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 This study investigates for the first time the non-stationary stochastic lot-sizing problem involving 
multi-dealer joint replenishment under the policy (R, S) without fill rate constraints. The planning 
horizon for each dealer is divided into the replenishment cycle series, accounting for the lead time 
associated with each joint replenishment cycle. A shortest path model is developed. Through 
mathematical analysis, the safety stock variables are eliminated, and the multiple variables are 
reduced to replenishment variables only. The stochastic problem is converted to the deterministic 
dynamic lot-sizing through expectation analysis. Furthermore, the MLS-MRS heuristic is proposed 
based on Robinson's Left-Right shift (LS-RS) heuristic by adding a module, the positive cost-
saving family shifts. This algorithm improves the optimal solution and notably greatly increases 
the search speed. 
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1. Introduction 

Since the pioneering research of Wagner and Whitin (1958), lot-sizing with dynamic demands has become an important issue 
in inventory management practice and theory. The lot-sizing problem (LSP) has gradually evolved from a single-item problem 
to a multi-item problem, resulting in dynamic-deterministic demands joint replenishment problem (DDJRP) initially proposed 
by Goyal (1973), i.e., demands deterministic but varying with time.  Various formulations are developed for DJRP, an NP-
complete problem (Joneja, 1990). First, the traditional formulation calculates the setup, the order size, and the holding costs 
period by period. Given the formulation, it successively raises the joint ordering policies mitigating multi-item impact 
approach (ter Haseborg, 1982), a combined branch-and-bound (BB) and dynamic programming (DP) procedure (Erenguc, 
1988), an exserted BB technique complying with a greedy-add heuristic and a tight lower bound (Federgruen & Tzur, 1994), 
and a counterpart-the greedy drop heuristic (Boctor et al., 2004). Second, Fogarty and Barringer (1987) proposed the dynamic 
program formulation, assuming every item is produced each time. Subsequently, Silver E (1988) rescheduled some items into 
an earlier schedule to save on costs for improving the former. Robinson et al. (2007) proposed the heuristic assembling FB 
(Fogarty & Barringer, 1987) and SK heuristic (Silver E, 1988). Third, the shortest path formulation, proposed by Joneja (1990), 
involves the joint setup cost and generated cost of N independent single items. The latter is modeled by involving the individual 
setup, order, and holding costs in the order cycle, while the holding cost is formulated as the ending stock at the period 
multiplied by the unit cost . Fourth, the formulation by Robinson and Gao (1996) refers to both setup costs and order costs 
plus holding costs, whereas the unit inventory cost is designed to cumulate in the replenishment cycle and is solved by a dual-
ascent based BB procedure. Moreover, the fifth model by Boctor et al. (2004) resembles the second, except that the holding 
cost is formulated by multiplying the unit period demand by the time interval (ordering timing to consumption timing). There 
are also other heuristics of solving DJRP. Iyogun (1991) developed two part–period balancing approaches. Robinson et al. 
(2007) proposed two forward-pass heuristics based on the different decision criteria proposed by Eisenhut (1975) and 
Lambrecht and Vanderveken (1979), respectively, as well as the Left-Right shift heuristic. Boctor et al. (2004) extended 
Silver–Meal heuristic. In addition, it exists the integration of the traditional heuristic into some metaheuristic, such as 
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incorporating perturbation operations for iteration (Boctor et al., 2004) and simulated annealing algorithm with the Left-Right 
shift heuristic by Robinson et al. (2007).  Since the stochastic demand was noticed by Silver (1978), the deterministic problem 
is gradually deepened to the stochastic demands, involving the demands varying with time but stochastic uncertainty. 
Stochastic uncertainty more features the environmental reality. To solve the uncertainty of the stochastic LSP, Bookbinder and 
Tan (1988) defined three policies:“the static-uncertainty (SU)”, “the static-dynamic uncertainty (SDU)”, and “the dynamic-
uncertainty (DU)”. The SU policy fixes the order schedule and size prior to the planning horizon; however, the order size 
balances inventory holding cost and order cost weakly. In contrast, the DU policy fixes the replenishment point and the 
maximum stock level (s,S) in schedule planning. The order cycles are not fixed, and orders occur randomly during the horizon, 
which can potentially lead to the system's nervousness. Accordingly, the SDU policy covers the shortage of the SU and DU 
policies while preserving their advantages. In the SDU policy, the order cycle R and the maximum stock level S are fixed 
before the execution. During the execution of the planning period, the order is carried out according to the previously fixed 
replenishment horizon. If the stock on hand does not meet the maximum stock level, the order is placed to S. 
 
