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Nomenclature

Indices
b batch
d time window
i customer
io plant
/ slot
p product
u processing unit
v vehicle
vt type of vehicle

Sets

B, set of batches proposed for product p
D set of time windows
ic set of customers
L, set of slots proposed for unit u
P set of products
U set of units
Vv set of vehicles

VT set of vehicle types
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VVTy subset of vehicles of type vt
Parameters
aq lower bound for time window d
capy capacity of a vehicle of type v¢
capmaxyp maximum production capacity of unit u for processing product p
capminy minimum production capacity of unit u for processing product p
cd upper bound for time window d
demipq amount of demand of product p from customer 7 to be delivered in time window d
disti distance between nodes i and i’
focu processing cost of a batch of product p in unit u
fotup processing time of a batch of product p in unit u
ftew fixed transport cost for vehicles of type vt
M, parameter used for constraint of Big-M type, where n =1, 2, 3, 4
MTD shortest travel time between the plant and a customer
NB,, maximum number of batches of product p that can be processed in unit u
nb, maximum number of batches of the product p
nsy maximum number of slots of the unit u
Prew occupancy minimum rate for vehicles of type vt
i’ travel time between nodes i and i* for vehicles
VICyt variable transport cost per unit of traveled distance for vehicles of type v¢
op size factor representing the weight per unit of final product p

Binary Variables

Ripy indicates if batch b of product p is assigned to vehicle v

Xpul indicates if batch b of product p is processed in unit « in slot /

Yiiw indicates if customer i is visited immediately before customer i’ with vehicle v
W, indicates if vehicle v is used

ZLidy indicates if the order d of customer i is delivered with the vehicle v

ZP;, indicates if customer i is the first on the route of vehicle v

ZU;, indicates if customer i is the last on the route of vehicle v

Integer Variables
SP. number of feasible slots that can be allocated in unit u of product p

Continuous Variables

BShy size of batch b of product p

DET;, arrival time at customer i in vehicle v

DT, departure time of vehicle v

FT, final time of slot / processing in unit

OTypy quantity of batch b of product p loaded in the vehicle v
STu start time of slot / processing in unit u

1. Introduction

Production and distribution are two closely interrelated activities, mainly because the transportation of final products can only
begin after all tasks in the production process have been completed. Even in companies that decouple them through inventory,
the integrated management of these operations is a key tool for achieving greater efficiency in the operations of the company.
Moreover, this integration is extremely valuable in the presence of highly variable markets, which require more attention in
the manufacturing of customized products, in supply chains with time-sensitive products that have a very limited shelf lifespan
(Atasagun & Karaoglan, 2024) such as home chemotherapy delivery (Arda et al., 2024), dairy products (Guarnaschelli et al.,
2020) and ready-mixed concrete (Yin et al., 2023; Tibaldo et al., 2025), in make-to-order production systems (MTO), or in
those that implement a just-in-time (JIT) policy (Hein and Almeder, 2016), where very little or no inventory of finished
products is required. In these environments, production and delivery operations must be accurately synchronized and jointly
scheduled, so that final products are shipped to customers shortly after production in order to respond quickly to their needs
and improve overall system performance and optimize some established measures.

At the operational level, both production and distribution problems have been extensively studied individually in the area of
Process System Engineering (PSE), applying quantitative techniques for resource optimization and decision making in the
field of Operations Research (OR). In particular, in batch processes industries, characterized by their flexibility and ability to
produce a wide variety of products sharing the same resources, the short-term production scheduling problem is of remarkable
importance. In general terms, this problem consists of the following decisions: (a) selection and sizing of batches to be
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processed (batching), (b) assignment of batches to processing units, (c) sequencing of batches on units, and (d) timing of
batches. Excellent reviews on this issue, addressing different modeling approaches and solution methods can be found in
Meéndez et al. (2006), Maravelias (2012), Harjunkoski et al. (2014), and Castro et al. (2018). However, few works have
included batching decisions in the production scheduling problem, mainly due to the combinatorial nature of the involved
decisions (Ozbel & Baykasoglu, 2023). Thus, through a holistic approach, cost reduction and better use of available resources,
among others, may be achieved. A recent study, presented by Ackermann et al. (2021), shows that the integration of these
problems may be even more advantageous if all orders of a specific product are consolidated into a single demand for that
product, instead of dealing with the batching and scheduling of each order separately.

