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 This study proposes an adaptive local search heuristic to solve a real-world large-scale parallel 
machine scheduling problem with release dates and setup times, aiming to minimize total tardiness. 
The complexity of the problem stems from the need to synchronize machine availability, job release 
dates, and setup durations, which are crucial for meeting production deadlines and ensuring 
operational efficiency. Traditional optimization approaches often struggle to deliver timely 
solutions for large-scale industrial applications. Our heuristic method effectively explores the 
search space to identify schedules that significantly reduce total tardiness while adhering to the 
constraints of the production system. The approach was tested using real production data, and the 
results indicate that the heuristic consistently generated high-quality solutions within short 
computational times. The approach proved viable and efficient, offering a practical tool for 
improving scheduling performance and minimizing total tardiness in industries with similar 
operational constraints. 
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1. Introduction 

In recent years, the manufacturing industry has faced increasing pressure to optimize production processes due to rising 
competition, evolving customer demands, and the need for cost-efficiency. One of the key challenges within the 
manufacturing sector, particularly in the textile industry, is scheduling production on parallel machines. The textile industry 
is characterized by a high degree of product variety and fluctuating order volumes, which can make production planning 
complex (Albayrak & Onuet, 2024; Pei et al., 2021; Fuchigami & Rangel, 2018). Specifically, textile companies often deal 
with parallel machine scheduling problems (PMSP), where multiple machines operate concurrently, and each job must be 
assigned to a machine while considering operational constraints such as release dates and setup times (Wang & Zhang, 2023). 
These constraints significantly impact production efficiency, and their improper handling can lead to delays, increased costs, 
and lower customer satisfaction. The PMSP is a well-known NP-hard problem, meaning that finding an optimal solution 
becomes computationally intractable as the problem size grows (Liu et al., 2020; Wu & Che, 2019). In practice, exact methods 
often prove inefficient due to the complexity of real-world scheduling scenarios, particularly when operational constraints 
like release dates and setup times are considered. Release dates dictate when a job becomes available for processing, while 
setup times represent the time required to prepare a machine for a specific job. Both factors must be accounted for in an 
efficient production schedule to minimize total tardiness and optimize resource utilization (Hu et al., 2024; Safarzadeh & 
Niaki, 2023). Setup times, particularly sequence-dependent setup times (SDST), play a critical role in the textile production 
process. Different products often require different machine settings, material changes, or even cleaning operations between 
jobs, all of which contribute to downtime if not managed effectively (Xue et al., 2024; Kim & Kim, 2020). The scheduling 
problem becomes particularly challenging when both setup time optimization and release date constraints must be addressed 
concurrently. This dual requirement compounds the computational difficulty of generating efficient production schedules, 
especially in industries with high product mix variability such as textile manufacturing (Wu et al., 2025). 
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Heuristics have long been a popular choice for solving complex scheduling problems due to their ability to provide good-
quality solutions within a reasonable computational time, especially for NP-hard problems like PMSP with SDST and release 
dates (Krimi & Benmansour, 2024; Lee & Kim, 2021). Unlike exact methods, which guarantee optimal solutions but can be 
computationally expensive for large-scale problems, heuristics offer a trade-off between solution quality and computational 
efficiency, making them particularly attractive for real-world industrial applications where quick decision-making is crucial 
(Huynh & Chien, 2018; Prasad et al., 2022). 
 
This paper proposes a novel heuristic approach to treat the identical parallel machine scheduling problem with release dates 
and setup times, specifically tailored for a real-world textile manufacturing environment. The proposed heuristic is based on 
a local search strategy that iteratively explores the solution space by reassigning jobs to different machines and adjusting job 
sequences to minimize total tardiness, a common objective in industries where meeting customer deadlines is critical (Li et 
al., 2024; Demirtas, 2022). The development of this heuristic was motivated by the need for a method that could handle the 
large-scale, complex scheduling requirements of the textile industry while providing solutions that are both practical and 
efficient. 
 
The real-world application of the proposed heuristic was tested in a textile company that produces a wide range of fabrics, 
each with varying production requirements. The company’s scheduling problem involved multiple parallel machines, with 
each machine capable of processing different types of fabrics but requiring significant setup times when switching between 
jobs. Additionally, the release dates of different fabric orders added another layer of complexity to the scheduling process, as 
jobs could not be scheduled in a continuous manner. The proposed heuristic reduces mean total tardiness by 27.4% compared 
to standard dispatching rules in computational experiments on industrial datasets. The method achieves strict dominance 
(100% outperformance rate) across all test instances, with a feasible average runtime for large-scale problems (200+ jobs, 
40+ parallel machines), demonstrating both solution quality and scalability for real-world deployment. 
 
2. Literature review 
 
The scheduling problem is a fundamental challenge in operations research and computer science, involving the allocation of 
resources over time to perform a collection of tasks/jobs. This problem is crucial in various areas, including manufacturing, 
healthcare, and project management, where efficient scheduling can significantly enhance productivity and reduce operational 
costs (Meng et al., 2024; Rocholl & Mönch, 2019). The textile industry, with its complex and highly variable production 
processes, greatly benefits from optimization approaches in scheduling. These techniques enable manufacturers to efficiently 
allocate resources, minimize delays, and reduce operational costs. By implementing advanced scheduling algorithms, textile 
enterprises can enhance their agility and responsiveness to market demands, ensuring timely deliveries and improving overall 
productivity (Dermitas, 2022). Moreover, optimized scheduling fosters better utilization of machinery and workforce, which 
is essential in maintaining a competitive edge in a rapidly evolving industry. Thus, the application of optimization methods 
in scheduling is not only crucial for operational excellence but also for sustaining long-term growth and profitability (Noor et 
al., 2022). Table 1 compares key contributions in production scheduling research, with emphasis on real-world textile 
manufacturing applications. 
 
