distance (GD) measures 
the algorithm's convergence. (2) Inverse Generational Distance (IGD) evaluates both uniformity and convergence 
comprehensively. (3) Non-dominance Rate (NR) assesses the diversity and convergence of the solutions. (4) C (A, *) 
represents the average of the C matrix for Algorithm A compared to other algorithms and measures the divergence between 
two Pareto frontiers. 
 
5.2 Parameters tuning 
 
The performance of the MOABC algorithm is governed by four key parameters: population size (NP), the number of 
neighborhood searches per individual (SN), the ratio of initial solutions generated by the FF heuristic (𝑃𝑃𝑝𝑝), and the parameter 
𝜎𝜎 for the reference point. Preliminary experiments identified four levels for each parameter, as summarized in Table 4. To 
streamline the parameter tuning process, a medium-sized representative problem was selected (Rauf et al., 2020; Yue et al., 
2019). The Taguchi experiment design was employed to determine the optimal parameter combinations. Using Minitab, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, 
ET and TEC were set as response variables to compute the signal-to-noise (S/N) ratio. This approach resulted in 𝐿𝐿16(44) 
parameter combinations. Each experimental was evaluated through ten independent runs, leading to a total of 160 experiments. 
 
Table 4  
Algorithm parameters and values. 

Parameters Value 
1 2 3 4 

𝑁𝑁𝑃𝑃 50 100 150 200 
𝑆𝑆𝑆𝑆 2 3 4 5 
𝑃𝑃𝑝𝑝 0.3 0.4 0.5 0.6 
𝜎𝜎 0.2 0.4 0.6 0.8 

The mean S/N ratio values were analyzed to identify the optimal parameter settings by illustrating the impact of each parameter 
through S/N plots, as shown in Fig. 7. Since this is a minimization problem, the ‘larger-the-better’ criterion was adopted for 
the S/N ratio in this study. For the multi-objective optimization problem, the mean S/N values were normalized to determine 
the optimal parameter settings by integrating the three objectives. This study employed the data normalization method 
proposed by Yue et al. (2019). Based on the normalized S/N ratio values for each objective, the derived optimal parameter 
settings for the algorithm are 𝑁𝑁𝑁𝑁 = 150, 𝑆𝑆𝑆𝑆 = 2, 𝑃𝑃𝑝𝑝 = 0.7 and 𝜎𝜎 = 0.8. 

 
Fig. 7. Main effects of key parameters of MOABC. 

5.3 Results and analysis 
 

5.3.1 Performance comparison 
 

Fig. 8 illustrates the convergence performance of the proposed MODABC algorithm in comparison with NSGA-II, ABC, and 
PSO across three objectives—Cmax, TEC, and ET—under a large-scale problem instance. 
 

MODABC NAGA-IIABC PSO 

Fig. 8. Large-Scale Algorithm Convergence Comparison. 
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For the Cmax objective, MODABC demonstrates significant convergence advantages, achieving the fastest convergence speed 
and the best final solution. ABC and NSGA-II exhibit relatively similar performance, with stable convergence speeds and 
final solution quality, though slightly inferior to MODABC. PSO performs the worst, with slow convergence speed, prolonged 
stagnation phases, and an inability to effectively escape local optima. 
 
For the TEC objective, MODABC again shows outstanding performance, with a stable convergence curve and significantly 
better final solution quality compared to the other algorithms. NSGA-II follows, displaying a good convergence trend in the 
mid-stage but slowing down in the later stages. ABC and PSO exhibit weaker local search performance in this objective, 
leading to final solution quality notably inferior to MODABC and NSGA-II. 
 
For the ET objective, MODABC maintains rapid and stable convergence characteristics, achieving the best final solution 
quality. NSGA-II converges quickly in the early stages but experiences significant fluctuations later, failing to reach an optimal 
solution. ABC and PSO perform the worst, with slower convergence speeds and significant fluctuations, failing to achieve 
satisfactory solutions. 