Bookbinder and Tan (1988) proposed a two-phase heuristics to the SDU policy problem under service-level constraints. Firstly, 
the replenishment cycles are determined using a static-uncertainty strategy. Secondly, an equivalent linear model is proposed 
under the fixed replenishment periods, calculating the optimal replenishment quantity of each replenishment cycle. Tarim and 
Kingsman (2004) proposed a MIP model under service-level constraints for a single-item problem, which determines the 
strategy (R,S) in a single step. Order cycles cannot be treated independently, thereby complementing Bookbinder and Tan 's 
special case. Tarim and Kingsman (2006) developed a equivalent MIP model without any constraints. Tarim et al. (2011) then 
provided an better relaxation for the MIP approach and proved that the relaxation approach can mostly obtain optimal solutions. 
Otherwise, the costs incurred by the solution are used as strict lower bounds if the solution is not feasible and the solution is 
modified to be feasible, resulting in an upper bound. Özen et al. (2012) investigated the SD policy under the known 
replenishment cycles and developed two algorithms: approximation and approximation heuristic for the proposed dynamic 
programming model. Tunc et al. (2018) developed an new model that calculates each cost within each replenishment cycle as 
a unit segment and then accumulated the cost of each replenishment cycle segment. In addition, a novel dynamic cut generation 
approach was proposed. Especially where the demand is non-stationary stochastic, the study of this problem is still studied by 
some researchers, Xiang et al. (2018), Visentin et al. (2021),Ma et al. (2022), and Visentin et al. (2023). They studied the 
(R,Q), (R,S), and (S,s) for LSP under the non-stationary stochastic demands based on the definition in Bookbinder and Tan 
(1988). While the DJRP literature referenced above examines the replenishment of multiple products, demands are 
deterministic in advance. Although the aforementioned uncertainty problem pertains to non-stationary and stochastic demand, 
the literatures focus on a single item and the known service level constrain. If the members of the supply system are affiliated 
to one entity, the decision can be optimized without considering service level constraints. Moreover, most of the lot-sizing 
literature assumes, for ease of research, that there is no lead time and that the cost of holding inventory per period is a linear 
function of ending stock. However, in the case of the larger unit period, it is interesting to see whether the lead time or the 
ending inventory method of calculating the inventory holding cost affects the decisions. 
 
There are few studies of multi-item lot sizing with joint replenishment under non-stationary stochastic demands. Due to the 
SDU policy over the DU policy in causing weak system tension, the lot-sizing problem with the three-factor combination of 
multiple items, joint replenishment, and non-stationary stochastic demands under the SDU policy is studied in this paper. It is 
more complicated and NP-hard. We make the following contributions. 
 
(1) The multi-dealer non-stationary stochastic problem with lead time under SDU policy (R,S) is studied for the first time and 
modeled as the shortest path formulation. This problem is essentially stochastic, but is a further investigation of the dynamic 
deterministic LSP of a single item and considers the lead time as well as the weaker system tension strategy (R,S). Therefore, 
the problem is more realistic. The problem is converted to the 0-1 problem by mathematically analyzing and eliminating the 
safety stock factor variable and to a deterministic problem by expectation analysis. 
(2) We propose an improved Robison’s Left-Right-shift heuristic algorithm that not only compares the cost savings of the 
individual shift to the family shift but also designs the positive-family shift—all shifts with positive individual-shift cost-
savings, which greatly accelerates the search. The improved algorithm solves this paper's stochastic problem. It is also based 
on the dynamic deterministic LSP and is still applicable to this problem. It is an even better approach to the heuristic algorithm 
for this problem. 
 
2. Model formulation 

 
2.1 Assumptions and notation 
 
The supply chain structure comprises one supplier and multiple dealers. The supplier is the distributor and must provide 
sufficient products for all dealers. The supplier adheres to the zero-stock policy, which entails the absence of any pre existing 
inventory. Upon the receipt of an order, the manufacturer will either produce the goods in question or the distributor will 
purchase them from a third party. It inevitably entails a certain lead time. The duration of lead times is known in advance. 
Each dealer experiences multiple periods. Demand per period is normally distributed, and the distributional characteristics 
vary with each period. Thereby, dealers face penalties for being out of stock due to stochastic demands. Dealers adopt the 
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interval-review and order-up-to-position policy, (R, S). The problem is the static-dynamic uncertain rule (Tempelmeier, 2007), 
and it is solved by determining the replenishment timing and order size before the horizon. At the replenishment period, 
dealers conduct their inventory review. When the stock is below S, top up. It is noted that due to the varying attributes of the 
demand distribution across each period and multiple dealers, the review cycle R and the up-to-order level are not fixed, but 
rather dynamic. Consequently, each parameter is a vector variable, i.e. R=(R1, R2, ...), S=(S1, S2, ...), where numeric subscripts 
indicate the serial number of the orders.  
 
Dealers who replenish on the identical period engage in joint replenishment (JR), and the supplier produces together. The 
supplier transports the products to each dealer by a one-to-one delivery policy. The lead time for each joint replenishment is 
known. The transportation time is neglected. Each dealer has the initial stock but meets the average demands of the period 1’ 
lead time. The notations are shown below. 

