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 Traditionally, the short-term production and distribution activities have been addressed with a 
decoupled and sequential methodology. Although this approach simplifies the problem, there are 
several environments where it generates inefficiencies or is simply not applicable. Consequently, 
the integration of both problems is very valuable in a variety of industrial applications, especially 
in industries where final products must be delivered to customers shortly after production. This 
paper presents a mixed-integer linear optimization model that simultaneously solves the production 
and distribution scheduling in a single-stage multi-product batch facility with multiple non-
identical units operating in parallel, where transportation operations are carried out with a 
heterogeneous fleet of vehicles. As operations are performed in a batch environment, the production 
and distribution problems also integrate decisions related to the number and size of batches required 
to meet the demand for multiple products. The capabilities of the proposed approach are illustrated 
through several cases of study. Finally, these examples are solved with a two-stage approach and 
the superiority of the solutions using the integrated approach is demonstrated. 
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Nomenclature 

Indices 

b batch 
d time window 
i customer 
i0 plant 
l slot 
p product 
u processing unit 
v vehicle 
vt type of vehicle 

 
Sets 

Bp set of batches proposed for product p 
D set of time windows 
IC set of customers 
Lu set of slots proposed for unit u 
P set of products 
U set of units 
V set of vehicles 
VT set of vehicle types 
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VVTvt subset of vehicles of type vt 
 
Parameters 

ad lower bound for time window d 
capvt capacity of a vehicle of type vt 
capmaxup maximum production capacity of unit u for processing product p 
capminup minimum production capacity of unit u for processing product p 
cd upper bound for time window d 
demipd amount of demand of product p from customer i to be delivered in time window d 
distii’ distance between nodes i and i’ 
fpcup processing cost of a batch of product p in unit u 
fptup processing time of a batch of product p in unit u 
ftcvt fixed transport cost for vehicles of type vt 
Mn parameter used for constraint of Big-M type, where n =1, 2, 3, 4 
MTD shortest travel time between the plant and a customer 
NBUP

up maximum number of batches of product p that can be processed in unit u 
nbp maximum number of batches of the product p 
nsu maximum number of slots of the unit u 
prcvt occupancy minimum rate for vehicles of type vt 
tvii’ travel time between nodes i and i’ for vehicles  
vtcvt variable transport cost per unit of traveled distance for vehicles of type vt 
αp size factor representing the weight per unit of final product p 

 
Binary Variables 

Rbpv indicates if batch b of product p is assigned to vehicle v 
Xbpul indicates if batch b of product p is processed in unit u in slot l 
Yii’v indicates if customer i is visited immediately before customer i’ with vehicle v 
Wv indicates if vehicle v is used 
Zidv indicates if the order d of customer i is delivered with the vehicle v 
ZPiv indicates if customer i is the first on the route of vehicle v 
ZUiv indicates if customer i is the last on the route of vehicle v 

 
Integer Variables 

SPup number of feasible slots that can be allocated in unit u of product p 
 
Continuous Variables 

BSbp size of batch b of product p 
DETiv arrival time at customer i in vehicle v 
DTv departure time of vehicle v 
FTul final time of slot l processing in unit u 
QTbpv quantity of batch b of product p loaded in the vehicle v 
STul start time of slot l processing in unit u 

 

1. Introduction 

Production and distribution are two closely interrelated activities, mainly because the transportation of final products can only 
begin after all tasks in the production process have been completed. Even in companies that decouple them through inventory, 
the integrated management of these operations is a key tool for achieving greater efficiency in the operations of the company. 
Moreover, this integration is extremely valuable in the presence of highly variable markets, which require more attention in 
the manufacturing of customized products, in supply chains with time-sensitive products that have a very limited shelf lifespan 
(Atasagun & Karaoğlan, 2024) such as home chemotherapy delivery (Arda et al., 2024), dairy products (Guarnaschelli et al., 
2020) and ready-mixed concrete (Yin et al., 2023; Tibaldo et al., 2025), in make-to-order production systems (MTO), or in 
those that implement a just-in-time (JIT) policy (Hein and Almeder, 2016), where very little or no inventory of finished 
products is required. In these environments, production and delivery operations must be accurately synchronized and jointly 
scheduled, so that final products are shipped to customers shortly after production in order to respond quickly to their needs 
and improve overall system performance and optimize some established measures. 
 

At the operational level, both production and distribution problems have been extensively studied individually in the area of 
Process System Engineering (PSE), applying quantitative techniques for resource optimization and decision making in the 
field of Operations Research (OR). In particular, in batch processes industries, characterized by their flexibility and ability to 
produce a wide variety of products sharing the same resources, the short-term production scheduling problem is of remarkable 
importance. In general terms, this problem consists of the following decisions: (a) selection and sizing of batches to be 
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processed (batching), (b) assignment of batches to processing units, (c) sequencing of batches on units, and (d) timing of 
batches. Excellent reviews on this issue, addressing different modeling approaches and solution methods can be found in 
Méndez et al. (2006), Maravelias (2012), Harjunkoski et al. (2014), and Castro et al. (2018). However, few works have 
included batching decisions in the production scheduling problem, mainly due to the combinatorial nature of the involved 
decisions (Özbel & Baykasoglu, 2023). Thus, through a holistic approach, cost reduction and better use of available resources, 
among others, may be achieved. A recent study, presented by Ackermann et al. (2021), shows that the integration of these 
problems may be even more advantageous if all orders of a specific product are consolidated into a single demand for that 
product, instead of dealing with the batching and scheduling of each order separately. 
 
Likewise, numerous approaches with different assumptions and solution algorithms have been proposed in the literature to 
address the transportation problem, usually referred to as the classical vehicle routing problem (VRP). Formally, the typical 
VRP consists of determining the optimal delivery routes to serve a set of customers, geographically dispersed around a central 
depot, such that each customer location is visited by only one vehicle, each vehicle starts and ends its route at the depot, and 
the total demand of the customers served by a route does not exceed the assigned vehicle capacity. A broad range of problem 
variants and extensions based on customer-related, vehicle-related and depot-related aspects, that allow the incorporation of 
different real-life features or scenarios, have been tackled in comprehensive reviews on this topic (Braekers et al., 2016; Tan 
& Yeh, 2021; Toth & Vigo, 2014). Although these characteristics make the models more realistic and their solutions more 
applicable in practice, they bring along a significant level of complexity that requires the development of efficient 
methodologies to solve these variants. 
 
Traditionally, the production and transportation scheduling problems have been solved separately and sequentially (Berghman 
et al., 2023; Ceylan et al., 2019; Chen, 2004; Kumar et al., 2020; Moons et al., 2017). In few cases, the batching problem is 
addressed first, where the number of batches of each product to be processed to meet demand, as well as their size, is 
determined. The obtained batches, or those proposed by the user if the batching problem is not solved, are used as inputs into 
the production scheduling model, which is solved to determine where, when and how each batch is processed in the processing 
units.  Based on these decisions, the distribution stage is carried out, which involves decisions regarding the number and type 
of vehicles to be used, assignment of orders to vehicles, sequencing of shipments, vehicle dispatch times and arrival at 
customers, and used routes. This methodology, based on optimizing each problem independently, ignores the requirements 
and constraints of the other, which often can lead to suboptimal solutions as well as not satisfy the customer's expectations. 
The studies of Moons et al. (2017), Yağmur and Kesen (2023), and more recently Berghman et al. (2023), on the coordination 
of such problems at the operational decision level, point out that Integrated Production and Distribution Scheduling Problem 
(IPDSP) can achieve economic savings between 5% and 20% compared to sequential decision making. However, from the 
mathematical point of view, taking into account that these problems are highly combinatorial, the development of 
representations that integrate all decisions can lead to computationally expensive and intractable models. Thus, the 
simultaneous resolution of these activities is a great challenge. 
 