Overall, MODABC effectively enhances global search and local optimization performance through its hypervolume 
contribution mechanism and multi-neighborhood search strategy, resulting in fast convergence and superior solution quality. 
NSGA-II performs relatively stable in multi-objective optimization but has limitations in local search precision. ABC and 
PSO struggle to balance global and local searches effectively, making it difficult to maintain a well-distributed Pareto front. 
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Fig. 9. Two dimensional Pareto front plot at three scales. 

Fig. 9 presents the Pareto front results of the four algorithms, highlighting their performance differences in multi-objective 
optimization. As shown in Fig. 9(a), MODABC demonstrates balanced and superior performance across multiple objectives. 
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This can be attributed primarily to its use of the PP-FI heuristic method, which generates high-quality initial solutions by 
leveraging problem-specific characteristics, providing a solid foundation for optimization. Additionally, its neighborhood 
search strategy further enhances the diversity and balance of solutions, enabling better trade-offs among multiple objectives. 
In contrast, ABC and NSGA-II show slightly inferior performance in terms of the makespan objective, likely due to the lack 
of efficient initialization strategies, resulting in insufficient coverage of the solution space. PSO’s Pareto front includes only 
a single solution, reflecting its limited exploration ability in complex multi-objective problems. As shown in Fig. 9(b) and Fig. 
9(c), with increasing problem scale, MODABC continues to exhibit significant advantages in optimizing Cmax and ET 
objectives. This indicates that its robust local search capability enables it to maintain superior performance in complex 
problems. In comparison, ABC and PSO, lacking neighborhood strategies, are more prone to falling into local optima, limiting 
performance improvement. Although NSGA-II maintains good Pareto distribution in larger-scale problems, it fails to 
effectively incorporate problem-specific characteristics, resulting in slightly inferior performance in certain objectives 
compared to MODABC. Table 5 presents the analysis of the GD, IGD, and NR metrics for each instance, using two heuristic 
rules to generate feasible solutions. The feasible solutions are merged, and the non-dominated solutions are extracted to form 
the reference set. Furthermore, a C-matrix metric analysis is conducted on the non-dominated solutions within each solution 
set.  
 
Table 5  
The results obtained from initial solutions generated by PP-FI and FF heuristics. 

Size m-n GD IGD NR C-matrix 
PP-FI FF PP-FI FF PP-FI FF C (PP-FI, FF) C (FF, PP-FI) 

Small 

10-2 21.15 66.62 177.88 64.92 0.88 0.64 0.35 0.12 
15-2 77.51 107.09 150.57 231.18 0.67 0.61 0.39 0.33 
20-2 58.60 18.61 190.49 699.07 0.85 0.84 0.15 0.14 
Avg 52.42  64.11  172.98  331.72  0.80  0.70  0.30  0.20  

Medium 

40-2 54.66 1059.14 632.84 3179.98 0.95 0.3125 0.68 0.05 
40-3 0.97 781.12 207.53 1311.04 0.97 0.23 0.76 0.02 
60-2 0.0 6645.66 0.0 7203.36 1.0 0.0 1.0 0.0 
60-3 0.0 4473.72 0.0 4695.60 1.0 0.0 1.0 0.0 
80-2 0.0 0.0 2060.27 12568.34 1.0 1.0 0.0 0.0 
80-3 0.0 6351.85 386.21 8956.25 1.0 0.04 0.95 0.0 
Avg 9.27  3218.58  547.81 6319.10 0.99  0.26  0.73  0.01  

Large 

100-3 0.0 17680.82 0.0 19998.25 1.0 0.0 1.0 0.0 
100-5 0.0 9250.61 0.0 13380.47 1.0 0.0 1.0 0.0 
150-3 0.0 23095.34 2390.17 33304.42 1.0 0.04 0.96 0.0 
150-5 0.0 24657.64 0.0 25203.23 1.0 0.0 1.0 0.0 
200-3 0.0 30584.18 0.0 29661.18 1.0 0.0 1.0 0.0 
200-5 0.0 31805.23 0.0 39448.97 1.0 0.0 1.0 0.0 
250-3 0.0 37917.15 0.0 33094.72 1.0 0.0 1.0 0.0 
250-5 0.0 50580.17 0.0 57708.33 1.0 0.0 1.00 0.0 
Avg 0.00  28196.39  298.77  31474.95  1.00  0.01  1.00  0.00  

The analysis in Table 5 reveals that the PP-FI heuristic performs marginally better than the FF heuristic in small-scale instances 
and significantly outperforms FF in medium and large-scale instances.  
 