 
Indices 
i: the dealer, i =1, 2, …, N. 
t/l: the period, t=1, 2, …, T. 
Parameters: 
L: the unit period length (days).  
πt: the leading time (days). 
Dit: the day demand in the period t (unit/day). 
uit: the average day demand rate of dealer i in period t (unit/day).  
σit: the standard deviation of dealer i’s day demand fluctuations in period t.  
S: the major ordering costs per one order (dollar/order). 
si: the minor ordering costs of dealer i per one order (dollar/order). 
hi: the unit inventory holding costs of dealer i (dollar/ (unit·day)). 
Ii

0: the initial inventory of dealer i (unit). 
, iti tI π+ : the net stock of dealer i at time itt π+  before the replenishment (unit). 

ci
p: the unit shortage costs of dealer i (dollar/unit). 

Decision variables 
xit: the replenishment variables. If dealer i orders at period t, then 1. Otherwise, 0. 
yitl: the order covering periods variable. If an order covers demands over t,…, l, then 1. Otherwise, 0. 
zi,(t,l): the desired safety stock factor of dealer i for the interval form period t to l. 
Rit: the order-up-to-position of dealer i for replenishment cycle t (unit).  
Qit: the order size of dealer i at for replenishment cycle t. 
 
2.2 Formulation 
 
The overall costs include the setup, the inventory holding, and the shortage costs of all dealers in the horizon. Subsequently, 
the shortest path formulation for the total cost is proposed according to Kao (1979). 
 

( ) ( )
1 1 1

( )
T N T T

t t it it itl itl itl
t i t l t

E TC E S s x y H Pδ
= = = =

 = + + + 
 
∑ ∑∑∑  

 
(1) 

 
In the formula, Hitl and Pitl denote the stock holding and out-of-stock cost of the order cycle, respectively.  
 
3.2.1. The inventory holding costs of the replenishment cycle  
 
This paper employs a more precise approach by taking half of the curve inventory of the order cycle as the average stock, 
which is appropriate. The demand distribution of each dealer varies with the period, so the cycle and the stock level vary, as 
shown in Fig. 1. Hitl equals the cycle interval multiplied by the expected average stock in the interval, and the expected average 
stock is expressed as ( )( )( ), ,max ,0 2

it ili t i l iE I I hπ π+ ++ , , iti tI π+ and , ili lI π+  are the stock at itt π+  and ill π+ time, respectively. 

Hence the term ( )( ),E max ,0
ili lI π+   may be approximated ( ), ili lE I π+  . In consideration of the expected stockholdings and 

potential shortages, the subsequent analysis employs the safety stock factor z to hedge the inherent randomness of demand 
across different periods, and ,( , )it ili t lz π π+ +  is defined as the desired safety stock factor for the time interval from the arrival 

timing itt π+  to the next review time ilt π+ , and simply denoted by itz . Therefore, ( )( )( ), ,max ,0 2
it ili t i lE I Iπ π+ ++ can be 

deserved by Eq. (2). 
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Fig. 1. Inventory changes of dealer i in the planning horizon 

 
Given any decisions, the planning horizon of dealer i can be divided into a series of replenishment cycles, as Eq. (3), where 
yitl equals 1. In this way, the inventory curve for each replenishment cycle is continuous, facilitating to calculate the average 
inventory for the interval. 
 
( )1, , ( ) , , ( 1)l ttL l t L T tπ π π π− + − − + −   )2( 

 
Given the formula (3), the inventory holding costs of each dealer during the planning horizon are composed of the costs in 
period 1’s lead time, the costs in the last interval, and the costs in the intermediate intervals. The intermediate replenishment 
intervals include multiple replenishment cycles, so the inventory holding costs are calculated from the following three sections. 
The length of each order cycle is denoted by A(i,t) except the interval π1. The dealer i's average demands of A(i,t) is denoted 
by B(i,t). Dealer i’s safety stock of A(i,t) is denoted by C(i,t). 
 
(1) In lead time π1 of dealer i's period 1, the initial inventory is Ii

0. The dealer i's average demands of the interval π1 is 
formulated as 1 1iu π . Therefore, the expected initial inventory holding costs 0

iH of the interval for dealer i is formulated as 

( )0
1 1 12i i ih I u π π− . 

(2) While t satisfies 1itTy = , t is the last order period. A(i,t) equals ( )1 tL T t π− + − . The dealer i's average demands in the 

cycle, B(i,t), is formulated as
T

tij it
j t

L u u π
=

−∑  . Dealer i’s standard deviation ,( , )i li t lπ πδ + +   in the cycle, denoted by C(i,t), is 

formulated as 22
T

tij it
j t

L σσ π−
=
∑ . Therefore, the expected inventory holding costs in the cycle A(i,t) for dealer i are formulated 
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as ( )( , ) 2 ( , ) ( , )i ith B i t z C i t A i t+ . 
(3) While t is not the last replenishment period, and the order cycle A(i,t) equals ( ) tlL l t π π− + − . The average demands in 

each cycle, B(i,t), are formulated as ( )
1

ij t it

l

j t l ilLu u uπ π
−

=
+ −∑  . The standard deviation C(i,t) is formulated as 

2 2
1

2
l

tij it l il
j t

L σ σσ π π
−

− +
=
∑  . Therefore, each replenishment cycle's expected inventory holding costs for dealer i in the 

intermediate cycle is formulated as ( )( , ) 2 ( , ) ( , )j ith B i t z C i t A i t+ . 
 