Since the past decade, an increased number of research attempts on IPDSP models, as well as some particular approaches 
motivated by different practical applications, have been developed in the area literature. The main articles that review the 
existing works on the operational IPDSP problem propose a classification scheme based on different characteristics: 
production environment, delivery and routing aspects, fleet type, objective function, and solution approaches (Berghman et 
al., 2023; Ceylan et al., 2019; Moons et al., 2017). Most studies that address the integration of these decisions analyze the 
problem in relatively simple production environments, where orders must be processed in a single stage with a single unit 
(Devapriya et al., 2017; Ganji et al., 2022; Miranda et al., 2019) or with several units in parallel (Jiang et al., 2020; Kesen & 
Bektas, 2019). In terms of delivery operations, approaches in which vehicles visit a set of customers in the same route (Ullrich, 
2013; Yağmur & Kesen, 2023) are predominant, highlighting the importance of allocation, sequencing and timing decisions. 
However, some studies consider less complex scenarios, where each vehicle delivers directly to a single customer (Eray Cakici 
& Kurz, 2012; Noroozi et al., 2018). Most contributions focus on economic performance measures (Belo-Filho et al., 2015; 
Lee et al., 2014), which do not always accurately reflect the objectives of different stakeholders. Moreover, due to the inherent 
complexity of these problems, approximate approaches, such as decomposition algorithms and heuristics (Jamili et al., 2016; 
Liu et al., 2021), are more common than exact methodologies (Karaoğlan & Kesen, 2017; Zu et al., 2014), as they allow 
obtaining suboptimal solutions in reasonable computational times. 
 
Despite the aforementioned works, there are very few studies that integrate batching decisions into IPDSP in the way they 
have been approached in this paper. Most researches that simultaneously address batching decisions and IPDSP define a batch 
as a set of orders from different customers, grouped to be processed together and delivered on a single route using a specific 
vehicle, i.e., it is not allowed to split an order into several batches to be processed in different units (Devapriya et al., 2017; 
Farmand et al., 2021). The concept of dividing orders into several batches for processing was first introduced and analyzed in 
the context of the IPDSP problem by Amorim et al. (2013). The authors demonstrated that including batching decisions can 
generate more efficient solutions by explicitly considering the perishability of the products. In more general contexts, this 
option adds flexibility to the production system, improves delivery times and optimizes the use of production capacity and 
plant resources. Another of the few works on the subject is the one presented by Cóccola et al. (2013). The authors propose a 
MILP model that integrates batching, production scheduling and distribution in an environment with multiple plants and non-
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identical units in parallel. Although all decisions are studied in an integrated manner, batches can be assigned directly to 
vehicles or sent to distribution centers, which provides greater flexibility and allows decoupling the coordination of production 
and distribution activities. The model also allows the incorporation of time constraints such as delivery dates, but these are 
not described in detail and effectively solved. The above studies reveal that research on the integration of batching decisions 
in the context of short-term IPDSP is really scarce, which underlines the importance of continuing to explore this field in 
order to broaden and deepen its understanding. 
 
In this context, the present paper proposes a MILP model that simultaneously solves the batching, production and distribution 
scheduling problems for the case of a single-stage multi-product batch facility with multiple non-identical units operating in 
parallel, where a heterogeneous fleet of vehicles of different capacities and costs performs transportation operations. One of 
the strongest assumptions of the paper is that it is necessary to satisfy the total number of orders issued by customers for each 
pre-established time window while minimizing total cost. An efficient formulation is presented that allows reaching the 
optimal solution of the integrated problem in large examples in reasonable computation times. 
 

The rest of the article is organized as follows. Section 2 describes the problem and introduces the notation used in the 
mathematical formulation of the model. In Section 3, the problem formulation is presented, showing the variables and 
constraints used. Section 4 includes three examples that demonstrate the efficiency and effectiveness of the proposed 
approach. Furthermore, in Section 5, to highlight the importance of the integrated solution of these problems, the examples 
presented in Section 4 are addressed using a sequential approach, and the solutions obtained are compared with those generated 
by the integrated approach. Finally, in Section 6, the conclusions of the article are presented. 

2. Problem description 

The problem considered in this paper is posed on a batch production plant of known structure, denominated i0, which 
establishes time windows d ∈ D in which each customer i ∈ IC can request delivery of their orders. In this way, a mutual 
agreement is generated between the plant and the customers, in which the company commits to deliver the orders that the 
customers have placed for each time window d during the interval [ad, cd]. The orders, which may contain a mix of products 
p ∈ P, are processed in a single-stage batch facility that has multiple non-identical u ∈ U units operating in parallel, which 
have different capacities, processing times and costs depending on the type of product being processed. These parameters are 
problem data and are represented under the following nomenclature: capminup and capmaxup define the maximum and 
minimum capacities of unit u for processing product p, fptup is the fixed processing time for each batch of product p in unit u, 
and fpcup is the processing cost of a batch of product p in unit u. 
 
Each customer can place an order, consisting of one or more products, in each time window d. Thus, the amount of product p 
demanded by customer i in time window d, represented by demipd, is a parameter of the problem. To satisfy customer demand 
and achieve better equipment utilization, each batch b ∈ Bp of product p can be used to satisfy different orders demanding 
that product. Since the number of batches of each product, as well as their sizes, are variables of the problem, appropriate 
quotas must be proposed a priori for them in order to ensure the optimality of the solution and to facilitate the solution of the 
problem. Considering the total demand of product p over all time windows, and the minimum capacity required for processing 
product p in unit u, it is possible to calculate the maximum number of batches of product p that can be processed in unit u to 
satisfy customer orders, NBup

UP, by the expression (1). 
 

NBup
UP= �

∑ ∑ demipdd∈Di∈IC

capminup
�           ∀ u ∈ U, ∀ p ∈ P 

 
(1) 

 
The parameter nbp=maxu ∈ U�NBup

UP�  ∀ p ∈ P is used to define the set Bp={b1, b2, …, bnbp}, which denotes the set of batches 
assigned to the product p. For production scheduling decisions, a continuous time representation based on time slots is used. 
This approach is based on dividing the time horizon into predefined time slots that act as intervals in which batches are 
assigned to be processed in units. Identifying the number of slots to be proposed for each unit in the plant is not a trivial task, 
since the number of batches of all products is a variable in the problem. So, a clear challenge of this time representation is to 
propose an appropriate number of slots for each unit. The start and duration of the slots are unknown and are also part of the 
problem solution. Obviously, taking into account the possibility of the extreme case in which all product batches are processed 
in the same unit, this number is defined as the summation in p of the parameters NBup

UP. However, depending on the processing 
times of products and the proposed time windows for product delivery to customers, this parameter may result in an 
overestimation, which directly affects the performance of the problem. Consequently, considering the information regarding 
the problem data, a tighter value for this parameter can be proposed, which is detailed in subsection 2.1. 
 
To deliver orders, the plant has a heterogeneous fleet of vehicles v ∈ V, which are grouped into different types of vehicles vt 
∈ VT, according to shared characteristics such as capacities and transportation costs. For a vehicle to be used, the total amount 
of goods to be transported must not exceed the maximum allowable capacity, capvt, and in turn, must exceed a minimum 
occupancy percentage denoted by prcvt. Each vehicle can make only one trip within the time horizon. Each vehicle starts and 
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ends at the plant, may include visiting one or more customers, and must make only one stop at each customer location visited. 
The distance and travel time between different customers and the plant, distii' and tvii' with i, i' ∈ IC ∪ {i0}/ i≠i', are problem 
data. The loading and unloading time of the products is independent of the order size and is included in the travel time. The 
transportation cost is divided into two components: a fixed cost, ftcvt, which corresponds to the use of the vt-type vehicle, and 
a variable cost, vtcvt, which depends on the distance traveled by the vt-type vehicle. In each vehicle, orders from different 
customers can be loaded, but each order associated with a time window must be delivered completely in a single vehicle. 
Thus, partial deliveries are not allowed. In this way, in each vehicle, the batches or parts of batches required to complete each 
order distributed by this truck are consolidated. For each selected vehicle, the sequence of customer-time windows to be 
visited is a model variable. These routing decisions are represented by the notion of immediate precedence. 
 

2.1 Estimation of proposed slots 

The proposed approach divides the time horizon into predefined time intervals to represent the allocation of batches to the 
processing units. These slots can be either synchronous or asynchronous: in the synchronous representation, the slots are 
identical in all units, which facilitates coordination but may limit flexibility in scheduling. In contrast, the asynchronous 
representation allows each unit to have specific slots adapted to its requirements. Thus, flexibility is increased to adjust 
operation times, although computational complexity is also greater. In this paper, production decisions are represented using 
the asynchronous time-slots approach. In addition, the following assumptions must be taken into account: 

• Each slot of a specific unit can process only one batch at a time. 
• The slot length will be zero if no batch is assigned to it. 
• The number of slots to be used is unknown and may differ for each unit. 