Table 6  
The GD, IGD, and NR values were obtained from different algorithms. 

Size m-n GD IGD NR 
MOABC ABC NSGA-III PSO MOABC ABC NSGA-III PSO MOABC ABC NSGAIII PSO 

Small 

10-2 6.67 629.44 445.53 1738.34 629.44 1784.35 1322.98 2106.82 0.82 0.10 0.07 0.01 
15-2 3.60 505.29 143.08 768.23 505.29 1354.32 324.47 1014.76 0.50 0.12 0.34 0.04 
20-2 11.78 424.90 215.39 476.68 424.90 1162.94 553.23 885.71 0.43 0.14 0.27 0.17 
Avg 7.35 519.88 268.00 994.42 519.88 1433.87 733.56 1335.76 0.58 0.12 0.23 0.07 

Medium 

40-2 5.05 1729.26 378.49 1231.59 1729.26 4783.46 1733.06 3031.94 0.84 0.00 0.13 0.03 
40-3 29.50 528.30 283.01 276.25 528.30 1704.19 666.53 1111.93 0.45 0.07 0.22 0.26 
60-2 12.04 2491.86 461.15 2626.23 2491.86 1162.94 553.23 885.71 0.76 0.01 0.23 0.01 
60-3 24.19 1393.27 577.97 1301.74 1393.27 4871.86 2611.09 3292.84 0.63 0.03 0.22 0.12 
80-2 19.78 5216.57 1057.99 4968.26 5216.57 12576.78 4368.47 9586.16 0.75 0.00 0.25 0.00 
80-3 42.94 2855.52 1029.75 3443.14 2855.52 12932.15 5473.46 12254.46 0.43 0.14 0.27 0.17 
Avg 22.25 2369.13 631.39 2307.87 2369.13 6338.56 2567.64 5027.17 0.64 0.04 0.22 0.10 

Large 

100-3 59.45 5829.50 1428.42 7589.56 5829.50 18753.57 8928.27 19737.29 0.92 0.00 0.07 0.01 
100-5 81.94 3861.72 1912.58 4592.01 3861.72 15290.35 11764.45 12123.63 0.86 0.02 0.10 0.02 
150-3 62.10 8830.36 1635.60 10638.25 8830.36 26087.09 9337.32 25203.75 0.85 0.00 0.15 0.00 
150-5 76.66 9128.86 3861.18 11693.33 9128.86 33992.52 24270.09 30958.68 0.94 0.01 0.04 0.01 
200-3 163.63 15747.64 1894.13 20141.38 15747.64 36880.52 9467.52 39446.83 0.81 0.00 0.19 0.00 
200-5 258.19 15206.15 5566.02 16444.94 15206.15 50372.80 33958.67 42455.79 0.93 0.01 0.05 0.00 
250-3 136.95 21063.12 5965.05 25315.85 21063.12 50205.06 28630.71 55285.08 0.83 0.00 0.17 0.00 
250-5 136.05 21763.39 5619.89 20396.98 21763.39 69113.32 31575.18 58492.98 0.90 0.00 0.09 0.00 
Avg 121.87 12678.84 3485.36 14601.54 12678.84 37586.90 19741.53 35463 0.88 0.01 0.11 0.01 
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This performance advantage can be attributed to the design of PP-FI, which considers batch utilization, variations in 
processing times for the same workpiece across different machines, and delivery deadlines. These features enable PP-FI to 
generate high-quality initial solutions for multi-objective optimization problems, particularly as the problem scale increases. 
Table 6 and Table 7 present the performance comparison of the MOABC algorithm against other algorithms across all 
instances. The best values for GD, IGD, NR, and the C-matric are highlighted in bold for each case, providing a clear 
assessment of algorithmic effectiveness. 
 