3.2.2. The shortage costs of the replenishment cycle  
 
The shortage costs incurred by dealer i are also analyzed using the segmented intervals Eq. (3). 
 
(1) In the lead time π1, of dealer i's period 1, the shortage costs 0

iP are derived as Eq. (4). 
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where initial safety stock factor ( ) ( )0
0 1 1 1 1i i i iz I u π σ π= − . The determination of 0iz , which is not a decision variable, relies 

on π1 with given the known 0
iI . In Eq. (4), ( )f   and ( )F   denote the standard normal probability density function (PDF) 

and cumulative distribution function (CDF), respectively. 
 
(2) In the last replenishment cycle ( , )A i t of dealer i, the shortage costs are derived as Eq. (5). 
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where C(i,t) equals 22
T
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j t

L σσ π−
=
∑ , and Rit  is the desired order-up-level at the timing tt π+  and equals , ti t itI Qπ+ + . 

(3) In the middle cycle ( , )A i t , the shortage costs of dealer i are derived as Eq. (6). 
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where C(i,t) equals 2 2
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3.2.3. The modified formulation 
 
By modifying all costs formulation Eq.(1), the overall costs of all dealers during the planning horizon is formulated as 
Eq.(7). 
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2.3 The optimal property analysis of the safe-stock factor z 
 

Due to no service level constraint, the safe stock factor can be mathematically analyzed to minimize the objective function 
TC. The partial derivative of the variable zit of the objective function is obtained 

( )( )( , ) ( , ) ( , ) 1p
it i i itTC z h A i t C i t C C i t F z∂ ∂ = − −  , and the solution procedure is shown in Appendix A. To 0itTC z∂ ∂ =  , 
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as Eq. (8). The solution procedure is shown in Appendix B.  
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3. Problem solving methodology 
 
By modeling the problem, the optimal inventory factor zit

* is mathematically converted into the variable depending on yitl. The 
original problem variables are reduced to the decision variable xit. The converted problem is similar to the dynamic 
deterministic lot-sizing with joint replenishment, except that the safety stock factor varies and the term itl itlH P+  with the 
replenishment cycle. Therefore, two typically effective heuristic algorithms in previous literature and three meta-heuristic 
algorithms for this problem are exerted. In addition, a novel modified heuristic is proposed. 
 

3.1 Existing effective heuristic methods 
 

Boctor et al. (2004) evaluated the outperformed performance of the FB-SK heuristic by Fogarty and Barringer (1987) and 
Silver E (1988). Robinson et al. (2007) proposed the Left-Right shift order heuristic with multiple items. These two methods 
are excellent, and it is necessary to adapt and apply them.  
 

(1) FB-SK heuristic 
 

First, the formulation of the model is modified to the dynamic programming model as { }1min ,t l lt
l t

f f c−
≤

= +  where, 

1 1 1
1

N

i
i

f S s
=

= +∑ and ( )
1

N

lt l t il il itl itl
i

c S s x H Pδ
=

= + + +∑ . ft formulates the optimal costs for the interval of t periods. Using the DP 

model, calculate f1. Then, calculate ft for t=2, ..., T. Next, whether adding the order size of this item in a replenishment period 
to the previous order could save money is considered. 
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(2) Left-Right shift heuristic 
 
Based on the research problem of this paper, the saving coefficient of Robinson’ Left-Right shift heuristic is adapted. While 
the dealer I’ order at period t is left shifted into period t', it occurs that previous replenishment cycles [t-, t] and [t, t+] become 
replenishment cycles [t-, t'] and [t', t+], respectively, where t- denotes the last order period before t and t+ denotes the first order 
period after t. This results in a change in the stock holding and the shortage cost for two replenishment cycles. The adapted 
saving coefficient Ci(t, t') for Left-shifting item i’s order from period t into t’ is Eq. (9), where t-≤t'≤t+. The adapted savings 
coefficient, C(t, t'), for rescheduling the family from t into t' is Eq.(10), where ' 1

t
δ = if it replenishes at period t' before shifting.  

 
( ) ( ) ( ) ( )' ' ' ' ' '

', 1i itit it it t it t itt itt it t it t it t it t
C t t x s s H P H P H P H P− − + + − − + += − + + + + + − + + +  )8( 

( ) ( ) ( )' '
' '

1
, 1 ,

N

t it t
i

C t t S S C t tδ
=

= − + −∑  )9( 

While partial order size for dealer i at period t is right shifted into period t', it occurs that it replenishes between period t and 
t+. The previous order cycle [t, t+] becomes two order cycles [t, t'] and [t', t+]. This results in a change in the stock holding and 
the shortage cost for the time interval [t, t+]. The adapted savings coefficient Ci(t, t') for Right-shifting item i’s partial order 
size from period t into t' is Eq.(11), where t≤t'≤t+ The adapted savings coefficient, C(t', t), for rescheduling the family from t 
into t' is Eq. (12), where ' 1

t
δ = if an order is placed at period t' before shifting.  

