

* Corresponding author
E-mail helio@dep.ufscar.br (H Y Fuchigami)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2025 Growing Science Ltd.
doi: 10.5267/j.ijiec.2025.3.004

International Journal of Industrial Engineering Computations 16 (2025) ***–***

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Performance investigation of metaheuristics for the just-in-time single-machine under different
time windows and setup restrictions

Miguel Gonçalves de Freitasa, Alex Paranahyba Abreub, Fábio José Ceron Brancoc, Helio Yochihiro
Fuchigamib* and Rian Tavares de Mellob

aFederal University of Goiás, Aparecida de Goiania, GO, Brazil
bFederal University of São Carlos, São Carlos, SP, Brazil
cFederal University of Technology - Paraná, Ponta Grossa, PR, Brazil
C H R O N I C L E A B S T R A C T

Article history:
Received November 23 2024
Received in Revised Format
January 6 2025
Accepted March 14 2025
Available online March 14
2025

 In this paper, we assess the performance of five metaheuristics for the single-machine under
different time windows and sequence-dependent setup times, optimizing the total weighted
earliness and tardiness: Iterated Greedy Algorithm (IGA), Artificial Bee Colony (ABC), Bat
Algorithm (BA), Particle Swarm Optimization (PSO), and Fireworks Algorithm (FWA). Many
real-world situations require delivery in a specific time interval, analogous to optimization
problems with a time window in the Just-in-Time philosophy. Also, several practical situations
require different time intervals to prepare the environment to process the activities depending on
what was immediately done and what will be executed next, characterizing the sequence-dependent
setup problem. These cases are common among operations handling materials of diverse colors,
different temperatures, or high demands on sterilization requirements. Statistical results highlight
the superiority of the FWA, with the best results in all the problem dimensions analyzed, especially
in the larger-size instances, with only 1.23% average relative deviation against 61.18% of the
known Iterated Greedy algorithm.

© 2025 by the authors; licensee Growing Science, Canada

Keywords:
Scheduling
Fireworks algorithm
Earliness-tardiness
Time windows
Sequence-dependent setup
Metaheuristics

1. Introduction

Scheduling problems with due windows are part of the Just-in-Time (JIT) business philosophy. The Just-In-Time (JIT)
approach focuses on ensuring that necessary materials are available precisely when needed, while keeping inventory levels to
a minimum. This system eliminates inefficient components such as overproduction, waiting times, unnecessary processing,
defective products, queues, unnecessary movement, and idle time (Janiak et al., 2015). In practice, JIT measures are vital for
businesses, as both early and late production can lead to increased costs – early production raises inventory levels, while late
production can result in penalties, order cancellations, or customer loss. Shabtay & Steiner (2012) highlight JIT applications
in fields such as the chemical and high-tech industries, aerospace scheduling, and the production of perishable items with
deterministic demand, as well as environments without storage capacity. Extensive literature reviews and different JIT
scheduling problems are discussed by Alidaee et al. (2021), Fuchigami & Rangel (2018), Fuchigami et al. (2018), Ríos-Solís
& Ríos-Mercado (2012), Józefowska (2007), and Baker & Scudder (1990). In both manufacturing and services, jobs are often
expected to be completed within a time interval known as a "due window," rather than at a specific due date. The due window
generalizes the classic due date concept by defining a time range during which the task must be completed. If a task finishes
outside this window – either early or late – penalties for earliness or tardiness are incurred. An example can be seen in an IT
company providing video-on-demand services, where a user's device initiates communication with a server to request the
transmission of data in real time. In such cases, the time window ensures that transmission delays remain imperceptible (Janiak
et al., 2015). This time window concept is particularly important in technology and communications industries, where there
is often a small buffer for delays in transmissions.