Likewise, numerous approaches with different assumptions and solution algorithms have been proposed in the literature to
address the transportation problem, usually referred to as the classical vehicle routing problem (VRP). Formally, the typical
VRP consists of determining the optimal delivery routes to serve a set of customers, geographically dispersed around a central
depot, such that each customer location is visited by only one vehicle, each vehicle starts and ends its route at the depot, and
the total demand of the customers served by a route does not exceed the assigned vehicle capacity. A broad range of problem
variants and extensions based on customer-related, vehicle-related and depot-related aspects, that allow the incorporation of
different real-life features or scenarios, have been tackled in comprehensive reviews on this topic (Braekers et al., 2016; Tan
& Yeh, 2021; Toth & Vigo, 2014). Although these characteristics make the models more realistic and their solutions more
applicable in practice, they bring along a significant level of complexity that requires the development of efficient
methodologies to solve these variants.

Traditionally, the production and transportation scheduling problems have been solved separately and sequentially (Berghman
et al., 2023; Ceylan et al., 2019; Chen, 2004; Kumar et al., 2020; Moons et al., 2017). In few cases, the batching problem is
addressed first, where the number of batches of each product to be processed to meet demand, as well as their size, is
determined. The obtained batches, or those proposed by the user if the batching problem is not solved, are used as inputs into
the production scheduling model, which is solved to determine where, when and how each batch is processed in the processing
units. Based on these decisions, the distribution stage is carried out, which involves decisions regarding the number and type
of vehicles to be used, assignment of orders to vehicles, sequencing of shipments, vehicle dispatch times and arrival at
customers, and used routes. This methodology, based on optimizing each problem independently, ignores the requirements
and constraints of the other, which often can lead to suboptimal solutions as well as not satisfy the customer's expectations.
The studies of Moons et al. (2017), Yagmur and Kesen (2023), and more recently Berghman et al. (2023), on the coordination
of such problems at the operational decision level, point out that Integrated Production and Distribution Scheduling Problem
(IPDSP) can achieve economic savings between 5% and 20% compared to sequential decision making. However, from the
mathematical point of view, taking into account that these problems are highly combinatorial, the development of
representations that integrate all decisions can lead to computationally expensive and intractable models. Thus, the
simultaneous resolution of these activities is a great challenge.

Since the past decade, an increased number of research attempts on IPDSP models, as well as some particular approaches
motivated by different practical applications, have been developed in the area literature. The main articles that review the
existing works on the operational IPDSP problem propose a classification scheme based on different characteristics:
production environment, delivery and routing aspects, fleet type, objective function, and solution approaches (Berghman et
al., 2023; Ceylan et al., 2019; Moons et al., 2017). Most studies that address the integration of these decisions analyze the
problem in relatively simple production environments, where orders must be processed in a single stage with a single unit
(Devapriya et al., 2017; Ganji et al., 2022; Miranda et al., 2019) or with several units in parallel (Jiang et al., 2020; Kesen &
Bektas, 2019). In terms of delivery operations, approaches in which vehicles visit a set of customers in the same route (Ullrich,
2013; Yagmur & Kesen, 2023) are predominant, highlighting the importance of allocation, sequencing and timing decisions.
However, some studies consider less complex scenarios, where each vehicle delivers directly to a single customer (Eray Cakici
& Kurz, 2012; Noroozi et al., 2018). Most contributions focus on economic performance measures (Belo-Filho et al., 2015;
Lee et al., 2014), which do not always accurately reflect the objectives of different stakeholders. Moreover, due to the inherent
complexity of these problems, approximate approaches, such as decomposition algorithms and heuristics (Jamili et al., 2016;
Liu et al., 2021), are more common than exact methodologies (Karaoglan & Kesen, 2017; Zu et al., 2014), as they allow
obtaining suboptimal solutions in reasonable computational times.