Table 1 
Overview of recent scheduling studies in the textile industry 

Work Approach Textile Manufacturing Problem 
Celikbilek et al. (2016) Genetic Algorithm Bottleneck machine scheduling 

Zaharie et al. (2017) Exact Approach Order acceptance, delivery date setting and scheduling 
Zhou et al. (2017) Genetic Algorithm Water-saving scheduling 
Zhang et al. (2017) Particle Swarm Optimization and Local Search Production planning with environmental considerations 

Ortíz-Barrios et al. (2018) Hybrid Dispatching Algorithm Operation selection in the flexible job-shop scheduling 
Huynh et al. (2018) Genetic Algorithm Batch dyeing scheduling 

Lorente-Leyva et al. (2019) Genetic Algorithm Master production scheduling 
Nugraheni et al. (2020) Genetic Programming and Hyper-Heuristic Adaptive flow and criteria in flexible flow shop 

Tsao et al. (2020) Simulated Annealing and Genetic Algorithm Cut ordering planning 
Berthier et al. (2022) Exact Approach and Genetic Algorithm Unrelated parallel machines 

Demirtas (2022) Local Search Unrelated parallel dedicated machines scheduling 
Prassad et al. (2022) Exact Approach Cut ordering planning 

Tsao et al. (2022) Particle Swarm Optimization Marker planning problem 
Wang et al. (2023) Tabu Search Batch processing machines 

 
Scheduling is a critical component for optimizing production efficiency and meeting stringent market demands. In this context, 
Identical Parallel Machine Scheduling (IPMS) is one of the most common and impactful scheduling issues in the textile 
industry. Addressing this problem is essential for optimizing machinery usage, reducing operational bottlenecks, and 
enhancing overall production flow (Li & Liu, 2024; Min et al., 2024). The IPMS problem is a well-known optimization 
challenge in modern manufacturing. It involves scheduling a set of jobs (𝑛𝑛) on identical machines (𝑚𝑚) with the objective of 
optimizing certain performance metrics, such as minimizing total tardiness or makespan. This problem is particularly relevant 
in environments where multiple machines perform the same jobs, and efficient scheduling can significantly impact 
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productivity and operational costs (Lu et al., 2024; Kim et al., 2020). Problems involving identical parallel machines are 
considered NP-hard, meaning that no algorithm is known to solve these problems in polynomial time, making the attainment 
of precise solutions more complex as the number of jobs increases. An example of a problem that falls into the NP-hard class 
is the scheduling on identical parallel machines with the objective of minimizing total tardiness, denoted by 𝑃𝑃𝑚𝑚| ∑𝑇𝑇𝑗𝑗  (Zhang 
et al., 2024; Lee, 2018; Pinedo, 2016). 
 
According to recent studies, the problem of minimizing total tardiness in identical parallel machines can be described as 
follows: Consider a set 𝑁𝑁 =  {1, 2, … ,𝑛𝑛} consisting of 𝑛𝑛 jobs that need to be scheduled on a set 𝑀𝑀 =  {1, 2, … ,𝑚𝑚} of 𝑚𝑚 
identical parallel machines. Each job must be assigned to one machine, and the goal is to sequence these jobs in a way that 
minimizes the total tardiness across all jobs, as illustrated in Fig. 1. 
 

 
Fig. 1. Decision-making in parallel machines scheduling problems 

 
In IPMS, each job (𝑖𝑖) has a processing time (𝑝𝑝𝑖𝑖) and a due date (𝑑𝑑𝑖𝑖). Furthermore, it is assumed that all machines are identical 
in terms of their capabilities and processing speeds. Any job can be processed on any machine without any preference or 
difference in processing time.  
 
In its classical form, it is also assumed that all jobs are ready for execution at time zero, and that the processing of a job can 
begin immediately after the completion of the previous job. The tardiness 𝑇𝑇𝑖𝑖(𝑆𝑆) of a job i in a schedule is determined by 𝑇𝑇𝑖𝑖 =
𝑚𝑚𝑚𝑚𝑚𝑚{0, 𝑐𝑐𝑖𝑖 −  𝑑𝑑𝑖𝑖}, where 𝑐𝑐𝑖𝑖 represents the time at which the processing of job i is completed. Thus, the objective function 
representing the problem is formalized as minimizing the total tardiness, which is determined by the sum of the tardiness of 
each job (Feng & Peng, 2024). The textile industry presents unique challenges in scheduling due to the necessity of frequent 
machine setups between fabric types, a factor that has motivated the development of customized heuristic approaches of 
different classes (Demirtas, 2022). 
 
Evolutionary and population-based heuristics have been widely applied to scheduling problems in textile environments due 
to their ability to explore large solution spaces effectively. Genetic algorithms (GAs) are among the most popular methods in 
this category (Zhou et al., 2017; Celikbilek et al., 2016). Particle swarm optimization (PSO) has also been employed for 
problems in this field of application. A recent study by Tsao et al. (2022) successfully applied PSO to the marker planning 
problem. The study highlighted PSO’s ability to converge quickly to high-quality solutions. 
 