mailto:helio@dep.ufscar.br

2

Although research on due windows emerged decades ago, studies addressing setup times have only recently been explored.
Ribeiro et al. (2010) were among the first to examine a single machine problem with job-dependent due windows and
sequence-dependent setup times, proving that the problem 1|<ej,dj>,sij|ETw is strongly NP-hard. Even without setup times,
scheduling problems involving distinct due windows were already shown to be NP-hard by Koulamas (1996). Khadivi et al.
(2025) published a comprehensive literature review considering deep reinforcement learning, emphasizing the challenges in
the scheduling problems area. Sequence-dependent setup times refer to the preparation required between two specific tasks,
with durations that vary depending on the sequence of jobs. These setups are common in manufacturing and service industries
(Fuchigami et al., 2015; Freitas et al., 2022). In manufacturing, sequence-dependent setups may involve tasks such as cleaning
or sterilizing between operations that handle materials of different colors, temperatures, or purity requirements. In service
industries, analogous setups may involve transportation distances, training, or loading and unloading tasks. Comprehensive
reviews on setup times and costs were presented by Allahverdi (2015), Allahverdi & Soroush (2008), and Allahverdi et al.
(1999). Considering the different types of due windows, Janiak et al. (2015) provided a detailed investigation of common due
windows, job-dependent due windows (also known as distinct due windows), and problems where the due window size is
fixed, but its starting time needs to be assigned. In addition to the adaptive genetic algorithm proposed by Ribeiro et al. (2010),
other research has also tackled single-machine scheduling with different due windows and sequence-dependent setups. For
instance, Zhao & Tang (2010) investigated setup times dependent on past sequences, with deteriorating jobs, aiming to
minimize objectives such as makespan, total flow time, and earliness/tardiness.
Penna et al. (2012) introduced a heuristic based on the Greedy Randomized Adaptive Search Procedure (GRASP), Variable
Neighborhood Descent (VND), Tabu Search, and Path Relinking to minimize earliness and tardiness penalties. Jula & Kones
(2013) examined scheduling problems with time window constraints, optimizing job scores and makespan. Ahmadizar &
Farhadi (2015) developed a mixed-integer linear programming (MILP) model and an imperialist competitive algorithm to
minimize earliness, tardiness, holding, and delivery costs, considering job release dates and batch deliveries. Ye et al. (2024)
proposed a Variable Neighborhood Search (VNS) algorithm for the traveling salesman problem with time windows with three
objectives: minimization of cost, completion time, and tour duration. Distinct due windows for single-machine scheduling
with sequence-dependent setup times were explored by Rosa et al. (2017), aiming to optimize weighted earliness and tardiness.
They proposed an implicit enumeration method and a VNS algorithm. Later, Rosa et al. (2018) compared four versions of the
VNS for this same problem. Despite its high relevance, the scheduling problem of optimizing earliness-tardiness with different
time windows and sequence-dependent setup times has attracted little attention in the literature. To our knowledge, no studies
have applied the Fireworks Algorithm (FWA) to this problem. Given the success of FWA in solving other problems, one
motivation for this research is to explore its effectiveness in the context of different due windows and sequence-dependent
setups. The Fireworks Algorithm is a metaheuristic, non-nature, and non-bioinspired approach developed by Tan & Zhu
(2010), which simulates the explosion of fireworks to conduct a global search. FWA is distinguished by its explosive search
mechanism and multiple interacting populations. According to Liu & Qin (2021) and a comprehensive review by Li & Tan
(2019), FWA has garnered substantial attention since its introduction and has proven to be highly competitive or superior in
various real-world optimization problems.
Numerous FWA applications, variants, and improvements have been documented, including in a book by its creator, Tan
(2015). Enhancements for global optimization were proposed by Li et al. (2017), while He et al. (2019) introduced a bi-
objective FWA for flow shop problems with sequence-dependent setup times. Pang et al. (2020) implemented an improved
version for hybrid flow shops, and Liu & Qin (2021) developed a neighborhood improvement approach for traffic flow
prediction. Xu et al. (2020) proposed a multitask FWA to simultaneously optimize multiple jobs. More recently, FWA has
been applied to a wide range of problems such as Meng and Tan (2024), Hao et al. (2024), Ding et al. (2025), among others.
The basic FWA framework begins with a population of fireworks, representing solutions to the problem. Each firework
explodes, creating clouds of sparks that represent new solutions. The explosion's intensity and radius depend on the quality
of the firework's objective function value. A Gaussian operator generates sparks to increase solution diversity, and a selection
mechanism is applied to determine which particles (fireworks, explosion sparks, and Gaussian sparks) move on to the next
generation. As outlined by Tan & Zhu (2010) and Pang et al. (2020), the number and amplitude of sparks are key elements in
the algorithm's exploration process. Superior fireworks are closer to the best solution in the population, and the number of
sparks is carefully controlled to prevent premature convergence. At each iteration, the best solution is retained, and n_fire-1
particles are selected based on their relative positions to promote diversity. Less crowded regions in the solution space are
favored, increasing the likelihood of those solutions being selected for the next generation. Unlike other population-based
metaheuristics, FWA uniquely considers multiple types of individuals (fireworks, explosion sparks, Gaussian sparks)
generated by two distinct probability distributions (uniform and Gaussian). Moreover, FWA doesn't simply transfer the best
solutions to the next generation but probabilistically chooses from less populated regions, promoting greater population
diversity. Therefore, the leading contributions of this article lie in the study of a realistic scheduling problem which has been
relatively little studied in the literature, namely in applying a comparatively new meta-heuristic which has not yet been
experimented with in the problem addressed herein, and which has obtained good results in other optimization problems.
Furthermore, in proposing a parameter tuning method based on the impact of the combination of values, and in the use of a
modern, scientific, and efficient programming language.

The remaining paper is organized through the following sections: the Fireworks Algorithm and some application studies are
presented in Section 2. Section 3 provides an elaborated description of the problem, and the proposed metaheuristic is

M. G. de Freitas et al. / International Journal of Industrial Engineering Computations 16 (2025) 3

introduced. Section 4 describes the experiment results, comparative study, and managerial implications of the study. Finally,
Section 5 concludes the paper.