Despite the aforementioned works, there are very few studies that integrate batching decisions into IPDSP in the way they
have been approached in this paper. Most researches that simultaneously address batching decisions and IPDSP define a batch
as a set of orders from different customers, grouped to be processed together and delivered on a single route using a specific
vehicle, i.e., it is not allowed to split an order into several batches to be processed in different units (Devapriya et al., 2017;
Farmand et al., 2021). The concept of dividing orders into several batches for processing was first introduced and analyzed in
the context of the IPDSP problem by Amorim et al. (2013). The authors demonstrated that including batching decisions can
generate more efficient solutions by explicitly considering the perishability of the products. In more general contexts, this
option adds flexibility to the production system, improves delivery times and optimizes the use of production capacity and
plant resources. Another of the few works on the subject is the one presented by Cdccola et al. (2013). The authors propose a
MILP model that integrates batching, production scheduling and distribution in an environment with multiple plants and non-
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identical units in parallel. Although all decisions are studied in an integrated manner, batches can be assigned directly to
vehicles or sent to distribution centers, which provides greater flexibility and allows decoupling the coordination of production
and distribution activities. The model also allows the incorporation of time constraints such as delivery dates, but these are
not described in detail and effectively solved. The above studies reveal that research on the integration of batching decisions
in the context of short-term IPDSP is really scarce, which underlines the importance of continuing to explore this field in
order to broaden and deepen its understanding.

In this context, the present paper proposes a MILP model that simultaneously solves the batching, production and distribution
scheduling problems for the case of a single-stage multi-product batch facility with multiple non-identical units operating in
parallel, where a heterogeneous fleet of vehicles of different capacities and costs performs transportation operations. One of
the strongest assumptions of the paper is that it is necessary to satisfy the total number of orders issued by customers for each
pre-established time window while minimizing total cost. An efficient formulation is presented that allows reaching the
optimal solution of the integrated problem in large examples in reasonable computation times.

The rest of the article is organized as follows. Section 2 describes the problem and introduces the notation used in the
mathematical formulation of the model. In Section 3, the problem formulation is presented, showing the variables and
constraints used. Section 4 includes three examples that demonstrate the efficiency and effectiveness of the proposed
approach. Furthermore, in Section 5, to highlight the importance of the integrated solution of these problems, the examples
presented in Section 4 are addressed using a sequential approach, and the solutions obtained are compared with those generated
by the integrated approach. Finally, in Section 6, the conclusions of the article are presented.

2. Problem description

The problem considered in this paper is posed on a batch production plant of known structure, denominated iy, which
establishes time windows d € D in which each customer i € IC can request delivery of their orders. In this way, a mutual
agreement is generated between the plant and the customers, in which the company commits to deliver the orders that the
customers have placed for each time window d during the interval [aq, c4]. The orders, which may contain a mix of products
p € P, are processed in a single-stage batch facility that has multiple non-identical # € U units operating in parallel, which
have different capacities, processing times and costs depending on the type of product being processed. These parameters are
problem data and are represented under the following nomenclature: capmin,, and capmax,, define the maximum and
minimum capacities of unit « for processing product p, fpt., is the fixed processing time for each batch of product p in unit u,
and fpc,, 1s the processing cost of a batch of product p in unit u.

Each customer can place an order, consisting of one or more products, in each time window d. Thus, the amount of product p
demanded by customer i in time window d, represented by demipq, is a parameter of the problem. To satisfy customer demand
and achieve better equipment utilization, each batch b € B, of product p can be used to satisfy different orders demanding
that product. Since the number of batches of each product, as well as their sizes, are variables of the problem, appropriate
quotas must be proposed a priori for them in order to ensure the optimality of the solution and to facilitate the solution of the
problem. Considering the total demand of product p over all time windows, and the minimum capacity required for processing
product p in unit u, it is possible to calculate the maximum number of batches of product p that can be processed in unit « to

satisfy customer orders, NB,Z,P , by the expression (1).