( ) ( ) ( ) ( )' ' ' ' ' '
', 1i itit it itt itt itt itt it t it t

C t t x s s H P H P H P+ + + += − + + + − + + +  )10( 

( ) ( ) ( )' '
' '

1
, 1 ,

N

t it t
i

C t t S S C t tδ
=

= − + −∑  
)11( 

3.2 Improved Left-Right shift heuristic 
 
This paper improves the proposed Left-Right shift heuristic algorithm by Robinson, only considering individual cost savings 
and the family cost savings of shifting. We include additional cost savings with each positive cost savings for family shifting, 
which is, at each time t, all dealers whose Ci(t, t') is positive are shifted, denoted by C+(t, t'). Notably, multiple positive 
individual cost-saving shifts, which would have required multiple shifts, are simultaneously moved at once in the improved 
module. Thus, the improvement module accelerates the rate of decline of the objective function. The improved Left-Shift 
heuristic procedure is as follows. The pseudo-code is shown in Algorithm 1.  
  
Algorithm 1 The improved Left-shift algorithm 

1: Input: horizon T; dealers I; demands u and standard deviation o; family setup cost s; individual setup cost s0; unit holding cost h; unit shortage 
penalty p; xinitial; 

2: Output: xbest and ybest; 
3: calculate matrix1, matrix2, and matrix3; 
4: while matrix2(t, t’)>0 or matrix3(t, t’)>0, ∃t, ∃t’; 
5: % compute individual-shift cost-saving, update matrix1 (6th to 12th row); 
6: for i=1:I 
7:    for t=first order period : last order period 
8:       for t'=t-:t 
9:           compute Ci(t, t'); matrix1(i, t’)= Ci(t, t'); 
10:       end 
11:    end 
12: end 
13: % compute positive family and family shift cost savings, update matrix2 and matrix3 (14th to 23th row); 
14: for t=1:T 
15:       for t'=1:t 
16:           for i=1:I 
17:              if t-≤t', dealer i orders at t, and matrix1(i, t')>0 
18:                ɑ(i,t')=1;else ɑ(i,t')=0; 
19:              end 
20:              if t-≤t' and dealer i orders at t 
21:                β(i, t')=1;else β(i, t')=0; 
22:              end 
23:           end 
24:           ( ) ( ) ( ) ( ) ( )' ' ' 'Compute , * 1 , ; 2 , , * 1 ,

i I i I
i t matrix i t matrix t t i t matrix i tα α

∈ ∈

=∑ ∑ ;; 

25:          ( ) ( ) ( ) ( ) ( )' ' ' ' 'Compute , * 1 , ; 3 , , * 1 ,
i I i I

i t matrix i t matrix t t i t matrix i tβ β
∈ ∈

=∑ ∑  

26:       end 
27: end 
28: select the max{matrix2(t, t'), matrix3(t, t')},all t, t'; 
29: Left-shifting t to t' of dealers involving the maximum and generate xnew;  
30: compute ynew and if ynew <y and update xbest and ybest; 
31: end 
32: output xbest and ybest;  
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Step 1, generate an individual-shift cost-saving matrix, named matrix1, I×T dimension. For the initial solution, while it 
replenishes at t period and t-< t'<t, calculate saving Ci(t',t) for i, t', t and assign to matrix1(i, t'). Otherwise, Ci(t',t) is assigned 
negative infinity. Step 2, generate a positive family-shift cost-saving matrix, matrix2, T×T dimension. For matrix2(t, t'), select 
matrix1(i, t') of all i while it replenishes at t period, t-< t'<t, and matrix1(i, t'))>0. Furthermore, these selected matrix1(i, t') 
are accumulated and assigned to matrix2(t, t'). Step 3, generate family-shift cost-savings matrix, matrix3, T×T dimension. For 
matrix3(t, t'), select matrix1(i, t') of all i while an order is placed at t period, and t-< t'<t. Furthermore, the selected matrix1(i, 
t') are accumulated and assigned to matrix3(t, t'). If matrix2(t, t')<0 and matrix3(t, t')<0, all t and t', stop. Step 4, Left-shifting. 
Select the maximum saving in matrix1, matrix2, and matrix3, Left-shifting the orders in t period into the period t', and update 
the solution. Return to Step 1. 
 
The improved Right-shift heuristic is proposed. The pseudo-code is shown in Algorithm 2. Step 1, generate individual-shift 
cost-saving matrix, matrix1, I×T dimension. For the current solution, while an order of dealer i is placed at t period and t< 
t'<t+, calculate Ci(t',t) for i, t, and t', and assign to matrix1(i, t'). Otherwise, Ci(t',t) is assigned negative infinity. Step 2, generate 
positive family-shift cost-savings matrix, matrix2, T×T dimension. For matrix2(t,t'), select matrix1(i,t') of all i while it 
replenishes at t period, t<t'<t+, and matrix1(i,t')>0. Furthermore, the selected matrix1(i, t') are accumulated and assigned to 
matrix2(t,t'). Step 3, generate family-shift cost-savings matrix, matrix3, T×T dimension. For matrix3(i, t'), select matrix1(i,t') 
of all i while it replenishes at t period and t<t'<t+. Furthermore, the selected matrix1(i, t') are accumulated and assigned to 
matrix3(t,t'). If matrix2(t, t')<0 and matrix3(t, t')<0, all t and t', stop. Step 4, Right-shifting. Select the maximum saving in 
matrix1, matrix2, and matrix 3, place an order in the period t', and update the solution. Return to Step 1. 
 