 
In the previous subsection, the number of time slots in the extreme case where all batches are processed in one unit was 
calculated (see Eq. (1)). However, depending on the data, this value may result in an overestimation that affects the 
performance of the problem. Therefore, an optimization model is proposed that allows to calculate the number of slots adjusted 
to the real conditions of the integrated problem. The integer variable SPup represents the number of feasible slots that can be 
allocated in each unit u of the product p. Thus, Eq. (2) states that the time required to process the slots in each unit must be 
less than or equal to the largest upper bound of all time windows minus the shortest travel time between the plant and a 
customer, denoted by MTD. The parameter NBup

UP, calculated previously, sets the upper bound for the variable SPup, since the 
number of batches of product p to postulate in each unit u must not exceed this value, Eq. (3). Finally, the objective function, 
Eq. (4), maximizes the sum of the combination of slots. 
 

 � fptupSPup
p∈P

≤ maxd ∈ D {cd} - MTD         ∀ u ∈ U  
(2) 

SPup  ≤ NBup
UP                                               ∀ u ∈ U, ∀ p ∈ P   (3) 

.Max � � SPup
p∈Pu∈U

 (4) 

Using the results of this model, the parameter nsu=maxp ∈ P �SPup�  ∀ u ∈ U is required to define the set Lu={l1, l2, …, lnsu}, 
which represents the proposed allocated slots for each unit. 

2.2 Decisions involved   
 
Under the above assumptions, the model determines the number, size, allocation, sequencing and detailed timing of the 
batches to be processed in each unit of the plant, the vehicles to be used, the allocation of orders to each transport unit, the 
route and the precise timing of the visits to customers by each vehicle, in order to minimize the total cost of production and 
distribution operations. To explain the complexity of the decisions that are considered simultaneously in the addressed 
problem, Fig. 1 is presented. In the illustrated example, three products p1, p2 and p3), represented by the colors green, orange 
and purple, respectively, are considered. Each product has a total demand that must be processed in batches and, therefore, 
number and size of batches must be determined. In the first box on the left (batching problem), the division of demand into 
batches for each product is shown. The demands for products p1 and p3 are divided into three batches (b1, b2 and b3), while 
the demand for product p2 is divided into two batches (b1 and b2). In addition, each batch must be assigned to a unit and each 
unit must process one batch at a time. Therefore, as shown in the central part of Fig. 1 (production problem), the allocation 
and sequence of batches in each processing unit, as well as the time required for production, must be determined. In the 
schematic example, unit u1 processes 2 batches of product p1 and one batch of p3. In the case of unit u2, it processes one batch 
of product p1, two batches of p3 and all batches of p2.  
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Fig. 1. Diagram of the decisions involved in the three problems studied 

 

Finally, the decisions related to the distribution problem are shown in the box on the right. In the example, two vehicles (v1 
and v2), represented in light blue and blue colors, respectively, are used. Using these colors, the figure shows under each batch 
how they are assigned to the vehicles. The batches can be assigned completely, as is the case with batch b1 of product p3 to 
vehicle v1, or partially, as illustrated with batch b1 of product p1, which is assigned in part to vehicle v1 and vehicle v2. Although 
the sequence of customers to be visited by each vehicle is not exemplified in this figure, it is also part of the decisions to be 
made in this problem. 
 
It is essential to highlight the importance of the integration of the three problems: the size of each batch is subject to the 
dimensions of the unit where it will be processed and, consequently, the number of batches of each product to be produced 
must be determined simultaneously. The allocation of batches to units, as well as the sequence of processing in each unit is 
vital for the synchronization between the order completion times and the departure times of the vehicles to which these batches 
will be partially or fully allocated to be shipped to the corresponding customers. The delivery sequence of each vehicle is 
determined by the assignment of customers to each vehicle. All these decisions are solved simultaneously to provide the 
optimal production and distribution plan that satisfies demand requirements while minimizing operating costs.  Although 
solving batching, production and distribution problems simultaneously is computationally and operationally challenging, it 
has advantages and benefits that reward the invested effort. 
 
3. Model formulation 
 
The model presented in this section considers two groups of constraints: batching and production, and distribution scheduling. 
In the first group, the following restrictions are included: i) number and size of batches: equations that allow determining the 
number and size of batches to be produced to guarantee the satisfaction of the demand, complying with the minimum and 
maximum quotas for the size of each batch, ii) assignment of batches to units: equations that guarantee that each batch must 
be processed by a unit, iii) batch sequencing: restrictions that model the batch processing sequence in each unit, and iv) times: 
equations that determine the processing time of each batch in the unit in which it is assigned, which avoid overlapping in the 
processing of batches in each unit. For the second group: (v) vehicle capacity: equations that ensure that the amount of final 
product allocated to each selected vehicle does not exceed its maximum capacity and meets the minimum required, (vi) 
assignment of batches to vehicles: constraints that ensure that each vehicle transports exactly what is requested by each 
customer assigned to its route, vii) vehicle routing: equations that establish the precedence relationships between the customers 
visited by each vehicle, and viii) departure and arrival times to customers: constraints that ensure that vehicles do not leave 
the plant until all assigned batches are processed, as well as equations that ensure that orders are delivered within the time 
limits for which they were requested. In addition, taking into account the combinatorics of the problem, constraints are 
incorporated to reduce alternative solutions. Finally, the objective function minimizes the cost of production and distribution. 
  
3.1 Batching and production scheduling constraints 
 
The continuous variable BSbp is defined, which represents the size of batch b of product p. Eq. (5) guarantees that exactly the 
total demanded by customers is produced. 
 

� BSbp
b∈Bp

= � � demipd
d∈Di∈IC

       ∀ p ∈ P (5) 

 
The binary variable Xbpul is equal to 1 if batch b of product p is assigned to slot l in unit u, otherwise zero. Through the Eqs. 
(6) and (7), the maximum and minimum dimensions for the size of the batches are established. 

BSbp ≤ � � capmaxupXbpul
l∈Luu∈U

      ∀ p ∈ P, ∀ b ∈ Bp (6) 
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BSbp ≥ � � capminup
l∈Lu

Xbpul
u∈U

      ∀ p ∈ P, ∀ b ∈ Bp (7) 

 
Eq. (8) ensures that batches must be assigned to at most one slot of a unit, while Eq. (9) determines that no more than one 
batch of product can be processed in each slot of a unit at a time. 
 

� � Xbpul ≤ 1
l∈Luu∈U

         ∀ p ∈ P, ∀ b ∈ Bp (8) 

� � Xbpul ≤ 1
b∈Bpp∈P

          ∀ u ∈ U, ∀ l ∈ Lu (9) 

 
To avoid alternative solutions, additional constraints on slots and batches allocation are added in this formulation. Thus, Eqs. 
(8) and (9) ensure that the slots of each unit and the batches of the same product type are used in increasing order, respectively. 
 

� � Xbpul
b∈Bpp∈P

≥ � � Xbpul+1
b∈Bpp∈P

         ∀ u ∈ U, ∀ l, l+1 ∈Lu (10) 

� � Xbpul ≤ � � Xb+1pul
l∈Luu∈Ul∈Luu∈U

         ∀ p ∈ P, ∀ b, b+1 ∈ Bp (11) 

 
On the other hand, Eq. (12) eliminates symmetrical solutions by requiring that the denomination of batches of the same product 
follow an ascending order with respect to the units used.  
 

� Xbpul'+ � � Xbpu'l'' ≥ Xb+1pul
 l''∈Lu'u'<ul' ∈Lu / l'<l

 ∀ p ∈ P, ∀ b, b+1 ∈ Bp, ∀ u ∈ U, ∀ l ∈ Lu (12) 

 
A continuous time representation is used to determine the exact times at which events occur. In this context, the continuous 
variables STul and FTul are defined, representing the start and end time of slot l processing in unit u, respectively. Eq. (13) 
computes the completion time of slot l in unit u, which is obtained by adding the fixed processing time of product p in unit u 
to the start time of processing in slot l in that unit. 