Local search and tabu-based heuristics are known for their ability to intensively explore the neighborhood of solutions, making 
them suitable for fine-tuning schedules. In a study by Dermitas (2022), a local search (LS) algorithm was applied to minimize 
the total tardiness in an unrelated parallel dedicated machine scheduling problem. The results showed LS’s ability to escape 
local optima. Tabu search (TS) is another powerful heuristic in this category (Wang et al., 2023). 
 
Hybrid heuristics enhance solution quality and computational efficiency by combining the strengths of different heuristic 
methods. A hybrid simulated annealing and genetic algorithm (SA-GA) approach was proposed by Tsao et al. (2020) for cut 
ordering planning problems. The hybrid method leveraged the global search capability of GAs and the local search strength 
of SA, resulting in superior performance compared to standalone heuristics. Another hybrid approach combining particle 
swarm optimization and local search (PSO-LS) was investigated by Zhang et al. (2017), applied to production planning 
problems with environmental considerations. 
 
The IPMS problem has been extensively studied in recent years, with a notable increase in interest, particularly in the context 
of minimizing the total tardiness in job scheduling. In this context, several studies have been conducted on parallel machine 
scheduling problems considering different constraints, such as sequence-dependent setup times (Goli & Keshavarz, 2022), 
release dates (Elidrisse et al., 2024; Li & Chen, 2023), batch orders (Beldar et al., 2022; Shahvari et al., 2022), precedence 
relationships (Caselli et al., 2022), heterogeneous machines (Bastos & Rosendo, 2020; Pan et al., 2020; Ekici et al., 2019), 
among others.  
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3. Problem description 
 
The studied company operates in the textile industry, is based in Brazil, and maintains multinational operations. Its 
manufacturing processes focus on towel weaving, carried out across two distinct production lines, which will be referred to 
in this study as lines A and B. Fig. 2 illustrates the distribution of the production lines and their respective outputs. 
 

 
Fig. 2. Company production lines representation 

 
Line A consists of 48 identical looms operating in parallel. Due to the advanced technology employed in these machines, the 
products processed on this line exhibit more refined and complex details, such as delicate embroidery, prints, and special 
finishes. Conversely, Line B operates with a total of 64 identical looms, also arranged in parallel. However, the products from 
this line have a simpler finish, as the machines are from an older generation of weaving technology. 
 
In the IPMS addressed in this study, in addition to traditional constraints, there are also release date constraints and sequence-
dependent setup times. To better understand these aspects, consider an instance with n = 6 jobs, where in addition to processing 
times (𝑝𝑝𝑖𝑖) and due dates (𝑑𝑑𝑖𝑖), there are also release dates (𝑟𝑟𝑖𝑖) and the type of each job (𝑘𝑘𝑖𝑖), as shown in Table 2. 
 
Table 2 
Example of an instance for the IPMS with additional constraints 

i 𝑝𝑝𝑖𝑖 𝑟𝑟𝑖𝑖 𝑘𝑘𝑖𝑖 𝑑𝑑𝑖𝑖 
1 4 3 2 10 
2 3 5 1 10 
3 5 0 1 9 
4 3 5 3 13 
5 1 0 3 5 
6 2 3 2 7 

 
Each of the orders shown in Table 2 is categorized as type 1, 2, or 3, with this distinction determining whether a setup time is 
required between orders. Additionally, each order has its own release date. This implies that, for instance, job i = 2 can only 
begin processing at time 5, even if it is the first in the sequence. Consequently, the process will naturally have an idle period 
that prevents it from starting at t = 0, as illustrated in Fig. 3. 
 

 
Fig. 3. Graphical representation of the release date in a solution 



M.E.P. Santos et al.  / International Journal of Industrial Engineering Computations 16 (2025) 5 

 
Additionally, it is considered that there are sequence-dependent setup times, which are intrinsically related to the machine 
configuration. This occurs due to the need to adjust operational elements of the machine according to the type of product, 
such as changing the thread/fabric for towel production, its quantity per cubic meter, among other adjustments. Thus, when 
job j is sequenced immediately after job i, and they belong to different order types, there is a machine setup time 𝑠𝑠𝑖𝑖𝑗𝑗 . 
Conversely, when there are no machine setup times, 𝑠𝑠𝑖𝑖𝑗𝑗 = 0, indicating that both jobs belong to the same order type, as shown 
in Table 3. 

 
Table 3 
Example of a sequence-dependent setup time matrix 

Type (𝑘𝑘𝑖𝑖) 1 2 3 
1 0 1 1 
2 1 0 1 
3 1 1 0 

 
Fig. 4 illustrates an arbitrary sequencing for the IPMS discussed in this study, based on the instance example presented in 
Table 2, with the respective setup times shown in Table 3. 
 

 
Fig. 4. Arbitrary schedule for the complete instance example 

 
Fig. 4 shows that orders 2, 3, and 6 are allocated to machine 1, while orders 1, 4, and 5 are allocated to machine 2. In the 
adopted sequencing, machine 1 begins processing at time t = 3, due to order 6 being the first in the sequence with a release 
date of 3 units. Additionally, setup times are observed, as some consecutively sequenced orders belong to different types, such 
as orders 1 and 4, resulting in a setup time of 𝑠𝑠14 = 1. In the presented example, it is also noted that machine 1 has two delayed 
orders, orders 2 and 3. Jobs 2 and 3 were completed four and two units after their due dates, respectively. For this solution, 
the total tardiness is 6 units.  
 