2. Problem description and general notations

Let J = {J1, J2, …, Jn} be the set of n jobs that have to be scheduled on a unique machine. Each job Jj has processing time pj,
an associated time window [ej, dj], where ej is the earliest due date and dj is the most delayed due date. If job Jj is completed
before ej, then there is a cost of 𝑤𝑤𝑗𝑗𝐸𝐸 per unit of earliness time. When the job Jj is completed after dj, there is a cost 𝑤𝑤𝑗𝑗𝑇𝑇 per unit
of tardiness time. Jobs finished within their due windows do not lead costs. The machine can only perform a single job at a
time and it cannot be interrupted once the process is initiated. All jobs are available at the beginning of the processing. Between
two consecutive jobs Ji and Jj, a setup time of sij is required. The setup time for the machine to process the first job in the
sequence is assumed to be zero. Allowing idle time between the execution of consecutive jobs is acceptable. The completion
time of job Jj is represented by Cj, whereas the earliness and tardiness times of Jj are represented by Ej = max{0, ej – Cj} and
Tj = max{0, Cj – dj}, respectively. The goal is to establish a job sequence π and corresponding start times that minimize the
weighted sum of each job's earliness and tardiness, i.e. minimize the value of 𝐸𝐸𝐸𝐸𝑤𝑤 = ∑ (𝑤𝑤𝑗𝑗𝐸𝐸𝐸𝐸𝑗𝑗𝑛𝑛

𝑗𝑗=1 + 𝑤𝑤𝑗𝑗𝑇𝑇𝑇𝑇𝑗𝑗). Tables 1 and 2
present the notation of the addressed problem and the notation of the proposed FWA, respectively.

Table 1
Notation of the problem 1|<ej, dj>, sij|ETw

n number of jobs
Jj job Jj, j = 1, …, n
J set of jobs
pj processing time of job Jj
ej earliest due date of job Jj
dj tardiest due date of job Jj
sij sequence-dependent setup time between job Ji and Jj
Cj completion time of job Jj
Ej earliness of job Jj
Tj tardiness of job Jj
𝑤𝑤𝑗𝑗𝐸𝐸 weight of the earliness of job Jj
𝑤𝑤𝑗𝑗𝑇𝑇 weight of the tardiness of job Jj
ETw weighted sum of the earliness and tardiness (objective function)

2. Algorithms evaluated

Table 2
Notation of FWA

i Index of fireworks
l index of sparks
j index of dimensions of the locations (fireworks and sparks)
L set of all current locations (fireworks and sparks) (8), (9)
n_fire number of fireworks in the population (1), (2)
xi firework or solution i, i = 1, …, n_fire (1), (2)
f(xi) fitness value of xi (1), (2)
𝑥𝑥𝑖𝑖′ general location (fireworks, explosion sparks or gaussian sparks) (8), (9)
xik firework i with dimension k (4), (6)
𝑥𝑥𝑙𝑙𝑙𝑙𝑒𝑒 explosion spark l with dimension k (4), (5)
𝑥𝑥𝑙𝑙𝑙𝑙
𝑔𝑔 gaussian spark l with dimension k (6), (7)

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 lower bound of the search space (5), (7)
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 upper bound of the search space (5), (7)
ymin minimum (best) values of f(xi) (1), (2)
ymax maximum values of f(xi) (1), (2)
Ai explosion amplitude the firework i (1)
Amax parameter of the maximum range of the fireworks explosion (1)
Si number of explosion sparks of the firework i (2), (3)
m_spark parameter value of the quantity of the explosion sparks (2), (3)
g_spark parameter value of the quantity of the gaussian sparks
a parameter which confines the range of the number of sparks (3)
b parameter which confines the range of the number of sparks (3)
z number of dimensions selected
g coefficient of gaussian explosion, g = N(1, 1) (6)
𝑅𝑅(𝑥𝑥𝑖𝑖′) general distance between a location 𝑥𝑥𝑖𝑖′ and other locations (8), (9)
𝑑𝑑(𝑥𝑥𝑖𝑖′,𝑥𝑥𝑗𝑗′) distance between the location 𝑥𝑥𝑖𝑖′ and 𝑥𝑥𝑗𝑗′ (9)
𝑝𝑝(𝑥𝑥𝑖𝑖′) selection probability of a location 𝑥𝑥𝑖𝑖′ (8)
ε the smallest constant to avoid zero-division error (1), (2)
rand random number (4)
round rounding function (3)
mod modular function (5), (7)

We kept our FWA continuous to preserve the original analogy in the explosions and the mutation. Therefore, we adopted the
Smallest Position Value (SPV) rule to convert the real values of the locations of fireworks and sparks into the permutational
solution of the job scheduling problem. The pseudocode of the proposed Firework is described in Algorithm 1 as follows.

4

 Algorithm 1: Algorithm FWA
 Input: p, e, d, wT, wE, wT
 Output: π, ETw
 procedure FWA
 Initialize n_fire, m_spark, g_spark, a, b, Amax, termination
 Set xmin = –100, xmax = 100, and ξ = 10-38
 Generate randomly n_fire fireworks and calculate their fitness
 Save the best (ymin) and worst (ymax) values
 while termination not reached do
 for i = 1:n_fire do
 Calculate explosion amplitude:

𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚+𝜀𝜀

∑ (𝑓𝑓(𝑥𝑥𝑖𝑖−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑖𝑖=𝑖𝑖 +𝜀𝜀

 (1)

where Amax: maximum range of the fireworks explosion,
xi: firework i,
f(xi): fitness value of xi,
ymin = min f(xi), i = 1, …, n_fire,
n_fire: number of fireworks in the population,
ε: constant to avoid a zero-division error.