Table 7  
The values of the C-matric obtained by different algorithms. 

Size m-n C (MOABC, ABC) C (ABC, 
MOABC) 

C 
(MOABC, 

NSGA-
III) 

C (NSGA-
III, 

MOABC) 

C (MOD 
ABC, 
PSO) 

C (PSO, 
MOABC) 

C (ABC, 
NSGA-

III) 

C (NSGA-
III, ABC) 

C (ABC, 
PSO) 

C (PSO, 
ABC) 

C 
(NSGA-
III, PSO) 

C (PSO, 
NSGA-

III) 

Small 

10-2 0.91 0.00 0.94 0.00 0.95 0.00 0.34 0.49 0.37 0.08 0.40 0.02 
15-2 0.73 0.00 0.41 0.00 0.78 0.00 0.01 0.62 0.13 0.28 0.30 0.02 
20-2 0.80 0.00 0.53 0.00 0.60 0.00 0.00 0.67 0.26 0.36 0.22 0.01 
Avg 0.81 0.00 0.63 0.00 0.78 0.00 0.12 0.59 0.25 0.24 0.31 0.02 

Medium 

40-2 0.98 0.00 0.81 0.00 0.89 0.00 0.00 0.94 0.06 0.59 0.15 0.15 
40-3 0.96 0.00 0.10 0.00 0.91 0.00 0.00 0.97 0.05 0.65 0.12 0.00 
60-2 0.57 0.00 0.35 0.02 0.46 0.01 0.05 0.64 0.20 0.55 0.11 0.26 
60-3 0.68 0.00 0.63 0.00 0.52 0.00 0.05 0.81 0.04 0.60 0.20 0.22 
80-2 1.00 0.00 0.27 0.03 1.00 0.00 0.00 0.95 0.04 0.71 0.23 0.00 
80-3 0.99 0.00 0.69 0.00 0.94 0.00 0.06 0.88 0.23 0.39 0.23 0.01 
Avg 0.86 0.00 0.48 0.01 0.79 0.00 0.03 0.87 0.10 0.58 0.17 0.11 

Large 

100-3 0.95 0.00 0.90 0.00 0.90 0.00 0.01 0.96 0.11 0.41 0.19 0.00 
100-5 0.87 0.00 0.84 0.00 0.73 0.00 0.08 0.82 0.27 0.36 0.14 0.10 
150-3 1.00 0.00 0.75 0.00 0.99 0.00 0.00 0.95 0.16 0.54 0.15 0.00 
150-5 0.92 0.00 0.95 0.00 0.92 0.00 0.01 0.93 0.21 0.39 0.07 0.06 
200-3 1.00 0.00 0.40 0.01 1.00 0.00 0.00 0.92 0.26 0.27 0.18 0.00 
200-5 0.96 0.00 0.94 0.00 0.96 0.00 0.00 0.92 0.11 0.42 0.12 0.05 
250-3 0.98 0.00 0.21 0.01 1.00 0.00 0.00 0.89 0.24 0.31 0.09 0.00 
250-5 0.93 0.00 0.84 0.00 0.93 0.00 0.00 0.87 0.22 0.35 0.10 0.04 
Avg 0.95 0.00 0.73 0.00 0.93 0.00 0.01 0.91 0.20 0.38 0.13 0.03 

As shown in Table 6, the GD values of the MOABC algorithm outperform those of the NSGA-III, ABC, and PSO algorithms 
across all 17 instances. This demonstrates the superior convergence and distribution capabilities of the MOABC algorithm. 
The incorporation of individual hypervolume (HV) values during the onlooker bee phase enables a comprehensive and 
balanced evaluation of the multiple objectives for each solution, thereby enhancing algorithm's convergence performance. 
 