FTul = STul + fptup Xbpul         ∀ p ∈ P, ∀ b ∈ Bp, ∀ u ∈U, ∀ l ∈ Lu (13) 

The overlap between the processing times of different slots in each unit is avoided by using Eq. (14). Moreover, if no batch 
is assigned to slot l+1 of unit u, its initial time is equal to the final time of slot l (Eq. (15)). M1 is a sufficiently large scalar. 

FTul ≤ STul+1                                                 ∀ u ∈ U, ∀ l, l+1 ∈ Lu (14) 

FTul ≥ STul+1-M1 � � Xbpul+1
b∈Bpp∈P

          ∀ u ∈ U, ∀ l, l+1 ∈ Lu (15) 
 

3.2 Distribution scheduling constraints 
 
Given that each batch can be partially used to satisfy orders that are distributed on different vehicles, the binary variable Rbpv 
indicating whether batch b of product p is assigned to vehicle v, and the continuous variable QTbpv representing the number 
of units of that batch that are loaded on the vehicle, are defined. In addition, the binary variable Wv indicates whether the 
vehicle v is used or not. The set VVTvt containing the vehicles of type vt is defined. The Eqs. (16) and (17) ensure that the total 
number of units assigned to each vehicle meets the minimum required capacity of the vehicle, but does not exceed its 
maximum capacity, respectively. In both equations, the left-hand term is multiplied by the scalar αp, which is a factor that 
determines the relationship between units of final product and their weight, since the capacity of each vehicle is given in units 
of weight. 
 

� � αpQTbpv
b∈Bpp∈P

≥ prcvtcapvtWv        ∀ vt ∈ VT, ∀ v ∈ VVTvt (16) 

� � αpQTbpv
b∈Bpp∈P

≤ capvtWv                  ∀ vt ∈ VT, ∀ v ∈ VVTvt (17) 
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Eq. (18) ensures that all units of batch b of product p are assigned to vehicles. On the other hand, Eq. (19) ensures 

that the variable QTbpv takes the value zero if batch b of product p is not assigned to vehicle v (Rbpv = 0). However, if the binary 
variable Rbpv equals one, as stated in Eq. (20), the vehicle must load at least one unit of the product. To reduce the search 
space, the number of batches per product that can be assigned to each vehicle is bounded by Eq. (21). 

 

� QTbpv
v∈V

= BSbp                              ∀ p ∈ P, ∀ b ∈ Bp  (18) 

QTbpv≤ maxu ∈ U {capmaxup}Rbpv    ∀ p ∈ P, ∀ b ∈ Bp, ∀ v ∈ V  (19) 

QTbpv≥ Rbpv                                      ∀ p ∈ P, ∀ b ∈ Bp, ∀ v ∈ V  (20) 

� Rbpv
b∈Bp

≤ �
∑ 𝑄𝑄𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∈𝐵𝐵𝑝𝑝

𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢 ∈ 𝑈𝑈� 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑏𝑏�
�     ∀ p ∈ P, ∀ v ∈ V  (21) 

 
The binary variable Zidv determines whether customer order i requested for time window d is assigned to vehicle v. Since 
partial deliveries of orders are not allowed, the order requested by each customer in a time window must be shipped in a single 
vehicle (Eq. (22)). In addition, it is not allowed to visit the same customer more than once during a vehicle trip. This implies 
that the customer can only be visited once with the same vehicle for the delivery of an order in a specific time window, or, in 
case two time windows coincide temporally, both orders can be delivered simultaneously (Eq. (23)). 
 

� Zidv
v ∈ V

=1              ∀ i ∈ IC, ∀ d ∈ D (22) 

Zidv+Zid'v ≤ 1          ∀ i ∈ IC, ∀ d, d' ∈ D/(d+1<d') ∨ (d'=d+1 ∧ cd≠ad+1), ∀ v ∈ V (23) 

 
Eq. (24) guarantees that all customers who are visited by the vehicle v are delivered the total amount of units that compose 
their orders. 
 

� � QTbpv
b∈Bpp∈P

= � � demipd
d∈D

Zidv
i∈IC

     ∀ v ∈ V (24) 

 
For routing decisions which establish the order of customers to be visited in the same route, the following binary variables 
are defined: ZPiv equals 1 if customer i is the first to be visited in the route of vehicle v, Yii' v equals 1 if customer i is delivered 
immediately before customer i' with vehicle v, and finally ZUiv whose value is 1 if customer i is the last in the route of vehicle 
v, and zero otherwise. Each used vehicle must be assigned one customer who is the first to visit and one who is the last (Eqs. 
(25) and (26)). 
 

� ZPiv
i∈IC

=Wv            ∀ v ∈ V (25) 

� ZUiv
i∈IC

=Wv            ∀ v ∈ V (26) 

However, if customer i is the first or the last customer to be visited on the route of vehicle v, the requested goods must be 
delivered in at least one time window (Eqs. (27) and (28)). Similarly, Eqs. (29) and (30) propose the same assumption for 
precedence-succession relationships. 
 

ZPiv ≤ � Zidv
d∈D

           ∀ i ∈ IC, ∀ v ∈ V  (27) 

ZUiv ≤ � Zidv
d∈D

           ∀ i ∈ IC, ∀ v ∈ V  (28) 

Yii'v ≤ � Zidv
d∈D

             ∀ i, i' ∈ IC/ i≠i', ∀ v ∈ V (29) 
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Yi'iv ≤ � Zidv
d∈D

             ∀ i, i' ∈ IC/ i≠i', ∀ v ∈ V (30) 

 
Customer i may be visited by vehicle v first, or just after another customer i'. Similarly, customer i can be assigned to the last 
position in the route of vehicle v, or just before another customer i'. The formulations of these constraints are given by Eqs. 
(31)-(34). 
 

ZPiv + � Yi'iv
i'∈IC/i≠i'

≥ Zidv                      ∀ i ∈ IC, ∀ d ∈ D, ∀ v ∈ V  (31) 

ZPiv+ � Yi'iv
i'∈IC/i≠i

+ Zidv ≤ 2                  ∀ i ∈ IC, ∀ d ∈ D, ∀ v ∈ V   (32) 

ZUiv+ � Yii'v
i'∈IC/i≠i'

≥ Zidv                       ∀ i ∈ IC, ∀ d ∈ D, ∀ v ∈ V (33) 

ZUiv+ � Yii'v
i'∈IC/i≠i'

+ Zidv ≤ 2                 ∀ i ∈ IC, ∀ d ∈ D, ∀ v ∈ V (34) 

 
Eq. (35) guarantees that the precedence relationship between two customers of the same vehicle must be unique.  

Yii'v+Yi'iv ≤ 1              ∀ i, i' ∈ IC/ i≠i', ∀ v ∈ V (35) 

For the time constraints, the following continuous variables are defined: DTv is used to represent the departure time of vehicle 
v, and DETiv is used to indicate the arrival time at customer i in vehicle v. The departure time of each vehicle must be greater 
than or equal to the latest end time of the batches assigned to it. To model this condition, a Big-M constraint is used, where 
the scalar M2 represents the maximum upper bound among all the time windows considered (Eq. (36)). Note that this constraint 
is redundant if any of the variables Xbpul or Rbpv is null. On the other hand, Eq. (37) orders vehicles of the same type according 
to the departure time, while Eq. (38) determines that if vehicle v must deliver at least one order for time window d, the 
departure time of this vehicle must be less than the upper bound of this window. 

DTv ≥ FTul-M2�2-Xbpul-Rbpv�      ∀ p ∈ P, ∀ b ∈ Bp, ∀ u ∈ U, ∀ l ∈ Lu, ∀ v ∈ V (36) 

DTv-DTv+1 ≤ M2 (2-Wv-Wv+1)     ∀ vt ∈ VT, ∀ v, v+1 ∈ VVTvt  (37) 

DTv ≤ cd Wv+M2(1-Zidv)             ∀ i ∈ IC, ∀ d ∈ D, ∀ v ∈ V (38) 

The departure time of each vehicle determines the delivery time to each customer. If customer i is the first customer to visit 
on vehicle route v, the delivery time is defined by Eqs. (39) and (40), where i0 represents the production plant. These 
constraints guarantee that the delivery time to the first customer of each vehicle must be equal to the sum of the travel time 
from the plant to the customer plus the travel start time of vehicle v. In the case where ZPiv= 0, appropriate scalars are used to 
ensure that these equations are redundant (M3 = M2 + maxi∈IC{tvii0}). 