Yielc 2deD dem,v,ﬂ/

NBYP=
P capmin
up

YueUVpeP 1)

The parameter nb,=max, . U{NBZDP } V p € P is used to define the set B,={by, b, ..., b,,bp}, which denotes the set of batches

assigned to the product p. For production scheduling decisions, a continuous time representation based on time slots is used.
This approach is based on dividing the time horizon into predefined time slots that act as intervals in which batches are
assigned to be processed in units. Identifying the number of slots to be proposed for each unit in the plant is not a trivial task,
since the number of batches of all products is a variable in the problem. So, a clear challenge of this time representation is to
propose an appropriate number of slots for each unit. The start and duration of the slots are unknown and are also part of the
problem solution. Obviously, taking into account the possibility of the extreme case in which all product batches are processed
in the same unit, this number is defined as the summation in p of the parameters NBZP . However, depending on the processing
times of products and the proposed time windows for product delivery to customers, this parameter may result in an
overestimation, which directly affects the performance of the problem. Consequently, considering the information regarding
the problem data, a tighter value for this parameter can be proposed, which is detailed in subsection 2.1.

To deliver orders, the plant has a heterogeneous fleet of vehicles v € V, which are grouped into different types of vehicles v¢
€ VT, according to shared characteristics such as capacities and transportation costs. For a vehicle to be used, the total amount
of goods to be transported must not exceed the maximum allowable capacity, cap.., and in turn, must exceed a minimum
occupancy percentage denoted by prc,.. Each vehicle can make only one trip within the time horizon. Each vehicle starts and
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ends at the plant, may include visiting one or more customers, and must make only one stop at each customer location visited.
The distance and travel time between different customers and the plant, dist; and tv; with i, i' € IC U {ip}/ i#i’, are problem
data. The loading and unloading time of the products is independent of the order size and is included in the travel time. The
transportation cost is divided into two components: a fixed cost, ftc,,, which corresponds to the use of the vz-type vehicle, and
a variable cost, vtc,,, which depends on the distance traveled by the vz-type vehicle. In each vehicle, orders from different
customers can be loaded, but each order associated with a time window must be delivered completely in a single vehicle.
Thus, partial deliveries are not allowed. In this way, in each vehicle, the batches or parts of batches required to complete each
order distributed by this truck are consolidated. For each selected vehicle, the sequence of customer-time windows to be
visited is a model variable. These routing decisions are represented by the notion of immediate precedence.

2.1 Estimation of proposed slots

The proposed approach divides the time horizon into predefined time intervals to represent the allocation of batches to the
processing units. These slots can be either synchronous or asynchronous: in the synchronous representation, the slots are
identical in all units, which facilitates coordination but may limit flexibility in scheduling. In contrast, the asynchronous
representation allows each unit to have specific slots adapted to its requirements. Thus, flexibility is increased to adjust
operation times, although computational complexity is also greater. In this paper, production decisions are represented using
the asynchronous time-slots approach. In addition, the following assumptions must be taken into account:

e Each slot of a specific unit can process only one batch at a time.
e The slot length will be zero if no batch is assigned to it.
e  The number of slots to be used is unknown and may differ for each unit.

In the previous subsection, the number of time slots in the extreme case where all batches are processed in one unit was
calculated (see Eq. (1)). However, depending on the data, this value may result in an overestimation that affects the
performance of the problem. Therefore, an optimization model is proposed that allows to calculate the number of slots adjusted
to the real conditions of the integrated problem. The integer variable SP,, represents the number of feasible slots that can be
allocated in each unit u of the product p. Thus, Eq. (2) states that the time required to process the slots in each unit must be
less than or equal to the largest upper bound of all time windows minus the shortest travel time between the plant and a
customer, denoted by MTD. The parameter NB,Z,P , calculated previously, sets the upper bound for the variable SP,,, since the
number of batches of product p to postulate in each unit # must not exceed this value, Eq. (3). Finally, the objective function,
Eq. (4), maximizes the sum of the combination of slots.

Zﬁ)tupSP <max, . p {cs} - MTD VueU

up =
@)
SP,, <NB.’ VueUVpeP (3)
Max Z Z SP,, 4)
uelU peP
Using the results of this model, the parameter ns,=max,  p {SPMP} V u € Uis required to define the set Li={11, I2, ..., [},

which represents the proposed allocated slots for each unit.