Algorithm 2 The improved Right-shift algorithm 
1: Input: T; I; u; o; s; s0; h; p; 
2: Output: xbest and ybest; 
3: Calculate matrix1, matrix2, and matrix3; 
4: while matrix2(t, t')>0 or matrix3(t, t')>0, ∃t, ∃ t'; 
5: % compute individual shift cost savings, update matrix1 (6th to 12th row); 
6: For i=1:I 
7:    for t=first order period : last order period 
8:       for t’=t:t+ 
9:           compute Ci(t t'); matrix1(i, t')=Ci(t,t'); 
10:       end 
11:    end 
12: end 
13: % compute positive family and family shift cost savings, update matrix2 and matrix3 (14th to 23th row); 
14: for t=1:T 
15:       for t'=t:T 
16:           for i=1:I 
17:              if t+≥t', dealer i orders at t, and matrix1(i,t')>0 
18:                ɑ(i, t')=1;else ɑ(i, t')=0; 
19:              end 
20:              if t+≥t' and dealer i orders at t 
21:                β(i,t')=1;else β(i,t')=0; 
22:              end 
23:           end 
24:           ( ) ( ) ( ) ( ) ( )' ' ' ' 'Compute , * 1 , ; 2 , , * 1 ,

i I i I
i t matrix i t matrix t t i t matrix i tα α

∈ ∈

=∑ ∑  

25:           ( ) ( ) ( ) ( ) ( )' ' ' ' 'Compute , * 1 , ; 3 , , * 1 ,
i I i I

i t matrix i t matrix t t i t matrix i tβ β
∈ ∈

=∑ ∑  

26:       end 
27: end 
33: select the max{matrix2(t, t'), matrix3(t, t')},all t, t'; 
28: right shift t to t' of dealers involving the maximum and generate xnew;  
29: compute ynew and if ynew <y and update xbest and ybest; 
30: end 
31: output xnew and ynew;  
Note: t+ denotes the first ordered period after t. 

 
4. Computational experiments and results discussion 
 
In this section, five parameters, planning period set T∈{6,12,24}, number of dealers I∈{20,50,100,300}, unit period length 
L∈{7,15,30}, the minor setup cost, unit out-of-stock cost, are variously combined. Each dealer's order setup cost is randomly 
generated from 50 to 100 and multiplied by a variation factor set, {1,3,5}. The unit out-of-stock cost for each dealer is 
randomly generated from 500 to 1000 and multiplied by a variation factor set,{1,2,3}. Each dealer's unit stock-out cost is the 
unit inventory cost multiplied by a multiplier factor set, {30,60,90}. The other problem parameters are fixed. The unit demand 
u of each dealer is randomly drawn from 30 to 100, and the standard deviation of the distribution is its demand multiplied by 
a random factor between 0 and 1. The lead time of each period for each dealer is set to a random length within the cycle length. 
Thus, 324 data instances are generated based on the combination of the problem parameters. All instance experiments are 
conducted on a PC configured with an i7-10510U CPU, RAW 2.3Ghz, 16GB, and OS Windows 10. The data instances are 
tested by FB-SK, Left-shift heuristic, Right-shift heuristic, Left-Right shift heuristic, adaptive genetic algorithms (AGA), 
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particle swarm algorithm (PSO), simulated annealing algorithm (SA), and improved Left-Right shift heuristic. The number 
of individuals in the population in AGA and PSO and the max iteration generations are set to 100 and 400, respectively. In 
PSO, the self-learning factor is 3, the inertia factor is 0.3, and the swarm-learning factor is 4. The dealer's replenishment 
decision for each period is represented as a gene position with 0 or 1, and the two-dimensional decisions table for all dealers 
during the planning horizon is the solution. In AGA, The selection operation adopts a roulette wheel strategy, the crossover 
strategy and mutation strategy adopt the single-point crossover the single-point mutation strategy, respectively.  
 
Table 1 shows the performance indexes of 10 algorithms for 343 data instances. The FB-SK, LS, MLS2, LS-RS, and MLS-
MRS heuristic algorithm exhibited superior performance in achieving the optimal objective value compared to the meta-
heuristic algorithm, while exhibiting a significantly lower run time. The proposed MLS-MRS ranked first in avg. opt., avg. 
gap, max. gap and std. dev. of gap, followed by LS-RS, and the heuristic is much less than the metaheuristic run time. Notably, 
the MLS-MRS time is 94.89% lower than the LS-RS. This confirms the time efficiency of the positive cost-saving family 
shifts module. 
 