DETiv ≥ DTv+tvi0i-M3(1-ZPiv)              ∀ i ∈ IC, ∀ v ∈ V (39) 

DETiv ≤ DTv+tvi0i+M2(1-ZPiv)              ∀ i ∈ IC, ∀ v ∈ V (40) 

Similar to Eqs. (39) and (40), Eqs. (41) and (42) determine the delivery time to customers who are immediate predecessors 
(not the first on the route). In this case, the delivery time to customer i' is calculated as the delivery time of its predecessor 
plus the travel time between them. Note that through Eqs. (39)-(42), it is guaranteed that there are no idle times in the travel 
time of each vehicle.  

DETi'v ≥ DETiv+tvii'-M3(1-Yii'v)              ∀ i, i'∈ IC/ i≠i', ∀ v ∈ V (41) 

DETi'v ≤ DETiv+tvii'+M2(1-Yii'v)              ∀ i, i'∈ IC/ i≠i', ∀ v ∈ V (42) 

Customer orders must be delivered within the limits of the corresponding time window d (Eqs. (43) and (44)). 
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DETiv ≥ ad Wv – M2(1 – Zidv)                 ∀ i ∈ IC, ∀ d ∈ D, ∀ v ∈ V (43) 

DETiv ≤ cd Wv + M2(1 – Zidv)                 ∀ i ∈ IC, ∀ d ∈ D, ∀ v ∈ V (44) 

If no orders are delivered to customer i in vehicle v, the delivery time to customer i in vehicle v must be zero (Eq. (45)). Orders 
with precedence relation can only be delivered if the travel time between customers does not generate a delivery delay (Eq. 
(46)). 

DETiv ≤ M2 � Zidv
d ∈ D

                                 ∀ i ∈ IC, ∀ v ∈ V (45) 

tvii'Yii'v-maxi∈ IC{tvii'}(2-Zidv-Zi'd'v) ≤ cd' - ad        ∀ i, i'∈ IC/ i≠i', ∀ d, d' ∈ D/ d<d', ∀ v ∈ V (46) 

The variables Rbpv, Zidv, Yii’v, DTv and DETiv take the value zero if the vehicle v is not used (Eqs. (47)-(51)). To reduce the 
search space, Eq. (52) ensures vehicles of the same type are used in ascending order. M4 is the difference between M2 and the 
minimum travel time between a customer and the plant.   

Rbpv≤ Wv                                        ∀ p ∈ P, ∀ b ∈ Bp, ∀ v ∈ V  (47) 

Zidv≤ Wv                                         ∀ i ∈ IC, ∀ d ∈ D, ∀ v ∈ V  (48) 

Yii'v ≤ Wv                                        ∀ i, i' ∈ IC / i≠i', ∀ v ∈ V  (49) 

DTv ≤ M4 Wv                                      ∀ v ∈ V (50) 

DETiv ≤ M2Wv                                   ∀ i ∈ IC, ∀ v ∈ V  (51) 

Wv ≥ Wv+1                                     ∀ vt ∈ VT, ∀ v, v+1 ∈ VVTvt (52) 

3.3 Objective function 
 
The objective function is the minimization of the total operating cost given by production and distribution costs (Eq. 53). 
 

Min  � � � � fpcupXbpul
l∈Luu∈Ub∈Bpp∈P

 +  

� � ftcvtWv
v∈VVTvtvt∈VT

+ � � � vtcvtdisti0iZPiv
v∈VVTvtvt∈VTi∈IC

+ � � � � vtcvtdistii'Yii'v
v∈VVTvtvt∈VTi'∈ICi∈IC

 (53) 

+ � � � vtcvtdistii0ZUiv
v∈VVTvtvt∈VTi∈IC

  

For production, a fixed processing cost is considered for the production of each batch, depending on the product and the unit 
in which it is produced. For distribution, a fixed cost for using the vehicle and a variable cost depending on the distance 
traveled are considered. 

4. Illustrative examples 
 
Three examples are presented in this section to show the capabilities of the proposed approach. The first one is of small 
dimension, but useful to assess the simultaneous solution of batching and production and distribution scheduling problems. 
The second and third examples are medium size problems, where the number of customers, time windows, units and vehicles 
has been increased compared to the first example, which strongly impacts the computational performance of the model. In all 
examples, the coefficient αp, which represents the conversion factor from product units to kg, is assumed to be 4.75 for p1, 4.0 
for p2 and 4.25 for p3. Table 1 shows the number of customers, time windows, orders, products, units and vehicles considered 
for each of the three examples, followed by the number of equations, variables and CPU time to reach the optimal solution 
(0% GAP). The models were coded and implemented by gurobipy, a Python-based implementation of Gurobi v.10.0.0 (Gurobi 
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Optimization, LLC and Python Software Foundation, 2022; Gurobi Optimization, LLC, 2023) on a PC with an Intel Core i7 
processor, 3.60 GHz and 32 GB of RAM.   
 
Table 1  
Parameters and computational statistics of examples 

 Example 1 Example 2 Example 3 
Number of customers 4 7 8 
Time windows 2 3 4 
Number of orders 8 12 16 
Number of products 3 3 3 
Number of proposed units 2 3 3 
Number of proposed vehicles 7 7 9 
Constraints 6030 8751 20721 
Number of binary variables 791 1083 2311  
Number of continuous variables 388 657 1158 
CPU time (sec) 21 32 280 

 

4.1 Example 1 

The first example considers a batch production plant operating with two non-identical units in parallel, where a total of eight 
orders required by four different customers must be processed. Each order is composed of a mixture of three different products 
and is associated with one of two time windows d1 and d2, whose intervals (in hours) are: [9, 11] and [11, 13], respectively. 
For transportation, three types of vehicles are available, where the first type has three units and the other two types have two 
vehicles. The example data are presented in Tables 2-5: the demand for each time window is presented in Table 2, the 
processing times in hours, the minimum and maximum capacity in units of final product, and the processing costs in $ per 
batch, of each unit for each product are shown in Table 3. Next, Table 4 shows the distance, in kilometers, between the plant 
and the customers, and finally, the minimum and maximum capacity for each type of vehicle, as well as the cost of the 
vehicles, are presented in Table 5. Although this is a small example, this is a demanding scheduling, since all customers 
require all products in all time windows. 
 
Table 2  
Customer demands for Example 1 

Customer Demand: demipd (u) 
d1: [9,11] (h) d2: [11,13] (h) 

i1 
p1: 100 
p2: 100 
p3: 100 

p1: 150 
p2: 100 
p3: 50 

i2 
p1: 50 
p2: 100 
p3: 160 

p1: 150 
p2: 150 
p3: 50 

i3 
p1: 60 
p2: 100 
p3: 50 

p1: 50 
p2: 100 
p3: 90 

i4 
p1: 100 
p2: 50 
p3: 160 

p1: 50 
p2: 100 
p3: 150 

 
Table 3  
Unit parameters for Example 1 

Unit Processing time  Unit capacity  Processing cost 
fptup (h/batch)  capminup (u)  capmaxup (u)  fpcup ($/batch) 

 p1 p2 p3  p1 p2 p3  p1 p2 p3  p1 p2 p3 
u1 1 1.5 1  90 180 135  100 200 150  350 460 390 
u2 1 2 1.5  135 135 60  150 150 100  410 450 400 
 

Table 4  
Distance between nodes for Example 1 

Nodes i0 i1 i2 i3 i4 
i0 0 140 160 170 72 
i1 140 0 400 70 230 
i2 160 400 0 120 150 
i3 170 70 120 0 175 
i4 72 230 150 175 0 
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Table 5  
Vehicle capacities and costs for Example 1 

Type of vehicle Minimum 
capacity (kg) 

Maximum capacity capvt 
(kg) Fixed distribution cost ftcvt ($)  Variable distribution cost vtcvt 

($/km)  
vt1 (v1, v2 v3) 1225 1500 15 2 
vt2 (v4, v5) 2400 3000 18.75 2.5 
vt3 (v6, v7) 2800 4000 21 2.8 

Tables 6 and 7 and Fig. 2 show the optimal solution found. Table 6 contains production details, such as the time slots used in 
each unit, their start and end times, the batches of product processed in each slot, the size of the batches, the percentages of 
unit utilization per batch processed and the assignment to the vehicles. Similarly, Table 7 shows the results of the distribution, 
such as the number of vehicles used according to type, the departure time of each vehicle, the route to be traveled (customers 
to be visited), the time of delivery to each customer visited, and the percentage of vehicle utilization. 
 