2.2 Decisions involved

Under the above assumptions, the model determines the number, size, allocation, sequencing and detailed timing of the
batches to be processed in each unit of the plant, the vehicles to be used, the allocation of orders to each transport unit, the
route and the precise timing of the visits to customers by each vehicle, in order to minimize the total cost of production and
distribution operations. To explain the complexity of the decisions that are considered simultaneously in the addressed
problem, Fig. 1 is presented. In the illustrated example, three products p;, p» and p3), represented by the colors green, orange
and purple, respectively, are considered. Each product has a total demand that must be processed in batches and, therefore,
number and size of batches must be determined. In the first box on the left (batching problem), the division of demand into
batches for each product is shown. The demands for products p; and p; are divided into three batches (b;, b> and b3), while
the demand for product p; is divided into two batches (b; and b>). In addition, each batch must be assigned to a unit and each
unit must process one batch at a time. Therefore, as shown in the central part of Fig. 1 (production problem), the allocation
and sequence of batches in each processing unit, as well as the time required for production, must be determined. In the
schematic example, unit u; processes 2 batches of product p; and one batch of p;3. In the case of unit uy, it processes one batch
of product p;, two batches of p3 and all batches of p..
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Fig. 1. Diagram of the decisions involved in the three problems studied
Finally, the decisions related to the distribution problem are shown in the box on the right. In the example, two vehicles (v;
and v»), represented in light blue and blue colors, respectively, are used. Using these colors, the figure shows under each batch
how they are assigned to the vehicles. The batches can be assigned completely, as is the case with batch b; of product p; to
vehicle v;, or partially, as illustrated with batch b, of product p;, which is assigned in part to vehicle v; and vehicle v,. Although
the sequence of customers to be visited by each vehicle is not exemplified in this figure, it is also part of the decisions to be
made in this problem.

............................................

It is essential to highlight the importance of the integration of the three problems: the size of each batch is subject to the
dimensions of the unit where it will be processed and, consequently, the number of batches of each product to be produced
must be determined simultaneously. The allocation of batches to units, as well as the sequence of processing in each unit is
vital for the synchronization between the order completion times and the departure times of the vehicles to which these batches
will be partially or fully allocated to be shipped to the corresponding customers. The delivery sequence of each vehicle is
determined by the assignment of customers to each vehicle. All these decisions are solved simultaneously to provide the
optimal production and distribution plan that satisfies demand requirements while minimizing operating costs. Although
solving batching, production and distribution problems simultaneously is computationally and operationally challenging, it
has advantages and benefits that reward the invested effort.

3. Model formulation

The model presented in this section considers two groups of constraints: batching and production, and distribution scheduling.
In the first group, the following restrictions are included: 1) number and size of batches: equations that allow determining the
number and size of batches to be produced to guarantee the satisfaction of the demand, complying with the minimum and
maximum quotas for the size of each batch, ii) assignment of batches to units: equations that guarantee that each batch must
be processed by a unit, iii) batch sequencing: restrictions that model the batch processing sequence in each unit, and iv) times:
equations that determine the processing time of each batch in the unit in which it is assigned, which avoid overlapping in the
processing of batches in each unit. For the second group: (v) vehicle capacity: equations that ensure that the amount of final
product allocated to each selected vehicle does not exceed its maximum capacity and meets the minimum required, (vi)
assignment of batches to vehicles: constraints that ensure that each vehicle transports exactly what is requested by each
customer assigned to its route, vii) vehicle routing: equations that establish the precedence relationships between the customers
visited by each vehicle, and viii) departure and arrival times to customers: constraints that ensure that vehicles do not leave
the plant until all assigned batches are processed, as well as equations that ensure that orders are delivered within the time
limits for which they were requested. In addition, taking into account the combinatorics of the problem, constraints are
incorporated to reduce alternative solutions. Finally, the objective function minimizes the cost of production and distribution.