For the IGD metric, the algorithms are ranked as follows (from best to worst): MOABC, NSGA-III, PSO, and ABC. This 
ranking is attributed to the advanced neighborhood structure and the six goal-oriented neighborhood search strategies 
employed by the MOABC algorithm, which facilitate more effective exploration of the search space. 
 
Regarding the NR metric, the MOABC algorithm achieves maximum values of 0.82 and 0.84 for small and medium-sized 
problems, respectively, and an average value of 0.88 for large-sized problems. This indicates that MOABC algorithm captures 
over 80% of the potential solution space represented by the NR metric, showcasing its strong performance near the Pareto 
frontier. 
 
As shown in Table 7, the MOABC algorithm achieves optimal values for the C-matrix metric across all instances. This 
suggests that the solution set generated by MOABC dominates those of the other algorithms, while rarely being dominated in 
return. Compared to ABC and PSO, NSGA-III performs better at maintaining population diversity due to its use of reference 
point rules during the selection stage. However, ABC and PSO, being primarily designed for single-objective optimization, 
exhibit weaker performance in addressing multi-objective problems. 
 
5.3.2 Robustness comparison  
 

Normalization was applied to address the wide range of values in the GD and IGD metrics. Fig. 8 illustrates box plots of the 
normalized results for the four algorithms, providing a visual comparison of their performance and highlighting the robustness 
of their solutions.  As shown in Fig. 10(a), the MOABC algorithm achieves the smallest GD values with the highest robustness, 
maintaining consistency across all three problem sizes. The NSGA-III and ABC algorithms follow in performance, while PSO 
demonstrates the highest median GD values and the broadest range of variation, indicating lower robustness. In Fig. 10(b), 
the MOABC also achieves the smallest IGD values with superior robustness across all problem sizes. While NSGA-III 
performs relatively well, ABC and PSO exhibit larger IGD values and higher variability, reflecting less consistent performance. 
Fig. 10(c) indicates that the MOABC achieves the highest median NR values, demonstrating superior diversity and 
convergence compared to the other algorithms. However, for small and medium-sized problems, MOABC also exhibits the 
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broadest range of variation, resulting in lower robustness compared to NSGA-III. In contrast, the ABC and PSO algorithms 
have lower NR values but display narrower ranges of variation. 

Small Medium Large
MODABC MODABC MODABC

 
(a) GD 

Small Medium Large
MODABC MODABC MODABC

 
(b) IGD 

Small Medium Large
MODABC MODABC MODABC

 
(c) NR 

Small Medium Large
MODABC MODABC MODABC

 
(d) C-matrix 

Fig. 10. Robustness of solutions of different algorithms. 
 
As illustrated in Fig. 10(d), the MOABC algorithm achieves the highest median C-matrix values, indicating better overall 
performance. However, it also shows the widest range of variation for small and medium-sized problems, leading to the lowest 
robustness. NSGA-III ranks second in performance, while ABC and PSO demonstrate smaller C-matrix values with narrower 
ranges of variation.  The MOABC algorithm consistently achieves median optimality across all four-evaluation metrics. By 
leveraging a combination of the PP-FI and FF heuristic, it generates higher-quality initial populations and effectively explores 
feasible solutions using six neighborhood structures. However, the broader ranges of variation in the NR and C-matrix for 
small and medium-sized instances suggest that the maximum runtime may not be sufficient for the algorithm to fully converge 
under these conditions.
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5.3.3 Analysis of variance 
 
The Wilcoxon signed rank test, a non-parametric statistical test that does not assume normality or homoscedasticity in the data distribution, was employed to evaluate significant 
performance differences between the algorithms (Osaba et al., 2021). A p-value of 0.05 or below for any pair of was considered indicative of a statistically significant difference in 
performance (Ma et al., 2023). As shown in Table 8, the p-values for all experiments involving small, medium, and large-scale problems were significantly below 0.05. This result 
confirms that the MOABC algorithm demonstrates superior performance in addressing the UPBPM-FPM problem across different problem sizes. 
 