Table 6  
Batching and production scheduling details for Example 1 

Unit Slot STul 
(h) 

FTul 
(h) Batch Product Size (u) Usage (%) 

Assignment to vehicles (u) 

v4 v6 v7 

u1 

l1 0 1.5 b1 p2 200 100  200  
l2 1.5 3 b2 p2 200 100  100 100 
l3 3 4.5 b3 p2 200 100   200 
l4 4.5 6 b4 p2 200 100 150  50 
l5 6 7 b1 p3 135 90  135  
l6 7 8 b2 p3 135 90   135 
l7 8 9 b3 p3 135 90   135 
l8 9 10 b4 p3 135 90 135   

u2 

l1 0 1 b1 p1 144 96  144  
l2 1 2.5 b2 p1 144 96  144  
l3 2.5 4 b3 p1 144 96  22 122 
l4 4 5.5 b4 p1 143 95 15  128 
l5 5.5 6.5 b5 p3 90 90  65 25 
l6 6.5 7.5 b6 p3 90 90 85  5 
l7 7.5 8.5 b5 p1 135 90 135   
l8 8.5 9.5 b7 p3 90 90 90   

Production cost: $6650 
 

Table 7  
Distribution scheduling details for Example 1 

Vehicle Type Departure  
time (h) Customer Time window Delivery  

time (h) Usage (%) 

v4 vt2 10.1 i4 d1 – d2 11 88 

v6 vt3 8 i3 d1 10.1 88 i1 d1 – d2 11 

v7 vt3 9 i2 d1 – d2 11 97 i3 d2 12.5 
Distribution cost: $7181 

 
To illustrate the optimal solution found, the Gantt chart is presented in Fig. 2.  
 

 

Fig. 2. Production and distribution schedule for Example 1 
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In the center of the figure, the time windows d1 and d2, marked in red, separate the graph into two parts.  The upper part shows 
the production schedule for each processing unit (u1 and u2), and the lower part shows the distribution schedule for each 
vehicle used (v4, v6 and v7). For a better understanding of the information illustrated in each part, the unit u1 and the vehicle 
v6 are explained in detail. The first row of u1 shows that 8 slots are processed, 4 of which are batches of product p2 (grey 
product), while the remaining 4 are of product p3 (white product). Note that the length of the slots refers to the time it takes 
to process them, it does not refer to the batch size. Then, in the row immediately below, it is possible to see in which vehicle 
each batch is loaded. For example, batch b1 of product p2 is assigned to vehicle v6 (light blue vehicle), while batch b2 of 
product p2 is assigned in parts to vehicle v6 and vehicle v7 (pink vehicle). For the distribution solution, vehicle v6 leaves at 8 
a.m., with 88% of its capacity occupied, first visits customer i3, to which it delivers the order placed for time window d1 at 
10.1 a.m. Then, the vehicle v6 travels to customer i1, to which it delivers the order for time windows d1 and d2 at 11 a.m.  
 

4.2 Example 2 

In this example, three non-identical units are considered that operate in parallel to process three different products. Seven 
customers may request orders for three time windows d1, d2 and d3, whose intervals (in hours) are: [7, 9], [9, 11] and [11, 13], 
respectively. For the distribution of twelve orders, three types of vehicles are available, where two types have two units each, 
and one has three vehicles. As in Example 1, the data for Example 2 are presented in Tables 8-11, while the optimal solution 
is detailed in Tables 12 and 13 and Fig. 3. 
 
Table 8   
Customer demands for Example 2 

Customer Demand: demipd (u) 
d1: [7,9] (h) d2: [9,11] (h) d3: [11,13] (h) 

i1 
p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

p1: 100 
p2: 0 

p3: 100 

i2 
p1: 50 

p2: 100 
p3: 60 

p1: 50 
p2: 155 
p3: 50 

p1: 0 
p2: 0 
p3: 0 

i3 
p1: 0 
p2: 0 
p3: 0 

p1: 25 
p2: 37 
p3: 30 

p1: 25 
p2: 74 
p3: 0 

i4 
p1: 100 
p2: 50 
p3: 0 

p1: 0 
p2: 100 
p3: 50 

p1: 74 
p2: 20 
p3: 60 

i5 
p1: 0 
p2: 0 
p3: 0 

p1: 30 
p2: 30 
p3: 30 

p1: 300 
p2: 150 
p3: 200 

i6 
p1: 50 
p2: 50 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

i7 
p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

p1: 100 
p2: 100 
p3: 200 

 

Table 9   
Unit parameters for Example 2 

Unit Processing time  Unit capacity Processing cost 
fptup (h/batch)  capminup (u)  capmaxup (u) fpcup ($/batch) 

 p1 p2 p3  p1 p2 p3  p1 p2 p3  p1 p2 p3 
u1 2 3 1  120 110 115  130 125 130  350 460 390 
u2 2 3 2  140 120 115  150 140 130  410 450 400 
u3 3 1 2.5  130 115 120  140 130 135  450 390 380 

 

Table 10   
Distance between nodes for Example 2 

Nodes i0 i1 i2 i3 i4 i5 i6 i7 
i0 0 200 120 170 72 80 400 80 
i1 200 0 400 70 230 150 400 400 
i2 160 400 0 120 200 96 96 350 
i3 170 70 120 0 175 300 200 200 
i4 72 230 200 175 0 104 88 450 
i5 80 150 96 300 104 0 160 340 
i6 400 400 96 200 88 160 0 390 
i7 80 400 350 200 450 340 390 0 
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Table 11   
Vehicle capacities and costs for Example 2 

Type of vehicle Minimum 
capacity (kg) 

Maximum capacity capvt 
(kg) Fixed distribution cost ftcvt ($)  Variable distribution cost vtcvt 

($/km)  
vt1 (v1, v2) 1400 2000 22.4 2.1 
vt2 (v3, v4) 2400 3000 20 1.9 
vt3 (v5, v6, v7) 2625 3500 16 1.5 

 
Table 12  
Batching and production scheduling details for Example 2 

Unit Slot STul (h) FTul (h) Batch Product Size (u) Usage (%) 
Assignment to vehicles (u) 

v1 v5 v6 v7 

u1 

l1 0 2 b1 p1 122 94  122   
l2 2 4 b2 p1 122 94  122   
l3 4 6 b3 p1 120 92 56 64   
l4 6 7 b1 p3 130 100   130  
l5 7 9 b4 p1 120 92 100   20 
l6 9 10 b2 p3 130 100    130 
l7 10 11 b3 p3 125 96 125    

u2 

l1 0 2 b5 p1 140 93   140  
l2 2 4 b6 p1 140 93    140 
l3 4 6 b4 p3 130 100  130   
l4 6 8 b5 p3 130 100 10   120 
l5 8 10 b7 p1 140 93    140 

u3 

l1 0 1 b1 p2 130 100  130   
l2 1 2 b2 p2 130 100  81 49  
l3 2 3 b3 p2 130 100   130  
l4 3 5.5 b6  p3 135 100 65  70  
l5 5.5 6.5 b4 p2 126 97   126  
l6 6.5 7.5 b5 p2 120 92    120 
l7 7.5 8.5 b6 p2 115 88    115 
l8 8.5 9.5 b7 p2 115 88 100   15 

Production cost: $7710 
 
Table 13  
Distribution scheduling details for Example 2 

Vehicle Type Departure  
time (h) Customer Time window Delivery time (h) Usage (%) 

v1 vt1 11 i7 d3 12 86 

v5 vt3 6.5 

i4 d1 7.4 

81 i6 d1 8.5 
i3 d2 - d3 11 
i1 d3 11.9 

v6 vt3 7.5 
i2 d1 - d2 9 

87 i5 d2 10.2 
i4 d3 11.5 

v7 vt3 10.1 i4 d2 11 99 i5 d3 12.3 
Distribution cost: $8041 

  

 

Fig. 3. Production and distribution schedule for Example 2 
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4.3 Example 3 

As in Example 2, Example 3 considers a medium-scale case, where three non-identical parallel units that process three 
different products are considered. On the demand side, eight customers may request orders in four different time windows d1, 
d2, d3 and d4, of duration [7,8], [8,9], [10,11] and [11,12], respectively. For order distribution, three types of vehicles are 
available, which have two, four and three vehicles associated with them, respectively. The model input data for the instance 
under study are presented in Tables 16-19 and the optimal solution is shown in Tables 20, 21 and 22 and Fig. 4.  
 