3.1. Mathematical Formulation 
 

The proposed mathematical model for this problem was developed using Mixed Integer Linear Programming (MILP) and can 
be represented as 𝑃𝑃𝑚𝑚|𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖𝑗𝑗|∑𝑇𝑇𝑖𝑖 . In this modeling approach, we consider the number of jobs n to be sequenced and the number 
of machines m, with n ≥ m.  The decision variables, parameters used in the model, and the mathematical formulation of the 
problem are described as follows:  

• 𝑝𝑝𝑖𝑖: processing time of job i, (𝑖𝑖 = 1, … ,𝑛𝑛); 
• 𝑑𝑑𝑖𝑖: due date of job i, (𝑖𝑖 = 1, … ,𝑛𝑛); 
• 𝑠𝑠𝑖𝑖𝑗𝑗: setup time between jobs i and j, 𝑖𝑖, 𝑗𝑗 ∈ {0, 1, … ,𝑛𝑛,𝑛𝑛 + 1}; 
• 𝑟𝑟𝑖𝑖: release date of job i, (𝑖𝑖 = 1, … ,𝑛𝑛); 
• 𝑐𝑐𝑖𝑖: completion time of job 𝑖𝑖, (𝑖𝑖 = 1, … ,𝑛𝑛); 
• 𝑚𝑚𝑖𝑖𝑗𝑗: Binary variable. If job i is schedule immediately before j, 𝑚𝑚𝑖𝑖𝑗𝑗 = 1. Otherwise, 𝑚𝑚𝑖𝑖𝑗𝑗 = 0; 
• 𝑇𝑇𝑖𝑖: Tardiness of job i (𝑖𝑖 = 1, … ,𝑛𝑛). 

  
 

min𝑍𝑍 =  �𝑇𝑇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

      (1) 
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Subject to: 

�𝑚𝑚0𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 𝑚𝑚  (2) 

 

�𝑚𝑚𝑖𝑖𝑗𝑗 = 1,
𝑛𝑛+1

𝑗𝑗=1

         ∀𝑖𝑖 = 1, … ,𝑛𝑛  (3) 

�𝑚𝑚𝑖𝑖𝑗𝑗 = 1,        
𝑛𝑛

𝑖𝑖=0

∀𝑗𝑗 = 1, … ,𝑛𝑛 (4) 

𝑐𝑐0 = 0 (5) 

𝑐𝑐𝑗𝑗 ≥ 𝑝𝑝𝑗𝑗 +  �𝑠𝑠𝑖𝑖𝑗𝑗�𝑠𝑠𝑖𝑖𝑗𝑗 +  𝑐𝑐𝑖𝑖�,        
𝑛𝑛

𝑖𝑖=0

 ∀𝑗𝑗 = 1, … ,𝑛𝑛 (6) 

 

𝑐𝑐𝑗𝑗 ≥ 𝑟𝑟𝑗𝑗 +  𝑝𝑝𝑗𝑗 +  �𝑚𝑚𝑖𝑖𝑗𝑗𝑠𝑠𝑖𝑖𝑗𝑗 ,        
𝑛𝑛

𝑖𝑖=0

 ∀𝑗𝑗 = 1, … ,𝑛𝑛 (7) 

 
𝑇𝑇𝑖𝑖 ≥ 𝑐𝑐𝑖𝑖 −  𝑑𝑑𝑖𝑖 , ∀𝑖𝑖 = 1, … ,𝑛𝑛 (8) 

 
𝑇𝑇𝑖𝑖 ≥ 0,        ∀𝑖𝑖 = 1, … ,𝑛𝑛 (9) 

 
𝑚𝑚𝑖𝑖𝑗𝑗  ∈ {0,1},        ∀𝑖𝑖, 𝑗𝑗 ∈ {0, 1, … ,𝑛𝑛,𝑛𝑛 + 1} (10) 

 
𝑚𝑚𝑖𝑖𝑗𝑗 = 0,        𝑖𝑖 = 𝑗𝑗 (11) 

 
𝑐𝑐𝑗𝑗 ≥ 0,        ∀𝑗𝑗 = 0, 1, … ,𝑛𝑛 (12) 

 
Equation (1) defines the objective function, which aims to minimize the total tardiness of the sequenced jobs. Constraints (2) 
ensure that the sequencing occurs within a set of m machines.  The sets of constraints (3) and (4) guarantee that each job is 
selected and sequenced on only one machine. Constraint (5) establishes the completion time of the fictitious job 0, allowing 
for the use of constraints (6) and (7), which establish the relationships between the completion times of jobs.  
 
Constraints (6) and (7) ensure that jobs only begin processing after the completion of the previous job, in conjunction with 
the release date of the job in question and the completion of the required setup, depending on the specifics of the previous and 
current jobs. Constraints (8) and (9) define that the tardiness for each job must be equal to or greater than the difference 
between its completion time and its delivery date, as well as greater than zero. Finally, the sets of constraints (10) and (11) set 
the limits for the values of the decision variables 𝑚𝑚𝑖𝑖𝑗𝑗 , while constraints (12) indicate that the completion time of each job must 
be greater than or equal to zero. 