 Calculate the number of sparks:
𝑆𝑆𝑖𝑖 = 𝑚𝑚_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑓𝑓(𝑥𝑥𝑖𝑖)+𝜀𝜀

∑ (𝑓𝑓(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑖𝑖)
𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑖𝑖=𝑖𝑖 +𝜀𝜀

 (2)

where m_spark: parameter value to restrict the quantity of the sparks,
ymax = max f(xi), i = 1, …, n_fire.

 Bound the number of explosion sparks:

𝑆𝑆𝑖𝑖 = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎 ∗ 𝑚𝑚_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), if 𝑆𝑆𝑖𝑖 < 𝑎𝑎 ∗ 𝑚𝑚_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑏𝑏 ∗ 𝑚𝑚_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), if 𝑆𝑆𝑖𝑖 > 𝑏𝑏 ∗ 𝑚𝑚_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎 < 𝑏𝑏 < 1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆𝑖𝑖), otherwise

 (3)

where a and b: parameters ranging the sparks number,
round: rounding function.

 Generate the explosion sparks:

𝑥𝑥𝑙𝑙𝑙𝑙𝑒𝑒 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(−1,1) (4)
where rand(–1,1): random number with distribution U[0,1].

 Map not exceeding the search space limits:

𝑥𝑥𝑙𝑙𝑙𝑙𝑒𝑒 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + |𝑥𝑥𝑙𝑙𝑙𝑙𝑒𝑒 | 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) (5)
where mod: modular function,
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚: bounds of the solution space.

end for
 for l = 1:g_spark do

 Select randomly a firework i
 Generate the gaussian sparks:

𝑥𝑥𝑙𝑙𝑙𝑙
𝑔𝑔 = 𝑥𝑥𝑖𝑖𝑖𝑖 𝑔𝑔 (6)

where g: coefficient of the gaussian explosion, g = N(1, 1).

 Map to not exceed the boundary of the search space:

𝑥𝑥𝑙𝑙𝑙𝑙
𝑔𝑔 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + �𝑥𝑥𝑙𝑙𝑙𝑙

𝑔𝑔 � 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚). (7)

end for

 Select the best location (among fireworks and sparks) and keep it for the next ration
 Select n_fire–1 particles 𝑥𝑥𝑖𝑖′ for the next generation with probability 𝑝𝑝(𝑥𝑥𝑖𝑖′):

𝑝𝑝(𝑥𝑥𝑖𝑖′) = 𝑅𝑅�𝑥𝑥𝑖𝑖
′�

∑ 𝑅𝑅�𝑥𝑥𝑗𝑗
′�𝑗𝑗∈𝐿𝐿

. (8)

where

 𝑅𝑅(𝑥𝑥𝑖𝑖′) = ∑ 𝑑𝑑(𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑗𝑗′)𝑗𝑗∈𝐿𝐿 = ∑ �𝑥𝑥𝑖𝑖′ − 𝑥𝑥𝑗𝑗′�𝑗𝑗∈𝐿𝐿 (9)
is the distance between a location 𝑥𝑥𝑖𝑖′ and other locations and L is set of all current locations of fireworks and sparks.

end while
return best individual and fitness
end procedure

M. G. de Freitas et al. / International Journal of Industrial Engineering Computations 16 (2025) 5

Our FWA is similar to Tan & Zhu (2010). The special differences lie in the conversion rule to the permutational solution and
the values of the calibrated parameters. In addition to applying the relatively new metaheuristic in the scheduling problem,
the proposal of the tuning method, which is another contribution of this work, will be detailed in the next section. For each
sequence generated by the FWA, it is necessary to call a job positioning algorithm to determine the optimal date for each job
to be performed. For this purpose, we employed in this paper the Idle Time Insertion Algorithm (ITIA) of Rosa et al. (2017).
ITIA is a O(n2) algorithm designed to determine the start time for each job in a given sequence, providing the optimal
allocation of idle times.

4. Computational experiments

For a fair comparison, all the algorithms were coded in Julia Language version 1.36.0 and run on the same computer with the
following configuration: Intel(R) Core(TM) i5-8265U processor with 1.80GHz, 16GB of RAM memory, and one SSD.
We used the benchmark instances of Rosa et al. (2017), composed by instances with 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 30, 40, 50, and 75 jobs. According to Rosa et al. (2017), for each job Jj, the processing times pj, setup times sij, cost
per tardiness unit 𝑤𝑤𝑗𝑗𝑇𝑇 , and cost per earliness unit 𝑤𝑤𝑗𝑗𝐸𝐸 were randomly generated integers within the intervals [1, 40], [5, 15], [1,
10], and [1, 𝑤𝑤𝑗𝑗𝑇𝑇], respectively. The time window center of job Jj was a random integer number within the interval [(1 – TF –
RDD/2)TPF, (1 – TF + RDD/2)TPT], where TPT is the sum of processing times of all jobs, TF is the tardiness factor, and
RDD is the relative range of the time windows. Therefore, the time window width is an integer number randomly selected in
the interval [0, TPT/n] (n is the number of jobs to be scheduled). The values 0.1, 0.3, 0.5, and 0.8 were used for TF, and 0.4,
0.7, 1.0, and 1.3 for RDD. Thus, each set has 16 instances, totaling 272 instances.
Next, five independent runs were carried out for each algorithm for each instance. We calculated the average relative
percentage deviation from the best-known solution for each instance. The stopping criteria for each heuristic was 5*n
iterations, with n equal the number of jobs.