Table 14  
Customer demands for Example 3 

Customer Demand: demipd (u)  
d1: [7, 8] (h) d2: [8, 9] (h) d3: [10, 11] (h) d4: [11, 12] (h) 

i1 
p1: 50 
p2: 50 
p3: 50 

p1: 50 
p2: 50 
p3: 50 

p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

i2 
p1: 50 
p2: 50 
p3: 50 

p1: 50 
p2: 50 
p3: 50 

p1: 0 
p2: 0 
p3: 0 

p1: 90 
p2: 90 
p3: 90 

i3 
p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

p1: 60 
p2: 50 
p3: 40 

p1:50 
p2: 50 
p3: 50 

i4 
p1: 60 
p2: 60 
p3: 60 

p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

p1: 50 
p2: 50 
p3: 50 

i5 
p1: 20 
p2: 30 
p3: 0 

p1: 0 
p2: 0 

p3: 70 

p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

i6 
p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

p1: 100 
p2: 100 
p3: 100 

i7 
p1: 30 
p2: 30 
p3: 30 

p1: 90 
p2: 90 
p3: 90 

p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

i8 
p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 0 
p3: 0 

p1: 0 
p2: 50 
p3: 0 

p1: 200 
p2: 220 
p3: 230 

 

Table 15  
Unit parameters for Example 3 

Unit Processing time  Capacity units  Processing cost 
fptup (h/batch)  capminup (u)  capmaxup (u)  fpcup ($/batch) 

 p1 p2 p3  p1 p2 p3  p1 p2 p3  p1 p2 p3 
u1 1.1 1 2  100 80 100  110 90 110  370 420 400 
u2 1 1.5 1  70 90 105  80 100 115  400 420 395 
u3 1.5 1 1  80 80 90  95 110 100  450 430 400 

 

Table 16   
Distance between nodes for Example 3 

Nodes i0 i1 i2 i3 i4 i5 i6 i7 i8 
i0 0 80 96 120 160 250 168 100 76 
i1 80 0 250 94 80 150 160 260 230 
i2 96 250 0 150 200 40 92 250 175 
i3 120 94 150 0 80 250 200 200 260 
i4 160 80 200 80 0 150 100 180 260 
i5 250 150 40 250 150 0 270 60 350 
i6 168 160 92 200 100 270 0 92 240 
i7 100 260 250 200 180 60 92 0 260 
i8 76 230 175 260 260 350 240 260 0 

 

Table 17   
Vehicle capacities and costs for Example 3 

Type of vehicle Minimum capacity 
(kg) 

Maximum capacity 
capvt (kg) 

Fixed distribution cost ftcvt 
($)  

Variable distribution cost vtcvt 
($/km)  

vt1 (v1, v2) 375 500 15.3 1.26 
vt2 (v3, v4, v5, v6) 1050 1500 21.25 2.1 
vt3 (v7, v8, v9) 2600 3250 17 1.75 
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Table 18   
Batching and production scheduling details for Example 3 

Unit Slot STul (h) FTul (h) Batch Product Size (u) Usage (%) 

u1 

l1 0 1.1 b1 p1 110 100 
l2 1.1 2.1 b1 p2 90 100 
l3 2.1 3.2 b2 p1 110 100 
l4 3.2 4.3 b3 p1 110 100 
l5 4.3 5.4 b4 p1 110 100 
l6 5.4 6.5 b5 p1 110 100 
l7 6.65 7.75 b6 p1 109 99 
l8 7.75 8.95 b7 p1 109 99 
l9 8.95 10.05 b8 p1 102 93 

u2 

l1 0 1 b1 p3 115 100 
l2 1 2 b2 p3 115 100 
l3 2 3 b9 p1 80 100 
l4 3 4 b3 p3 115 100 
l5 4 5 b4 p3 115 100 
l6 5 6 b5 p3 115 100 
l7 6 7 b6 p3 115 100 
l8 7 8 b7 p3 115 100 
l9 8 9 b8 p3 105 91 

u3 

l1 0 1 b2 p2 110 100 
l2 1 2 b3 p2 110 100 
l3 2 3 b4 p2 110 100 
l4 3 4 b5 p2 110 100 
l5 4 5 b9 p3 100 100 
l6 5 6 b6 p2 110 100 
l7 6 7 b7 p2 110 100 
l8 7.05 8.05 b8 p2 98 89 
l9 8.05 9.05 b9 p2 86 78 
l10 9.05 10.05 b10 p2 86 78 

Production cost: $11210 

 

Table 19   
Distribution scheduling details for Example 3 

Vehicle Type Departure 
time (h) Customer Time window Delivery 

time (h) Usage (%) 

v3 vt2 6.5 
i7 d1  7.7 

89 i5 d2 8.5 
i2 d2 9 

v4 vt2 7.7 i7 d2 9 78 
v5 vt2 9.9 i6 d4 12 87 

v7 vt3 5 
i4 d1 7 

100 i1 d1 – d2 8 
i2 d4 11.1 

v8 vt3 6.2 

i2 d1 7.4 

87 
i5 d1 7.9 
i3 d3 - d4 11 
i4 d4 12 

v9 vt3 10.1 i8 d3 - d4 11 93 
Distribution cost: $18628 

 

 

Fig. 4. Production and distribution schedule for Example 3 



A. S. Tibaldo et al.  / International Journal of Industrial Engineering Computations 16 (2025) 17 

 
Table 20  
Assignment of batches to vehicles in Example 3 

Batch Product Size (u) Assignment to vehicles (u) 
v3 v4 v5 v7 v8 v9 

b1 p1 110    110   
b1 p2 90    90   
b2 p1 110    110   
b3 p1 110    30 80  
b4 p1 110 40    70  
b5 p1 110 40 70     
b6 p1 109  20 89    
b7 p1 109   11   98 
b8 p1 102      102 
b1 p3 115    115   
b2 p3 115    115   
b9 p1 80      80 
b3 p3 115     115  
b4 p3 115 115      
b5 p3 115 35 80     
b6 p3 115  10 100   5 
b7 p3 115      115 
b8 p3 105      105 
b2 p2 110    110   
b3 p2 110    50 60  
b4 p2 110     110  
b5 p2 110 50    60  
b9 p3 100    20 75 5 
b6 p2 110 30 80     
b7 p2 110  10 100    
b8 p2 98      98 
b9 p2 86      86 
b10 p2 86      86 

 
 
5. Integrated vs. Sequential approach 
 
Is the integrated approach more cost-effective than the sequential approach? Is it worth the computational effort? To answer 
these questions, the three case studies presented in the previous section are evaluated using a hierarchical methodology. The 
subsection 5.1 describes the sequential approach used, highlighting the constraints associated with each stage. The next 
subsection shows the solution obtained by solving each of the examples using the sequential approach. Subsequently, a 
detailed comparison of the approaches used in the three examples is presented in the subsection 5.3.  
 
5.1 Two-stage hierarchical approach  
 
The problem under study is solved in two consecutive stages. In the first one, decisions related to the number and size of 
batches to be processed, the allocation of these batches to units, the processing sequence and the production schedule are 
determined. All these decisions are taken to minimize the total cost of production. Thus, in the first stage, the problem subject 
to Eqs. (5)-(15) is solved and the production cost is minimized (Eq. (54)). It is important to note that no constraints related to 
distribution logistics are considered in the first stage of the hierarchical approach. 
 

Min  � � � � fpcupXbpul
l∈Luu∈Ub∈Bpp∈P

 (54) 

 
Stage 2 consists of determining all decisions related to distribution logistics, such as the number of vehicles to be used, the 
customers visited by each vehicle, and the time of departure and delivery to the customers. On this basis, there are different 
alternatives to solve this problem. The first and most basic is to assume that all decisions related to the production problem 
have already been taken, so the problem to be solved in Stage 2 is minimize the distribution cost (Eq. (55)) subject to 
constraints (16)-(52). This is the most direct procedure, but it is much more likely to obtain solutions with very poor 
performance, or even infeasible. 
 