 
4. Adaptive Local Search Approach 
 
To solve the IPMS, the study proposed the development of a heuristic approach based on local search, named Adaptive Local 
Search (ALS). This approach includes three neighborhood search mechanisms: intra swap, inter swap, and insertion, along 
with a perturbation procedure. Figure 5 illustrates the proposed algorithm. 
 
The process begins with the generation of an initial solution, prioritizing the sequencing of jobs with the nearest delivery dates 
and considering the probability of allocating jobs to machines with shorter processing times. The initial solution is evaluated 
based on the objective function of minimizing total tardiness. Subsequently, the heuristic enters the iterative local search loop, 
applying three neighborhood strategies to find new solutions. Each new solution is evaluated in the same manner as the initial 
one, and if an improvement is identified by the algorithm, it is stored as the best solution. 
 
After the improvement check, the algorithm assesses whether the perturbation criterion has been met. If so, a perturbation 
technique is applied to the solution to avoid stagnation in local optima. Next, the stopping criterion, based on the maximum 
number of iterations, is evaluated. If the perturbation criterion is not satisfied, the algorithm proceeds directly to the evaluation 
of the stopping criterion. Upon meeting this criterion, the code terminates, and the best solution found is reported as the result. 
However, if the stopping criterion is not met, the code returns to the beginning of the iterative local search loop and repeats 
the entire procedure, continuously seeking to improve the solution. 



M.E.P. Santos et al.  / International Journal of Industrial Engineering Computations 16 (2025) 7 

 
The solution is represented by a two-dimensional matrix, where the quantities of machines and jobs vary according to the 
instance, which depends on the month and the production line. In each position (𝑖𝑖, 𝑗𝑗) of the matrix, i represents the machine 
to which the job is allocated, and j indicates the sequential position of the job on that machine for its processing. An illustrative 
example of this representation can be seen in Fig. 6.  
 
 

 
Fig. 5. Steps of the proposed heuristic approach 

 
 

 
Fig. 6. Representation of an Arbitrary Solution 

 
In Fig. 6, the allocation of twelve orders across three machines is observed. For example, on machine 1, the orders to be 
processed are [5, 8, 10, 2], following the same logic for the other machines. The initial solution generation prioritizes orders 
with the closest delivery dates. Additionally, there is a 20% probability of allocating jobs to machines with the shortest 
processing times to diversify the initial solutions. The solution generation process is completed when there are no more orders 
to be allocated. 
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4.1.  Solution evaluation 
 

The objective function f (s) aims to minimize total tardiness. To achieve this goal, not only the initial solution but all 
subsequent solutions throughout the iterations are evaluated. Algorithm 1 provides the procedure used to determine the 
objective function value of the current solution.  
 

Algorithm 1 – Solution evaluation  
1: Procedure Evaluation  
2: in: s, 𝐶𝐶𝑖𝑖, 𝑑𝑑𝑖𝑖 , 𝑟𝑟𝑖𝑖 , 𝑠𝑠(𝑖𝑖−1,   𝑖𝑖), 𝑃𝑃𝑖𝑖 , 𝑇𝑇𝑖𝑖  
3: out: f (s) 
4: for 𝑖𝑖 = 1, ..., 𝑄𝑄𝑚𝑚   
5:    for 𝑗𝑗 = 1, ..., 𝑄𝑄𝑡𝑡  
6:       if 𝐶𝐶𝑖𝑖−1  ≥  𝑟𝑟𝑖𝑖 
7:           𝐶𝐶𝑖𝑖 =  𝐶𝐶𝑖𝑖−1 +  𝑠𝑠(𝑖𝑖−1,   𝑖𝑖) + 𝑃𝑃𝑖𝑖   
8:       else  
9:           𝐶𝐶𝑖𝑖 =  𝑟𝑟𝑖𝑖 + 𝑠𝑠(𝑖𝑖−1,   𝑖𝑖) + 𝑃𝑃𝑖𝑖  

10:       end if  
11:       if 𝐶𝐶𝑖𝑖  ≤  𝑑𝑑𝑖𝑖 
12:            𝑇𝑇𝑖𝑖 = 0 
13:       else   
14:            𝑇𝑇𝑖𝑖 =  𝐶𝐶𝑖𝑖 −    𝑑𝑑𝑖𝑖 
15:       end if  
16:    end for  
17: end for 
18: Return f (s) 
19: end Evaluation 

 
To calculate the total tardiness, the algorithm must be executed repeatedly, encompassing the total number of machines in the 
instance, represented by 𝑄𝑄𝑚𝑚 , as well as the number of jobs per machine 𝑄𝑄𝑡𝑡 . When calculating the completion time, two 
scenarios are considered. The first scenario occurs when the completion time of the previous job is equal to or greater than 
the release date of the current job, as described in line 6. Thus, the subsequent job can commence processing after the setup 
time, if applicable. In this case, the completion time is given by the following equation: 
 
𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖−1 + 𝑠𝑠(𝑖𝑖−1,   𝑖𝑖) + 𝑃𝑃𝑖𝑖 (11) 

 
Eq. (11) calculates the completion time of the job by considering three main components: the completion time of the previous 
job 𝐶𝐶𝑖𝑖−1, the setup time of the machine from the previous job to the current job 𝑠𝑠(𝑖𝑖−1,   𝑖𝑖), and the processing time of the current 
order 𝑃𝑃𝑖𝑖 . If the job is the first to be sequenced, the completion time will be equal to its own processing time. 
 