Table 8  
The results of the Wilcoxon signed-ranks test 

  GD IGD NR C matrix 

NO. 
MOABC 

VS 
ABC 

MOABC 
VS 

NSGA-III 

MOABC 
VS 

PSO 

MOABC 
VS 

ABC 

MOABC 
VS 

NSGA-III 

MOABC 
VS 

PSO 

MOABC 
VS 

ABC 

MOABC 
VS 

NSGA-III 

MOABC 
VS 

PSO 

MOABC 
VS 

ABC 

MOABC 
VS 

ABC 

MOABC 
VS 

ABC 

Small 

𝑅𝑅 + 0.0 0.0 1.0 0.0 0.0 0.0 462.0 315.0 406.0 465.0 398.0 465.0 

𝑅𝑅 − 465.0 465.0 465.0 465.0 465.0 465.0 3.00 150.0 59.0 0.0 67.0 0.0 

𝑝𝑝 − 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

6-1.73×10 6-1.73×10 6-1.92×10 6-1.73×10 6-1.73×10 6-1.73×10 6-2.31×10 5-3.99×10 6-3.71×10 6-1.73×10 6-8.94×10 6-1.73×10 

Medium 

𝑅𝑅 + 0.0 0.0 0.0 0.0 0.0 0.0 1829.0 1649.0 1711.0 1830.0 1609.5 1826.0 

𝑅𝑅 − 464.0 741.0 741.0 1830.0 1830.0 1830.0 1.0 181.0 119.0 0.0 220.5 4.0 

𝑝𝑝 − 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

6-1.92×10 8-7.74×10 8-7.74×10 11-1.63×10 11-1.63×10 11-1.63×10 11-1.71×10 11-6.36×10 11-3.50×10 6-1.63×10 9-5.29×10 11-1.99×10 

Large 

𝑅𝑅 + 0.0 0.0 0.0 0.0 0.0 0.0 3240.0 3240.0 3240.0 3240.0 2843.0 3240.0 

𝑅𝑅 − 741.0 3240.0 3240.0 3240.0 3240.0 3240.0 0.0 0.0 0.0 0.0 397.0 0.0 

𝑝𝑝 − 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

8-7.74×10 15-7.85×10 15-7.85×10 15-7.85×10 15-7.85×10 15-7.85×10 15-7.83×10 15-7.83×10 15-7.83×10 15-7.84×10 14-6.99×10 15-7.85×10 
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6. Conclusions 
 
This paper addresses the energy-efficient unrelated parallel batch-processing machine scheduling problem with flexible 
preventive maintenance (UPBPM-FPM), with the goal of minimizing makespan, earliness and tardiness, and total energy 
consumption. To tackle this complex problem, we propose a novel PP-FI heuristic for generating high-quality initial solutions 
and develop a MOABC algorithm. The MOABC algorithm integrates the PP-FI and FF heuristics for initial population 
construction, a hybrid selection strategy that combines the hypervolume index and roulette wheel method to improve diversity 
and convergence, and a variety of random and goal-oriented neighborhood search methods to refine the Pareto frontier. 
Experimental results demonstrate the superior performance of the MOABC algorithm over three classical algorithms, NSGA-
III, ABC, and PSO, in terms of convergence, diversity, and robustness of the Pareto solutions. The proposed approach 
successfully balances the trade-offs between multiple objectives, making it highly effective in addressing the challenges posed 
by flexible preventive maintenance in real-world production environments. 
 
While the study effectively addresses the UPBPM-FPM problem, it does not consider practical constraints such as dynamic 
job arrivals, sequence-dependent setup times, and predictive maintenance based on machine condition. Future research will 
focus on extending the MOABC algorithm to incorporate these constraints for more realistic scheduling scenarios. 
Additionally, exploring the integration of MOABC with dynamic optimization techniques, such as deep reinforcement 
learning, could further enhance its applicability and performance in complex manufacturing environments. 
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