Min  � � ftcvtWv

v∈VVTvtvt∈VT

+ � � � vtcvtdisti0iZPiv
v∈VVTvtvt∈VTi∈IC

+ 

� � � � vtcvtdistii'Yii'v
v∈VVTvtvt∈VTi'∈ICi∈IC

+ � � � vtcvtdistii0ZUiv
v∈VVTvtvt∈VTi∈IC

 
(55) 
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Another alternative is to use the optimal solution to the batching and production scheduling problems, but limiting their 
effects. The optimal value obtained for production scheduling depends on the assignment of the determined batches to the 
units. In this new alternative, it is assumed that these decisions remain, but the times at which batch processing begins in the 
units where they were assigned can be varied. In this way, the previous solution is used, but with greater flexibility that allows 
for better performance in distribution scheduling. Thus, in this paper, Stage 2 solves the problem that minimizes the 
distribution cost (Eq. (55)) subject to Eqs. (5)-(52). Note that the variables for assigning batches to units are set according to 
the values obtained in Stage 1. To illustrate the process of the proposed approach, a flowchart is presented in Fig. 5.  
 
The solution obtained by addressing the problem using the sequential approach can be: (i) feasible, where its value could be 
equal to or worse than that obtained with the integrated approach; or (ii) infeasible, which indicates that, according to the 
production schedule found, it is not possible to fulfill the delivery of orders to customers within the established time windows. 
This last alternative is now usual, taking into account that the production optimization has been carried out without taking 
into account the commitments with customers and the available vehicles. Therefore, this leads to companies holding stock 
levels to meet demand or, in the worst case, backorders are generated. 
 

 
Fig. 5. Flowchart of the two-stage hierarchical approach 

 
5.2 Sequential resolution of illustrative examples 
 
In the following, each of the examples discussed in this paper is solved using the approach described in the previous 
subsection. The main objective is to compare and analyze whether the effort of solving the two activities simultaneously is 
worthwhile.  Table 21 summarizes the key information for an effective comparison of both approaches. For each example, 
the objective function value and resolution time for each approach are shown, as well as the percentage improvement obtained 
with the integrated approach. The table shows that, although the computational times are slightly longer in the integrated 
approach, they are reasonable for the operational and complex problem being solved, while the percentage improvement 
indicates that the effort is really valuable and justified. A brief description of each example is provided below along with its 
respective Gantt chart. 
 
Table 21 
Comparison of examples under sequential and integrated approaches 

 Sequential approach Integrated approach % improvement  Objective function ($) CPU time (sec) Objective function ($) CPU time (sec) 
Example 1 16594 5 13831 21 17 
Example 2 17586 15 15751 32 10 
Example 3 33570 48 29838 280 16 

MILP model
Eqs. (5)-(15) and (54)

Start

Input parameters

Daily planning of 
production and 
distribution in a 
batch industry

End

Stage 1

Stage 2
MILP model

Eqs. (5)-(52) and (55)

Allocation of batches to 
units Xbpu

∗
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5.2.1 Example 1 
 
Fig. 6 presents in detail the solution of Example 1 using the two-stage hierarchical approach. The total cost is $16594, where 
$6230 corresponds to production and $10364 to distribution. The computation time was 5 seconds. Gantt diagram shows that 
batches are processed in the most economically convenient units. This production scheduling implies that the vehicles must 
follow direct routes to a single customer in order to deliver on time (with the exception of v6). Thus, it is evident that not 
consolidating small orders in a single vehicle generates significantly higher transportation costs compared to the opposite 
approach. 
 

 

Fig. 6. Gantt chart of Example 1 solved using the sequential approach 

5.2.2 Example 2 
 

The solution obtained using the sequential approach in Example 2 is shown in Fig. 7. In terms of production, the tendency is 
to produce all batches in the most economical units: batches of product p1 in unit u1, batches of product p3 in unit u2 and 
batches of product p2 in unit u3. However, due to processing times and time window limits, not all product batches can be 
processed in the most convenient units. Thus, batch b7 of product p1 is processed in u2 and batch b6 of p3 in unit u3. The total 
cost of the solution is $17586, consisting of $7620 production cost and $9966 distribution cost. This case study was solved in 
15 seconds. 

 

Fig. 7. Gantt chart of Example 2 solved using the sequential approach 

5.2.3 Example 3 
 

Finally, Fig. 8 shows the solution of Example 3 using the sequential approach that was obtained in 48 seconds. In this case, 
the production cost is $11160 and the distribution cost is $22410, yielding an operating cost of $33570. 
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Fig. 8. Gantt chart of Example 3 solved using the sequential approach 

 

5.3 Analysis of results 
 
Analyzing the solutions obtained in the examples, it is possible to identify different patterns and behaviors depending on the 
applied solution approach. In all cases, the sequential approach presents an initial advantage in terms of production cost due 
to a better allocation of batches to equipment, where units are used prioritizing their low cost. However, more efficient 
production planning often leads to less effective distribution logistics. In this case, with no finished product inventory, vehicle 
routes must be organized according to batch completion times. This significantly reduces flexibility and generally results in 
direct shipments to customers. As a consequence, the total distance traveled at the end of the day tends to be greater in order 
to meet demands, and, more importantly, a greater number of vehicles is usually required. These situations not only generate 
additional costs, but also lead to an inefficient utilization of vehicle capacity, the emission of more kilograms of greenhouse 
gases, a larger fleet and a higher number of drivers, etc. The integrated approach stands out for its ability to improve efficiency 
in the supply chain operations, deliver orders on time, optimize vehicle capacity and increase customer satisfaction. Figs. 9, 
10 and 11 present a comparison of production and distribution costs in the three examples studied. In each figure, for both the 
integrated and sequential approaches, production costs are shown in pink and distribution costs in light blue. As can be seen, 
the common denominator is that, in the sequential approach, the production cost tends to be slightly lower compared to the 
integrated approach, while distribution costs are significantly higher. The numerical solutions highlight the considerable 
important savings that can be achieved by solving the integrated approach. The improvements obtained in the case studies 
analyzed are 17%, 10% and 16% for Examples 1, 2 and 3, respectively.  
 

   
Fig. 9. Cost comparison for Example 1 Fig. 10. Cost comparison for Example 2 Fig. 11. Cost comparison for Example 3 

 
6. Conclusions 

In recent years, due to highly competitive environments, the need to respond to customer requirements has become an essential 
goal for companies. This context has promoted the production of customized products, which implies a major challenge for 
the production and distribution areas, as these products tend to have practically zero inventories. MTO production systems 
are not the only ones posing difficulties for industries, products with limited shelf life also present significant challenges for 
the production and distribution areas. 
 
The integration of batching decisions in the context of IPDSP is an area that is largely unexplored in the literature. The 
introduction of the possibility of splitting orders into multiple batches has been shown to improve the efficiency of solutions, 
especially when perishable products are considered. However, few works have addressed this integration, and the proposed 
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solutions do not always include an effective resolution of time constraints such as delivery dates or contemplate zero inventory 
policies, which are more complex but real situations.  
 
According to this context, the main contribution of this work is the development of a MILP model that allows the simultaneous 
integration of batching, production and distribution scheduling decisions in a single-stage multi-product batch plant. In the 
proposed approach, each customer can place several orders whose deliveries can be associated to different time windows 
proposed by the company and mutually agreed with the customers. The developed model simultaneously determines where, 
how, and when the batches are processed and how they are loaded and shipped in the selected vehicles, in order to reduce 
production and distribution costs and satisfy customer delivery in a timely manner. The proposed approach finds the optimal 
solution in reasonable computational times. 
 
In order to show the capabilities of the developed model and the importance of optimally solving the problem in contrast to a 
sequential approach, three examples were analyzed. The exact approach proves to be clearly superior to the sequential 
approach. The improvements of more than 10% observed in the examples indicate that the integrated approach offers optimal 
solutions, overcoming the limitations of the sequential approach and providing a significant advantage in terms of 
computational efficiency and performance. 
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