However, there is a second scenario to consider, where the previous job (𝑗𝑗𝑖𝑖−1) may be completed before the release date of 
the next job (𝑗𝑗𝑖𝑖). In this case, the release date must be included in the calculation, and the equation becomes:  

 
𝐶𝐶𝑖𝑖 =  𝑟𝑟𝑖𝑖 + 𝑠𝑠(𝑖𝑖−1,   𝑖𝑖) + 𝑃𝑃𝑖𝑖 (12) 

 
Once the completion time of each job is calculated, the individual tardiness for each job can be determined. This tardiness is 
given by the difference between the job’s completion time and its due date, as shown in Eq. (13):  
 
𝑇𝑇𝑖𝑖 = 𝐶𝐶𝑖𝑖 −  𝑑𝑑𝑖𝑖  (13) 

As noted in lines 11 and 12 of Algorithm 1, if a job is completed before its due date, there is no delay, thus 𝑇𝑇𝑖𝑖 = 0. Finally, 
the total tardiness f(s) is obtained from Equation (14), which sums all these individual tardiness: 

 

𝑓𝑓 (𝑠𝑠) = �𝑇𝑇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (14) 

4.2.  Local search procedure 
 

Effective neighborhood operators are critical for local search performance in parallel machine scheduling. We adopt three 
fundamental neighborhood strategies to ensure comprehensive exploration of the solution space. 
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Intra-machine swap: This operator selects two distinct job positions within a single machine and exchanges their assignments. 
Fig. 7 illustrates the procedure, where jobs 6 and 1 swap positions while preserving all other job assignments. 

 

 
Fig. 7. Swap intra-machine procedure 

 
Inter-machine swap: The inter-machine swap operator generates neighboring solutions by selecting two distinct machines 
and exchanging one randomly chosen job position from each: given machines 𝑚𝑚1 and 𝑚𝑚2 with selected jobs 𝑗𝑗4 ∈ 𝑚𝑚1 and 
𝑗𝑗12 ∈ 𝑚𝑚2, the operator performs the assignment swap, as demonstrated in Fig. 8. 
 

 
Fig. 8. Swap inter-machines procedure 

 
Insertion: The insertion operator generates new solutions by relocating a single job 𝑗𝑗 from its current position 𝑝𝑝1 in machine 
𝑚𝑚1 to a new position 𝑝𝑝2 in machine 𝑚𝑚2 (where 𝑚𝑚1 ≠ 𝑚𝑚2). Fig. 9 illustrates the relocation of job 3 from machine 1 to a 
position preceding job 9 on machine 2. 
 

 
Fig. 9. Insertion procedure 

 
Algorithm 2 describes the pseudocode for the three implemented local search neighborhoods. The variable s represents the 
best current solution, which will be used to find new neighborhoods, while s’ indicates the solution obtained through local 
search strategies. The parameters 𝐶𝐶𝑖𝑖, 𝑠𝑠𝑖𝑖𝑗𝑗 , 𝑃𝑃𝑖𝑖  represent, respectively, the completion times, setup times, and processing times 
for each job. The term 𝑑𝑑𝑖𝑖  indicates the delivery date, and  𝑟𝑟𝑖𝑖  the release date. All these variables are fundamental for 
evaluating the objective functions f (s’) and f (s), which quantify the total tardiness. 
 
The first strategy employed is the intra-machine swap, which performs a number of positional exchanges denoted by 𝑄𝑄𝑠𝑠𝑖𝑖 . The 
second strategy refers to the inter-machine swap, which also has a specific number of exchanges 𝑄𝑄𝑠𝑠𝑠𝑠 . Finally, the third strategy 
performs  𝑄𝑄𝑖𝑖𝑛𝑛 job insertions, generating a new solution s’. After applying the strategies, s’ is evaluated considering the 
objective function. If f (s’) < f (s), then s’ is adopted as the current best solution. 
 
The perturbation procedure in the proposed LS is triggered when the criterion 𝐶𝐶𝑃𝑃  is met. This criterion analyzes whether the 
total tardiness of the current function f (s) is 20% greater than the total tardiness of the best current solution f (𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑡𝑡), and if 
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the number of recorded improvements 𝑐𝑐𝑚𝑚 is greater than 1% of the maximum number of iterations defined in the local search. 
If these conditions are satisfied, the insertion strategy is applied to the best current solution 𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑡𝑡 , generating a new solution 
s’. 
 

Algorithm 2 – Local Search procedure  
1: Procedure LocalSearch (swap intra, swap inter, insertion) 
2: in: s, 𝐶𝐶𝑖𝑖, 𝑑𝑑𝑖𝑖 , 𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖𝑗𝑗 , 𝑃𝑃𝑖𝑖  
3: out: s’ 
4: for Iter = 1, ..., MaxIter 
5:    for i = 1, ..., 𝑄𝑄𝑠𝑠𝑖𝑖  
6:       if v > Prob 
7:         Select two different jobs 
8:         Perform intra swap between the selected jobs 
9:       end if 