4.1 Proposed parameter tuning

We developed a parameter tuning procedure inspired by the idea of Joshi & Bansal (2020). They presented a novel approach
based on the relation between the algorithm’s performance and functional landscape and evaluated it in the Gravitational
Search Algorithm (GSA) with a test suite of continuous functions. The rationale behind the procedure is to find the most
influential values of any parameter combination. Let EW be a matrix of “elementary weights” with the first dimension being
the popsize and the others corresponding to the number of parameters to be calibrated. So the total number of dimensions of
matrix EW is the number of parameters plus 1. For example, if a metaheuristic has 3 parameters to be calibrated, the matrix
EW will have 4 dimensions, one for the population and one for each of the parameters.
Also, let Fitness1 and Fitness2 be matrices of objective function values obtained by all combinations of parameters. Matrices
EW and Fitness1 are initialized with all values equal to 1.

 Algorithm 2: Parameter tuning
 Input: instance, parameters, range_of_parameters
 Output: best combination of parameters
 procedure parameter_tuning
 Initialize termination, EW[] = 1, Fitness1[] = 1, bigger_EW = –100
 Calculate the objective function Fitness2[] for each parameter combination
 while termination not reached do
 for each parameter combination
 EW[] = abs((Fitness2[] – Fitness1[])/popsize)
 end for
 for each parameter combination α
 if mean(EW[α]) > bigger_EW
 bigger_EW = mean(EW[α])
 save the combination α
 end if
 end for
 for each parameter combination
 Fitness1[] = Fitness2[]
 end for
 for each parameter combination
 EW[] = abs((Fitness2[] – Fitness1[])/popsize)
 end for
 end while
 return best combination α of parameters
end procedure

6

As demonstrated in the pseudocode of Algorithm 2, the proposed procedure for parameter tuning assesses the impact of the
influence of changing the parameter combination, differently from most of the other procedures which evaluate the
performance of each parameter value individually.

4.2 Comparison to the literature

The results of the proposed FWA were compared to the Iterated Greedy Algorithm (IGA) of Pan & Ruiz (2014), considered
the state-of-the-art heuristic for different scheduling problems, and three other metaheuristics: Artificial Bee Colony (ABC)
and Bat Algorithm (BA) of the work of Agarwal & Mehta (2018) and Particle Swarm Optimization (PSO) adapted from
Tasgetiren et al. (2007). All these metaheuristics were calibrated by the proposed procedure specifically for the addressed
problem. Consequently, the parameters for these heuristics found by the tuning are proposed as follows: for ABC, the
threshold value for entering into the scout bee phase is limit = 81, for BA, the loudness sound A = 0.1 and the pulse emission
rate r = 0.1, for PSO, the inertia weight w = 0.35 and the acceleration coefficients c = 0.85, for IGA, the parameter for
adjustment of the temperature λ = and the destruction size d = 4, and for the FWA, m_spark = 5, g_spark = 1, a = 0.2, b = 0.2
and Amax = 35. We calculated the relative percentage deviation (RPD) from a reference solution as a response variable for the
experiments as follows:

𝑅𝑅𝑅𝑅𝑅𝑅ℎ =
(𝐸𝐸𝐸𝐸𝑤𝑤,ℎ − 𝐸𝐸𝐸𝐸𝑤𝑤∗)

𝐸𝐸𝐸𝐸𝑤𝑤∗

(10)

where 𝐸𝐸𝐸𝐸𝑤𝑤,ℎ is the weighted sum of the earliness and tardiness generated in the instance h by a given algorithm, and 𝐸𝐸𝐸𝐸𝑤𝑤∗ is
the best-weighted sum of the earliness and tardiness found by any of the algorithms. After executing the metaheuristics and
collecting all the outputs, results of the experiment were analyzed by means of the Analysis of Variance (ANOVA) technique.
The means plots with 95% Tukey’s test confidence intervals are given in Fig. 1 and Fig. 2. Overlapping confidence intervals
means that the observed difference in the response variable (RPD) of the two overlapped means is statistically insignificant.
By Fig. 1, the superior result of FWA is evident.

Fig. 1. Means plot of average RPD (%) for Tukey’s test
with 95% confidence intervals

Fig. 2. Statistical comparison among algorithms with
Tukey’s test with 95% confidence intervals

It can be seen in Fig. 2 that there is no statistical difference between the results of IGA and ABC, PSO and ABC, and PSO
and IGA. Oppositely, there exists a statistically significant difference between FWA and any other algorithm. Further, a
detailed performance comparison in terms of average RPD is summarized in Table 3, grouped for each dimension of the
instances which refers to the number of jobs of the instance class.