At avg.opt, MLS saves 3394 (ratio 0.13%) over LS. Although the percentage of optimized space is small, the runtime 
efficiency is improved by 90.36%. The runtime efficiency of the improved MLS is fully demonstrated. MLS-MRS is a 
sequential combination heuristic algorithm of MLS and MRS, which must run longer than MLS alone in terms of runtime, 
but with less optimal value savings. This indicates that MLS has optimized to a greater extent and the MRS optimization is 
less useful. 

 
Table 1  
Experimental results for algorithms 

  avg. opt. avg. opt. gap max. opt. gap std. dev. of opt. gap avg. runtime  

heuristic 

FB-SK 2460939.02  0.63% 4.09% 0.0098  0.42  
LS 2457432.31  0.30% 3.01% 0.0057  104.46  

MLS 2454038.31  0.04% 1.16% 0.0014  10.07  
RS 2471967.46  0.75% 5.21% 0.0086  4.72  

MRS 2468812.28  0.69% 4.11% 0.0027  6.86  
LS_RS 2456744.25  0.25% 2.99% 0.0050  107.05  

Metal 
heuristic 

AGA 3815372.62  21.26% 93.64% 0.2401  273.14  
PSO 2482221.80  2.29% 20.47% 0.0386  709.80  
SA 2606577.78  1.54% 13.67% 0.0331  192.01  

heuristic MLS-MRS 2453999.57  0.03% 1.05% 0.0013  12.16  
 
Table 2 shows the times both algorithms are simultaneously optimal in 324 instances, i.e., each cell is the times the 
corresponding algorithms in the row and column are simultaneously optimal. The cells on the diagonal are the times the 
algorithm is optimal. The last row of the table shows the times when each algorithm is uniquely optimal.The times of the 
optimal solution by the FB-SK, LS, MLS, LS-RS, AGA, PSO, and SA are 75, 188, 173, 203, 10, 31, 82, and 220, respectively. 
  
Table 2  
The number of inter-algorithm simultaneous optimality 

 FB_SK LS MLS RS MRS LS_RS AGA PSO SA MLS-MRS 
FB-SK 75          

LS 75 188         
MLS 72 113 173        
RS 0 0 0 0       

MRS 0 0 0 0 0      
LS-RS 75 188 113 0 0 203     
AGA 9 9 9 0 0 9 10    
PSO 31 31 31 0 0 31 8 31   
SA 52 67 65 0 0 67 9 27 82  

MLS-MRS 72 113 173 0 0 113 9 31 65 220 
 0 0 0 0 0 15 1 0 13 47 

The last row shows the number of times when each algorithm is uniquely optimal. 

 
The LS-RS is simultaneously optimal with the FB-SK 75 times and with the LS 188 times, reaching the times by the FB-SK 
and LS, respectively, whereas the times by the LS-RS are greater than 75 and 188. Therefore, the LS-RS is completely superior 
to the FB-Sk and LS. The MLS-MRS is simultaneously optimal with the MLS 173 times and with the PSO 31 times, reaching 
the times by MLS and PSO, whereas the times by the MLS-MRS are greater than 173 and 31. Therefore, MLS-MRS is 
completely superior to the MLS and PSO. The RS-LS and MLS-MRS have higher optimality times than the others, a total of 
310 times (calculated as 220 plus 203 minus 113), accounting for 96.91%. The AGA and SA outperform all other algorithms 
by 1 and 13 times, respectively. The SA obtains the highest 82 times among the metaheuristic algorithms. However, 67 of 82 
are simultaneously optimal with the LS and 65 with the MLS-MRS. This indicates that the SA outperforms other algorithms 
very rarely, remaining 13 times. Therefore, despite its 82 times in the metaheuristic algorithms, the SA does not perform well 
compared to the heuristic algorithms. 
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Two hundred twenty times by the MLS-MRS is the highest, while it is simultaneously optimal 72 times with the FB-SK, 113 
times with the LS, 173 times with the MLS, 113 times with the LS-RS, 9 times with the AGA, 31 times with the PSO and 65 
times with the SA. The difference in times between the MLS-MRS and the MLS is 47, calculated as 220 minus 173, which 
means that only the MLS step of the MLS-MRS obtains 173 times, and the MRS step obtains 47 times additionally. Once 
again, it proves that MLS has high optimization efficiency. 
 
Given the above analysis, the LS-RS and MLS-MRS outperform the other algorithms. Of the 324 data instances, the LS-RS 
outperformed MLS-MRS 90 times with avg.opt. 3193539 and 3194001, respectively, and the opt. gap is 462 (0.014%). The 
optimality gap is very small. This indicates that the two algorithms are close to each other in these 90 times (calculated as 203 
minus 113). On the contrary, the MLS-MRS outperformed LS-RS 107 times (calculated as 220 minus 113) , with avg.opt. 
1396780 and 1405374, respectively, and the opt. gap is 8594 (0.61%). The latter optimality gap is larger. This indicates that 
the MLS-MRS outperforms the LS-RS in 107 times. 
 
In summary, the MLS-MRS is superior to the LS-RS in terms of optimization performance and outperforms the other 
algorithms. In particular, the MLS-MRS significantly reduces the optimization time.  