10:    end for       
11:    for i = 1, ..., 𝑄𝑄𝑠𝑠𝑠𝑠  
12:       if v > Prob 
13:          Select two jobs from different machines 
14:          Perform inter swap between the jobs 
15:       end if  
16:    end for 
17:    for i = 1, ..., 𝑄𝑄𝑖𝑖𝑛𝑛 
18:       if v > Prob 
19:         Select two positions (𝑃𝑃1, 𝑃𝑃2) on different machines (𝑀𝑀1, 𝑀𝑀2) 
20:         Insert the job associated with 𝑃𝑃1 of 𝑀𝑀1 into position  𝑃𝑃2 of 𝑀𝑀2 
21:       end if 
22:    end for 
23:    Evaluate the objective function for s’ 
24:        if f (s’) < f (s) 
25:               s ← s’ 
26:        end if 
27:    if perturbation criterion is met 
28:       Perform the perturbation procedure 
29:    end if 
30: end for 
31: Return s’ 
32: end LocalSearch 

 
 
5. Experimental results 
 
5.1. Parameters calibration 
  
To improve the efficiency of the results, heuristic parameters were adjusted, with a particular emphasis on local search 
strategies. Table 4 presents the calibrated parameters along with their corresponding values.  

 
Table 4 
Local search parameters 

Parameters Values 

Probability of initializing local search strategies 
Rnd ( ) > 0.20 
Rnd ( ) > 0.35 
Rnd ( ) > 0.50 

# swap intra 𝑄𝑄𝑚𝑚 

# swap inter 𝑄𝑄𝑚𝑚 12⁄  
𝑄𝑄𝑚𝑚 4⁄  

# insertion 𝑄𝑄𝑚𝑚 12⁄  
𝑄𝑄𝑚𝑚 4⁄  

Criterion for returning to the best solution 
f (s) > 1.20 ∙ f (𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑡𝑡) 
f (s) > 1.35 ∙ f (𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑡𝑡) 
f (s) > 1.50 ∙ f (𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑡𝑡) 

 
As presented in Table 5, the following parameters were calibrated: the execution probability of each strategy, the number of 
intra- and inter-swaps, the insertion quantity, and the improvement threshold for restarting the local search with the current 
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best solution. The parameter values were determined based on relevant literature and the experiments conducted in this study. 
To achieve proper heuristic calibration, multiple parameter combinations were tested, assessing average tardiness, average 
execution time, and the standard deviation of tardiness. Each parameter combination was tested across 10 independent runs, 
with local search termination triggered at 2,000 iterations. 
 
The best performance was achieved with the parameter combination that include a probability of 0.5 for executing the three 
neighborhood strategies, an intra-swap count equal to the number of machines in the instance 𝑄𝑄𝑚𝑚, an inter-swap and insertion 
count set to  𝑄𝑄𝑚𝑚 12⁄ , and a restart condition for returning to the best solution defined as f (s) > 1.20 ∙ f (𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑡𝑡). This parameter 
configuration resulted in an average tardiness of 149.63 days with a standard deviation of 7.874. 
 
5.2. Instance structuring 
 
During the study, eight instances were collected and structured directly with the company, with data gathered through the 
organization's ERP and subsequently processed. During the structuring phase, any doubts regarding data interpretation were 
clarified with the organization's managers to ensure that the structured instances faithfully represented the observed reality 
within the organization. 
 
The collected data pertain to the months of September, October, November, and December 2024, resulting in the creation of 
four distinct instances for each production line. Each instance is determined by its production line, which defines the number 
of machines, and by the month, which determines the number of jobs. The first four instances correspond to production line 
A with 48 looms (machines), while the next four belong to line B with 64 looms, as detailed in Table 5. 
 
Table 5 
Structured instances for the problem 

Instance # Machines # Jobs 
A1 48 240 
A2 48 183 
A3 48 264 
A4 48 297 
B1 64 319 
B2 64 372 
B3 64 344 
B4 64 415 

 
5.3. Computational results 
 
The experiments were conducted on a computer equipped with an Intel Core i5 processor clocked at 2.3 GHz, 8 GB of RAM, 
and running Windows 10. For the computational experiments, 10 runs were performed for each of the eight instances, totaling 
80 executions. Additionally, a maximum limit of 5,000 iterations was established for the developed local search approach. 
The results obtained for the instances are reported in Table 6, including the minimum, average, and standard deviation values. 
 
Table 6 
Summary of achieved experimental results 

Instance Total tardiness Time 
Min. Avg. SD Min. Avg. SD. 

A1 430.2 446.2 11.68 29.77 30.32 0.29 
A2 329.3 352.8 14.92 26.46 26.69 0.13 
A3 310.1 340.5 13.45 33.21 33.74 0.27 
A4 311.8 328.4 9.45 36.12 36.30 0.13 
B1 436.7 454.3 9.57 54.95 59.14 2.38 
B2 477.2 503.3 12.49 55.33 58.64 2.21 
B3 368.3 399.6 17.69 55.22 57.34 1.61 
B4 207.3 222.8 7.49 70.29 71.55 0.55 

 
Despite being the largest instance, B4 achieved the lowest total tardiness (minimum of 207.3 days and an average of 222.8 
days). This scenario is intrinsically linked to the magnitude of the order information related to this instance, particularly 
regarding the processing time data, which are lower compared to other instances. Being the largest instance in the study, it 
also had the highest execution times, with an average of 71.55 seconds and a standard deviation of 0.55. 
 