As can be noticed in Table 1, the FWA has the lowest average RPD, or the relative error, in every dimension of the instances,
which indicates its better results overall. Furthermore, the FWA heuristic achieved the best solution in 9 of 17 dimensions,
i.e., a relative deviation of zero. The RPD was almost zero in several others. Thus, the FWA outperformed the other four
implemented algorithms of the literature in all the classes of instances solved. We can visually compare these results in Figure
3 with the average RPD of the five metaheuristics by each dimension.

M. G. de Freitas et al. / International Journal of Industrial Engineering Computations 16 (2025) 7

Table 3
Computational results (in average RPD) of the algorithms for each instance dimensions

Dimension ABC BA PSO IGA FWA
8 49.90 12.28 63.99 63.10 3.28
9 49.71 14.51 64.76 62.21 7.76

10 61.40 28.20 82.94 89.04 0.66
11 61.65 26.13 69.68 75.04 6.16
12 47.52 20.48 55.71 62.66 1.59
13 54.11 24.20 56.42 57.68 0.90
14 70.91 25.91 72.32 72.09 0.00
15 54.08 30.68 66.08 66.72 0.00
16 48.94 31.31 66.13 59.94 0.00
17 56.18 31.76 66.02 59.41 0.26
18 51.58 28.43 58.22 53.77 0.00
19 48.41 28.17 46.28 49.23 0.23
20 51.93 34.71 55.70 56.43 0.00
30 45.95 36.20 57.06 58.74 0.00
40 49.24 42.82 63.79 59.70 0.00
50 42.18 34.60 48.65 48.25 0.00
75 38.62 33.29 42.34 46.09 0.00

Average 51.90 28.45 60.95 61.18 1.23

Fig. 3. RPD (%) of the algorithms by dimension

The instability of the deviations of the three worst algorithms (ABC, PSO, and IGA) is shown quite clearly in Figure 3,
especially for instances with smaller dimensions, and the crescent values of BA, which is in the second-best results but
significantly far from the best. The smaller deviations of FWA can be observed, with practically zero value from dimension
14 onwards to the largest instances. The algorithms were compared using the performance profiles proposed by Dolan &
Moré (2002) to better highlight the results, a very used tool for benchmarking and evaluating the performance of several
software programs when run on a testbed set. As pointed out by Gould & Scott (2016), performance profiles provide a very
useful and convenient means of assessing the performance of a solver relative to the best solver on each instance from that
set. Moreover, this resource offers an estimate of the expected performance difference between the solvers. Several recent and
noteworthy works on various scheduling problems have successfully leveraged this method on its evaluation process are
Abreu & Fuchigami (2022), Freitas & Fuchigami (2022), and Moreno et al. (2019). Let 𝑇𝑇 represent a set of 𝑛𝑛𝑇𝑇 instances and
𝑆𝑆 a set of 𝑛𝑛𝑆𝑆 algorithms. Suppose a given algorithm 𝑖𝑖 ∈ 𝑆𝑆 reports a statistic 𝑠𝑠𝑖𝑖𝑖𝑖 ≥ 0 when runs an instance 𝑗𝑗 ∈ 𝑇𝑇, and the
smaller this statistic, the more effective the model is. The performance ratio is defined as 𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖/ŝ𝑗𝑗 . where ŝ𝑗𝑗 =
min {𝑠𝑠𝑖𝑖𝑖𝑖: 𝑖𝑖 ∈ 𝑆𝑆}. For each 𝑖𝑖 ∈ 𝑆𝑆 and τ ≥ 1, we define a 𝑘𝑘�𝑟𝑟𝑖𝑖𝑖𝑖 , τ� as follows.

𝑘𝑘�𝑟𝑟𝑖𝑖𝑖𝑖 , τ� = � 1 𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖 ≤ τ
 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (11)

0

10

20

30

40

50

60

70

80

90

100

8 9 10 11 12 13 14 15 16 17 18 19 20 30 40 50 75

ABC BA PSO IGA FWA

8

The performance profile of the algorithm 𝑖𝑖 is then given by the following function (11) with τ ≥ 1.

𝑃𝑃𝑖𝑖(τ) =
∑ 𝑘𝑘�𝑟𝑟𝑖𝑖𝑖𝑖 , τ�𝑗𝑗∈𝑇𝑇

𝑛𝑛𝑇𝑇

(12)

The performance profile of a method is represented by its cumulative distribution function, which shows the probability that
the performance ratio remains below a specified threshold (𝑟𝑟𝑖𝑖𝑖𝑖 ≤ τ). Consequently, P(τ) reflects the percentage of instances
where the method obtains a result within τ times the optimal value of the measure. Fig. 4 presents this performance profile
comparison.

Fig. 4. Performance profiles of the algorithms on the objective values

According to Fig. 4, performance profiles visually demonstrate how the FWA outperformed the other algorithms. The red line
starting at about 0.9 indicates that the FWA results were better in almost 90% of the instances. Also, FWA is the fastest to
achieve 100% of the best results. Figure 2 still endorses the previous analysis, showing BA as the second-best algorithm and
the other three (ABC, IGA, and PSO) have curves with similar behaviors. Concerning the execution times, Table 4 presents
the average CPU times, in seconds, of each metaheuristic.