5. Conclusion and future research 

This study analyzes the non-stationary stochastic lot-sizing with multi-dealer joint replenishments within an identical period. 
Additionally, there is no fill rate constraint for the problem, and a SDU policy is adopted. For the first time, we solve the 
problem of non-stationary stochastic LSP under the policy (R,S) and the multi-dealer joint replenishment. We propose the 
interval series for the planning horizon, considering the lead time of each period, which facilitates the formulation of the 
inventory and shortage costs. Thereby, the shortest path model is developed. By mathematically analyzing the inventory safety 
factors, its optimal value is expressed in terms of the replenishment decision. Thus, the model is transformed into a 
deterministic dynamic LSP. To solve the problem, the paper improves the very efficient and well-known Left-Right shift 
heuristic algorithm proposed by Robinson, which only considers individual cost savings and the family cost savings of shifting. 
We introduce an additional module, family shifting of positive cost savings, into Left-shifting and Right-shifting procedures, 
i.e., the individual positive cost-saving shifts are all operated at each iteration. The novel heuristic greatly accelerates the rate 
of decline in optimal value and improves the efficiency of the iterative search. This algorithm is compared with Robinson’s 
LS-RS, AGA, PSO, SA, and the LS, RS, MLS, and MRS modules for 324 data instances. 
 
The MLS-MRS and LS-RS significantly outperform the metaheuristic algorithm. In terms of the optimality gap, the MLS-
MRS is 88% lower than the LS-RS. In terms of the maximum optimality gap, the MLS-MRS is 64.88% lower than the LS-
RS. In terms of standard deviation, the MLS-MRS is 74% lower than the LS-RS. In terms of runtime, the MLS-MRS is 90.34% 
lower than the LS-RS. In terms of the optimal times, the MRS-MLS and LS-RS together account for 96.91%, which 
outperforms the other meta-heuristic algorithms. In the comparison of the optimal times between MRS-MLS and LS-RS, there 
are 113 simultaneous optimal times, and the remaining number of separate optimal times is 107 vs. 90. Although the difference 
in the times is not large, the average optimality gap ratio of the MLS-MRS is much larger than the LS-RS, 0.61%:0.014%. 
Overall, the MLS-LRS obtains the better optimum than LS-RS and other algorithms. More importantly, the time efficiency of 
the improved algorithm is greatly improved.  
 
The study is a stochastic joint replenishment lot-sizing problem. The proposed model and algorithm can be directly used when 
the planning period is multi-period with non-stationary stochastic demand and joint replenishment of multiple items or dealers 
in management practice. Instead, it is not necessary to convert the stochastic demand to an expected value and then apply the 
deterministic lot-sizing mode. The static-dynamic uncertainty replenishment policy used in this paper is also recognized as a 
weak system tension, which facilitates the implementation of replenishment. In addition, the MLS-MRS algorithm is also 
applicable to the deterministic dynamic LSP. The MLS-MRS algorithm can be embedded into current supply chain 
replenishment intelligent decision-making systems as a deep algorithmic foundation. 
 
With the study of this problem, it is possible to study further the integration and coordination between stochastic multi-project 
lot-sizing, location, or paths under the SDU policy, thus expanding the scope of the multi-problem non-stationary stochastic 
LSP. 
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Appendix A. The process of resolving itTC z∂ ∂ . 

If the order is placed for dealer i at the period t, e.g., 0itz >   

( ) ( )0 0

1 I 1 1 1
( )

T N N T T

it t t it it i i it it itl itl itl it
t i i i t l t

TC z S s x H P s x y H P zδ
= ∈ = = = =

  ∂ ∂ = ∂ + + + + + + ∂  
  

∑ ∑ ∑ ∑∑∑  

( ) ( ) ( )( )( )( )( , ) 2 ( , ) ( , ) + ( , ) 1p
i i it it it itith B i t z C i t A i t c C i t f z z F z z= ∂ + − − ∂  

( ) ( )( )( )( , ) ( , ) ( , ) 1p
i i it it it ith A i t C i t c C i t f z z F z z= + ∂ − − ∂  

( )( )( , ) ( , ) ( , ) 1p
i i ith A i t C i t c C i t F z= − −  

where ( ) ( )it it it itf z z z f z∂ ∂ = − , therefore, ( ) ( )( )( ) ( )1 1it it it it itf z z F z z F z∂ − − ∂ = − . 

Appendix B. The function itl itlH P+   under the optimal *
itz . 

Take *
iz λ  into itl itlH P+ . 

itl itlH P+  

( ) ( ) ( )( )( )* * * *( , ) 2 ( , ) ( , ) ( , ) 1p
i it i it it ith B i t z C i t A i t c C i t f z z F z= + + − −  

= ( ) ( ) ( )( )* * *( , ) 2 ( , ) ( , ) ( , ) ,p p
i it i it it ih B i t z C i t A i t c C i t f z z A i t h c+ + −  

( )*
12 ( ,1) ( ,1) ( ,1)p

i i ih B i A i C C i f z= +  
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