Analyzing the results for production line A, instance A3 stands out with the smallest total tardiness of 310.1 days. However, 
considering the average total tardiness, instance A4 achieved the lowest average, corresponding to 328.4 days. The highest 
standard deviations concerning total tardiness were found in instances A2 and B3, with 14.92 and 17.69, respectively. The 
smallest deviations were observed in instances B4 and A4, for the month of September, with 7.49 and 9.45, respectively.  
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Regarding computational times, the heuristic obtained the highest times when executed with information from production line 
B instances. This phenomenon occurs due to the larger number of machines and jobs in these instances, which naturally 
demands a longer period for the algorithm execution and solution analysis. Concerning the deviations, they were smaller for 
line A, demonstrating greater consistency, as the data have low variability around the mean. 
 
To compare the developed heuristic with the company's current method, an algorithm was created that exactly simulates the 
decision-making process adopted by the organization during the study. The algorithm sequences jobs based on the closest 
delivery date, order, and allocation to machines with the shortest accumulated processing times. The results of the simulation 
experiments are shown in Table 7 and were validated by the organization as reflecting the reality observed during the periods 
of the collected data. 

 
Table 7 
Results of the simulation of the company’s adopted Method 

Instance ∑𝑇𝑇𝑖𝑖 (days) 
A1 585.7 
A2 468.5 
A3 587.0 
A4 426.8 
B1 522.1 
B2 685.2 
B3 634.2 
B4 315.9 

 
Table 8 presents a comparison between the results obtained by the proposed heuristic approach and the results achieved by 
the organization on the same data instances, highlighting the superior performance achieved by the proposed approach 
compared to the strategy currently adopted by the organization. 
 
Table 8 
Comparison of results obtained by the proposed heuristic and the company's approach 

Instance ALS 
 ∑𝑇𝑇𝑖𝑖 (days) Company Approach ∑𝑇𝑇𝑖𝑖 (days) Percentage Improvement 

(%) 
 Min. Avg. Max. - Min. Avg. Max. 

A1 430.2 446.2 465.4 585.7 26.5 23.8 20.5 
A2 329.3 352.8 371.0 468.5 29.7 24.7 20.8 
A3 310.1 340.5 353.9 587.0 47.2 42.0 39.7 
A4 311.8 328.4 342.2 426.8 26.9 23.0 19.8 
B1 436.7 454.3 464.8 522.1 16.4 13.0 11.0 
B2 477.2 503.3 515.6 685.2 30.4 26.5 24.8 
B3 368.3 399.6 422.9 634.2 41.9 37.0 33.3 
B4 207.3 222.8 232.7 315.9 34.4 29.5 26.3 

Avg. 358.9 381.0 396.0 528.2 31.7 27.4 24.5 
 
The LS heuristic achieved significant reductions, particularly in total tardiness for instances A3 and B3, improving by 47.2% 
and 41.9% respectively compared to the company's method. Across all instances, the average total tardiness improvement is 
27.4%. The best solutions from the heuristic show an average improvement of 31.7%, while even the worst scenarios see a 
24.5% enhancement. Fig. 10 demonstrates the total tardiness achieved using the LS heuristic in the best scenarios, compared 
with the company's method. 
 

 
Fig. 10. Comparison of the best solutions obtained by ALS and the company's approach 
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In all instances, the ALS heuristic demonstrated superior results, consistently finding solutions with lower total tardiness 
compared to the company's method. The difference between the approaches is most pronounced in instances A3, B2, and B3. 
Fig. 11 provides a visual representation of the maximum total tardiness obtained by the ALS heuristic in contrast to the 
company's method.  

 

 
Fig. 11. Comparison of the worst solutions obtained by ALS and the company's approach 

 
Although Fig. 11 presents the performance of solutions with the highest total tardiness obtained by the heuristic, it still 
demonstrates superiority in terms of quality. The discrepancy between the solutions remains significant in instances A3, B2, 
and B3. On the other hand, instance B1 recorded a result close to that obtained by the company's method, with a difference of 
57.3 days. 
 
6. Conclusions 
 
Due to the complexity of solving production scheduling problems, they have become a significant area of interest among 
researchers and, notably, in industries that continuously seek to improve their processes and satisfactorily meet customer 
demands. Consequently, the need for effective and agile resolution methods is increasingly pertinent. Heuristics have been 
widely utilized, as they excel in finding viable and high-quality solutions despite not guaranteeing the best solution in the 
search space.  
 
The objective of this study was to develop a heuristic approach, based on local search techniques, to optimize the job 
scheduling problem on identical parallel machines, applicable to the operational scenario of a textile company. The approach 
focused on minimizing total tardiness, considering the complexity of variables such as release dates and setup times. The 
proposed algorithm ALS incorporated three local search strategies: intra-machine swap, inter-machine swap, and insertion, 
along with a perturbation mechanism to avoid stagnation in local optima and expand the search space. 
 
The proposed heuristic was applied to eight real instances provided by the company under study. The results demonstrated 
that the Local Search (LS) heuristic outperformed the company’s method in all eight instances analyzed, presenting an average 
total tardiness improvement of 27.4%. Considering the best-obtained solutions, the average improvement was 31.7%. 
 
The proposed heuristic proves to be an excellent alternative for optimizing production scheduling for similar problems, 
especially in industrial environments that prioritize timely deliveries and seek more agile scheduling solutions. As encountered 
limitations and possible future research proposals, we consider the implementation of efficient dynamic approaches to allow 
production scheduling for the addressed problem according to the demand receipt times. 
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