Table 4
Average CPU times (in seconds) of each algorithm

ABC BA PSO IGA FWA
0.1483 0.1602 0.1554 0.1622 0.1551

As can be seen in Table 4, the five algorithms proved to have acceptable execution times, with similar values of CPU times,
and all of them spent around 0.1 second on average.1

5. Final considerations

In this study we have addressed a just-in-time scheduling problem with distinct time windows and sequence-dependent setup
times with minimization of total weighted earliness and tardiness of jobs, achieving the proposed goal to implement an
efficient metaheuristic not yet employed in this problem. Our proposed Fireworks Algorithm outperformed state-of-the-art
metaheuristics for scheduling problems, especially the IGA. We approached a realistic scheduling problem little studied in
the specific literature, and we implemented five different metaheuristics employing a data set benchmark of the literature to
compare the performance of the algorithms. Also, we proposed a parameter tuning method based on the impact of combining
values. The computational results showed that the FWA outperformed the other algorithms in all of the problem dimensions
compared and achieved the absolute best result (100% of success i.e., relative percentage deviation of zero) in 9 of the 17
instance classes analyzed, especially in the large-sized instance. Thus, it highlights the applicability and efficiency of the
FWA in large-sized real problems. For future research, we suggest the considerations of different restrictions in the problem,
for example, release times and/or specific weights for each job; in the FWA, could be investigated diverse procedures for
search in the solution space and, being an atypical metaheuristic in the sense of considering two probability distributions
(uniform and gaussian) and a specific probabilistic model (for the particles choice for the next generation), other theoretical
probability distributions could be tested. Also, the FWA algorithm can be adapted for other scheduling problems, given its
good performance in the problems already applied.

M. G. de Freitas et al. / International Journal of Industrial Engineering Computations 16 (2025) 9

Funding details

This work was supported by the Sao Paulo Research Foundation for financial support (FAPESP, grant numbers 2022/05803-
3, 2022/10993-6, and 2023/08678-8) and the Brazilian National Council for Scientific and Technological Development
(CNPq, grant numbers PI01143-2015/7, PI01143-2015/11, 154540/2019-6, 135179/2020-3, 143568/2023-0, and
144305/2024-0).

References

 Abreu, A. P., & Fuchigami, H. Y. (2022). An efficiency and robustness analysis of warm-start mathematical models for idle

and waiting times optimization in the flow shop. Computers & Industrial Engineering, 166, 107976.
Agarwal, P., & Mehta, S. (2018). Empirical analysis of five nature-inspired algorithms on real parameter optimization

problems. Artificial Intelligence Review, 50, 383-439.
Ahmadizar, F., & Farhadi, S. (2015). Single-machine batch delivery scheduling with job release dates, due windows and

earliness, tardiness, holding and delivery costs. Computers & Operations Research, 53, 194-205.
Alidaee, B., Li, H., Wang, H., & Womer, K. (2021). Integer programming formulations in sequencing with total earliness and

tardiness penalties, arbitrary due dates, and no idle time: a concise review and extension. Omega, 103, 102446.
Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of

Operational Research, 246(2), 345-378.
Allahverdi, A., & Soroush, H.M. (2008). The significance of reducing setup times/setup costs. European Journal of

Operational Research, 187(3), 978-984.
Allahverdi, A., Gupta, J.N., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations.

Omega, 27(2), 219-239.
Baker, K.R., & Scudder, G.D. (1990). Sequencing with earliness and tardiness penalties: a review. Operations Research, 38,

22-36.
Ding, R., Hu, S., Xing, Z., & Yan, T. (2025). Multi-type radar deployment for UAV swarms defense coverage using Firework

Algorithm with Determinantal Point Processes under complex terrain. Applied Soft Computing, 170, 112681.
Dolan, E. D., & Moré, J.J. (2002). Benchmarking optimization software with performance profiles. Mathematical

Programming, 91(2), 201-213.
Freitas, M.G., Fuchigami, H.Y. (2022). A new technology implementation via mathematical modeling for the sequence-

dependent setup times of industrial problems. Computers & Industrial Engineering, 172, 108624.
Fuchigami, H. Y., & Rangel, S. (2018). A survey of case studies in production scheduling: Analysis and perspectives. Journal

of Computational Science, 25, 425-436.
Fuchigami, H. Y., Sarker, R., & Rangel, S. (2018). Near-optimal heuristics for just-in-time jobs maximization in flow shop

scheduling. Algorithms, 11(4), 43.
Fuchigami, H.Y., Moccellin, J.V., & Ruiz, R. (2015). New priority rules for the flexible flow line scheduling problem with

setup times. Production, 25, 779-790.
Gould, N., & Scott, J. (2016). A note on performance profiles for benchmarking software. ACM Transactions on Mathematical

Software (TOMS), 43(2), 1-5.
Hao, T., Ma, Z., & Wang, Y. (2024). An enhanced fireworks algorithm and its application in fault detection of the

displacement sensor. Measurement: Sensors, 34, 101250.
He, L., Li, W., Zhang, Y., & Cao, Y. (2019). A discrete multi-objective fireworks algorithm for flowshop scheduling with

sequence-dependent setup times. Swarm and Evolutionary Computation, 51, 100575.
Janiak, A., Janiak, W.A., Krysiak, T., & Kwiatkowski, T. (2015). A survey on scheduling problems with due windows.