3.1 Batching and production scheduling constraints

The continuous variable BSy, is defined, which represents the size of batch b of product p. Eq. (5) guarantees that exactly the
total demanded by customers is produced.

Z BS,, = Z Z dem;,; VpeP (5)

beB, ielCdeD

The binary variable X is equal to 1 if batch b of product p is assigned to slot / in unit u, otherwise zero. Through the Egs.
(6) and (7), the maximum and minimum dimensions for the size of the batches are established.

BS,, SZ Z capmax,,Xy,, VpeP,VbebB, (6)
ueUlel,
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BS,, EZ Z capminuprpul VpeP,VbeB, %
ueUlel,

Eq. (8) ensures that batches must be assigned to at most one slot of a unit, while Eq. (9) determines that no more than one
batch of product can be processed in each slot of a unit at a time.

ZZXbpulSl VpGP,VbGBp (8)
ueUlelL,
szbpulsl VueU,VleLu (9)
peP beB),

To avoid alternative solutions, additional constraints on slots and batches allocation are added in this formulation. Thus, Egs.
(8) and (9) ensure that the slots of each unit and the batches of the same product type are used in increasing order, respectively.

Z Z X,,pulzz Z Xyt VueUNYLI+ el (10)

peP beB), peP beB),
D K= )Y Xppu VPP,V b+l B, 1)
ueUlel, ueUlel,

On the other hand, Eq. (12) eliminates symmetrical solutions by requiring that the denomination of batches of the same product
follow an ascending order with respect to the units used.

Z Xbpul'+z Z Xbpu’l” ZXb+]pul Vp (S P, v b, b+l e Bp, Yue U, Vie Lu (12)

l'eL, /1<l u'<u 1"eL,;

A continuous time representation is used to determine the exact times at which events occur. In this context, the continuous
variables ST,; and F'T,; are defined, representing the start and end time of slot / processing in unit u, respectively. Eq. (13)
computes the completion time of slot / in unit u#, which is obtained by adding the fixed processing time of product p in unit u
to the start time of processing in slot / in that unit.

FTy = 8Ty + fotyy Xopui VpeP,VbeB,VYuelViel, (13)

The overlap between the processing times of different slots in each unit is avoided by using Eq. (14). Moreover, if no batch
is assigned to slot /41 of unit u, its initial time is equal to the final time of slot / (Eq. (15)). M; is a sufficiently large scalar.

FTy = STy VueUVI I+l el, (14)

FTMIESTMHI_MIZ ZXbpqu Yue U,VI, [+1 ELM (15)
peP beB),

3.2 Distribution scheduling constraints

Given that each batch can be partially used to satisfy orders that are distributed on different vehicles, the binary variable Ry,
indicating whether batch b of product p is assigned to vehicle v, and the continuous variable O7},, representing the number
of units of that batch that are loaded on the vehicle, are defined. In addition, the binary variable W, indicates whether the
vehicle v is used or not. The set V'VT,, containing the vehicles of type vz is defined. The Egs. (16) and (17) ensure that the total
number of units assigned to each vehicle meets the minimum required capacity of the vehicle, but does not exceed its
maximum capacity, respectively. In both equations, the left-hand term is multiplied by the scalar a,, which is a factor that
determines the relationship between units of final product and their weight, since the capacity of each vehicle is given in units
of weight.

Z Z a,0Ty,, = pre,cap W, Vvte VI,Vve VIT, (16)
peP beB),
Z Z 0,0T ) < cap, W, Vvie VI,V v e VVT, 7

peP beB),



Eq. (18) ensures that all units of batch b of product p are assigned to vehicles. On the other hand, Eq. (19) ensures
that the variable QT takes the value zero if batch b of product p is not assigned to vehicle v (Ry,y = 0). However, if the binary
variable Ry, equals one, as stated in Eq. (20), the vehicle must load at least one unit of the product. To reduce the search
space, the number of batches per product that can be assigned to each vehicle is bounded by Eq. (21).