European Journal of Operational Research, 242, 347-357.
Joshi, S.K., & Bansal, J.C. (2020). Parameter tuning for meta-heuristics. Knowledge-Based Systems, 189, 105094.
Józefowska, J. (2007). Just-in-Time Scheduling: Models and Algorithms for Computer and Manufacturing Systems. Springer

Science: New York, NY, USA.
Jula, P., & Kones, I. (2013). Continuous-time for scheduling a single machine with sequence-dependent setup times and time

window constraints in coordinated chains. International Journal of Production Research, 51, 3654-3670.
Khadivi, M., Charter, T., Yaghoubi, M., Jalayer, M., Ahang, M., Shojaeinasab, A., & Najjaran, H. (2025). Deep reinforcement

learning for machine scheduling: Methodology, the state-of-the-art, and future directions. Computers & Industrial
Engineering, 200, 110856.

Koulamas, C. (1996). Single-machine scheduling with time windows and earliness/tardiness penalties. European Journal of
Operational Research, 91, 190-202.

Li, J., & Tan, Y. (2019). A comprehensive review of the fireworks algorithm. ACM Computing Surveys, 52, 1-28.
Li, X.-G., Han, S.-F., & Gong, C.-Q. (2017). Analysis and improvement of fireworks algorithm. Algorithms, 10, 1-22.
Liu, X., & Qin, X. (2021). A neighborhood information utilization fireworks algorithm and its application to traffic flow

prediction. Expert Systems with Applications, 183, 115189.
Meng, X., & Tan, Y. (2024). Multi-guiding spark fireworks algorithm: Solving multimodal functions by multiple guiding

sparks in fireworks algorithm. Swarm and Evolutionary Computation, 85, 101458.

10

Moreno, A., Munari, P., & Alem, D. A branch-and-benders-cut algorithm for the crew scheduling and routing problem in
road restoration. European Journal of Operational Research, 275(1), 16-34, 2019.

Pan, Q.-K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling
problem. Omega, 44, 41-50.

Pang, X., Xue, H., Tseng, M.-L., Lim, M.K., & Liu, K. (2020). Hybrid flow shop scheduling problems using improved
fireworks algorithms for permutation. Applied Sciences, 10, 1-16.

Penna, P.H.V., Souza, M.J.F., Gonçalves, F.A.C.A., & Ochi, L.S. (2012). Uma heurística híbrida para minimizar custos com
antecipação e atraso do sequenciamento da produção em uma máquina. Produção, 22, 766-777.

Ribeiro, F.F., Souza, M.J.F., & Souza, S.R. (2010). An adaptive genetic algorithm to the single machine scheduling problem
with earliness and tardiness penalties. Lecture Notes in Artificial Intelligence, 6403, 203-212.

Ríos-Solís, Y.A., & Ríos-Mercado, R.Z. (2012). Just-In-Time Systems. Springer Sciences: New York, NY, USA.
Rosa, B.F., Souza, M.J.F., & Souza, S.R. (2018). Algorithms based on VNS for solving the single machine scheduling problem

with earliness and tardiness penalties. Electronic Notes in Discrete Mathematics, 66, 47-54.
Rosa, B.F., Souza, M.J.F., Souza, S.R., França Filho, M.F.F., Ales, Z., & Michelon, P.Y. (2017). Algorithms for job

scheduling problems with distinct time windows and general earliness/tardiness penalties. Computers and Operations
Research, 81, 203-215.

Shabtay, D., & Steiner, G. (2012). Scheduling to maximize the number of just-in-time jobs: A survey. In Just-in-Time Systems,
Ríos-Solís, Y.A., Ríos-Mercado, R.Z., Eds. Springer Sciences: New York, NY, USA.

Tan, Y. (2015). Fireworks Algorithm: a novel swarm intelligence optimization method. Springer.
Tan, Y., & Zhu, Y. (2010). Fireworks algorithm for optimization. Proceedings of the International Conference in Swarm

Intelligence. Springer, 355-364.
Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm optimization algorithm for makespan

and total flowtime minimization in the permutation flowshop sequencing problem. European Journal of Operational
Research, 177, 1930-1947.

Xu, Z., Zhang, K., Xu, X., & He, J. (2020). A fireworks algorithm based on transfer spark for evolutionary multitasking.
Frontiers in Neurorobotics, 13, 1-14.

Ye, M., Bartolini, E., & Schneider, M. (2024). A general variable neighborhood search for the traveling salesman problem
with time windows under various objectives. Discrete Applied Mathematics, 346, 95-114.

Zhao, C., & Tang, H. (2010). Single machine scheduling with past-sequence-dependent setup times and deteriorating jobs.
Computers & Industrial Engineering, 59, 663-666.

© 2025 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