ZQprV:Bpr VpeP,VbeBp (18)

velV

QprVS max, ¢ y {capmaxup}Rbpv VpeP,Vbe Bp, VveV (19)

OTyp= Rypy VpeP, Vb €B,VveV (20)
ZbeBp Qprv

ZRprS i . VPEP,VVEV (21)

& min, . y{ capminy,}

The binary variable Z;s determines whether customer order i requested for time window d is assigned to vehicle v. Since
partial deliveries of orders are not allowed, the order requested by each customer in a time window must be shipped in a single
vehicle (Eq. (22)). In addition, it is not allowed to visit the same customer more than once during a vehicle trip. This implies
that the customer can only be visited once with the same vehicle for the delivery of an order in a specific time window, or, in
case two time windows coincide temporally, both orders can be delivered simultaneously (Eq. (23)).

Zzidvzl VielC,VdeD (22)
veV
ZigtZig, <1 VielC,Vd,d e DA(d+I1<d")V (d'=d+1 A cj#a4:;),Vv eV (23)

Eq. (24) guarantees that all customers who are visited by the vehicle v are delivered the total amount of units that compose
their orders.

Z Z QprV:Z Z demj, 2y, VveV (24)

peP beB), ielCdeD

For routing decisions which establish the order of customers to be visited in the same route, the following binary variables
are defined: ZP;,equals 1 if customer i is the first to be visited in the route of vehicle v, Yi, equals 1 if customer i is delivered
immediately before customer i’ with vehicle v, and finally ZU;, whose value is 1 if customer i is the last in the route of vehicle

v, and zero otherwise. Each used vehicle must be assigned one customer who is the first to visit and one who is the last (Egs.
(25) and (26)).

Z ZP;, =W, Vvel (25)
ielC
ZZUiv:Wv VveV (26)
ielC

However, if customer i is the first or the last customer to be visited on the route of vehicle v, the requested goods must be
delivered in at least one time window (Eqgs. (27) and (28)). Similarly, Eqgs. (29) and (30) propose the same assumption for
precedence-succession relationships.

ZP;, < Z Zigy VielC,VveV (27)
deD

ZU, < ZZMV VielC,VveV (28)
deD

Vs ) Zu, Vi i'elC/i#, Y veV (29)

deD
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Yin, < Z Ziay Vi,i'eIC/i#i'\VvelV (30)
deD

Customer i may be visited by vehicle v first, or just after another customer i'. Similarly, customer i can be assigned to the last

position in the route of vehicle v, or just before another customer i". The formulations of these constraints are given by Egs.
(31)-(34).

Pt Y VizZg, VielC,VdeDVveV (31)
i'elCli#i’

ZP,;+ Z Yiot Zig, <2 VielC,VdeD,VveV (32)
i'elCli#i

ZU+ Z Y= Zin VielC,VydeD,VveV (33)
i'elCliti’

ZU, + Z Yin + Zigy <2 VielC,VdeD,VveV (34)
i'elCliti’

Eq. (35) guarantees that the precedence relationship between two customers of the same vehicle must be unique.
Yi+Y, <1 Vi i'elCli#'\VveV (35)

For the time constraints, the following continuous variables are defined: DT, is used to represent the departure time of vehicle
v, and DET;, is used to indicate the arrival time at customer i in vehicle v. The departure time of each vehicle must be greater
than or equal to the latest end time of the batches assigned to it. To model this condition, a Big-M constraint is used, where
the scalar M; represents the maximum upper bound among all the time windows considered (Eq. (36)). Note that this constraint
is redundant if any of the variables X or Ry is null. On the other hand, Eq. (37) orders vehicles of the same type according
to the departure time, while Eq. (38) determines that if vehicle v must deliver at least one order for time window d, the
departure time of this vehicle must be less than the upper bound of this window.

DT, > FT,M,(2-Xy,;-Ry) VpeP,VbeB,VueUVIleL,VveV (36)
DT,-DT,.; <M, 2-W,-W,,;)) VY vte VI,V v,v+l € VVT, (37)
DT, <cy W, +M,(1-Z;;,) VielC,¥NdeD,VveV (38)

The departure time of each vehicle determines the delivery time to each customer. If customer i is the first customer to visit
on vehicle route v, the delivery time is defined by Egs. (39) and (40), where iy represents the production plant. These
constraints guarantee that the delivery time to the first customer of each vehicle must be equal to the sum of the travel time
from the plant to the customer plus the travel start time of vehicle v. In the case where ZP,~= 0, appropriate scalars are used to
ensure that these equations are redundant (M; = M + max;c;c{tvi;,})-

DET;, > DT +tv,-M3(1-ZP;,) VielC,VveV 39)

igi

DET,, < DT, +tv; +M,(1-ZP;,) VielC,VveV (40)

igi

Similar to Egs. (39) and (40), Egs. (41) and (42) determine the delivery time to customers who are immediate predecessors
(not the first on the route). In this case, the delivery time to customer i’ is calculated as the delivery time of its predecessor
plus the travel time between them. Note that through Eqs. (39)-(42), it is guaranteed that there are no idle times in the travel
time of each vehicle.

DET,, > DET,+tv;-M;(1-Y;,,) Vi, i'e IC/i#i"\VveV (41)

DET;, < DET,+tv; M (1-Y;,) Vi, i'e IC/i#i'\VveV (42)

Customer orders must be delivered within the limits of the corresponding time window d (Egs. (43) and (44)).
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DET,, >ay W, — M,(1 - Zy,) VielC,VdeD,YveV (43)

DET;, < cy W, + M;(1 — Zg,) VielC,VdeD,¥YveV (44)

If no orders are delivered to customer i in vehicle v, the delivery time to customer 7 in vehicle v must be zero (Eq. (45)). Orders
with precedence relation can only be delivered if the travel time between customers does not generate a delivery delay (Eq.

(46)).

DET,-VSMzzZm VielC,VveV (45)
deD
tviirYiir‘,—maxiE Ic{tviir}(z—zidv—zirdfv) < Cqg-Qay A4 i, l.'e [C/ l.;tl.', \4 d, d’ S D/d<d', VveV (46)

The variables Ry, Ziay, Yiiv, DT, and DET;, take the value zero if the vehicle v is not used (Egs. (47)-(51)). To reduce the
search space, Eq. (52) ensures vehicles of the same type are used in ascending order. M, is the difference between M>and the
minimum travel time between a customer and the plant.

Ry =W, VpeP,VbeB,Vvel (47)
Zig < W, VielC,VdeD,VveV (48)
Yi, < W, Vii'elC/iti'\VvelV (49)
DT, <M, W, VvelV (50)
DET;, < M,W, VielC,Vvel (51)
W,>2W,. Vvte VT,Y v,v+l € VVT, (52)

3.3 Objective function

The objective function is the minimization of the total operating cost given by production and distribution costs (Eq. 53).

Min Z z Z prcuprpul +

pePbeByuelUlel,

Z Z ftcva-i-Z Z Z vtcv,distiOiZP,-V-i-z z Z Z vic,disty Y .., (53)

vteVTveVVT,; i€elCvteVTveVVT,; ielCi'elCvteVTveVVTy,;
+ E E E vicy,dist; ZU,,
ielCvteVTveVVT,,

For production, a fixed processing cost is considered for the production of each batch, depending on the product and the unit
in which it is produced. For distribution, a fixed cost for using the vehicle and a variable cost depending on the distance
traveled are considered.

4. Illustrative examples

Three examples are presented in this section to show the capabilities of the proposed approach. The first one is of small
dimension, but useful to assess the simultaneous solution of batching and production and distribution scheduling problems.
The second and third examples are medium size problems, where the number of customers, time windows, units and vehicles
has been increased compared to the first example, which strongly impacts the computational performance of the model. In all
examples, the coefficient a,,, which represents the conversion factor from product units to kg, is assumed to be 4.75 for p,, 4.0
for p> and 4.25 for p;. Table 1 shows the number of customers, time windows, orders, products, units and vehicles considered
for each of the three examples, followed by the number of equations, variables and CPU time to reach the optimal solution
(0% GAP). The models were coded and implemented by gurobipy, a Python-based implementation of Gurobi v.10.0.0 (Gurobi
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