

* Corresponding author
E-mail farshad.seifi@ie.sharif.edu (F. Seifi)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2024 Growing Science Ltd.
doi: 10.5267/j.ijiec.2024.6.003

International Journal of Industrial Engineering Computations 15 (2024) ***–***

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Optimizing contextual bandit hyperparameters: A dynamic transfer learning-based framework

Farshad Seifia* and Seyed Taghi Akhavan Niakia

aDepartment of Industrial Engineering, Sharif University of Technology, Tehran, Iran
C H R O N I C L E A B S T R A C T

Article history:
Received May 2 2024
Received in Revised Format
May 30 2024
Accepted June 20 2024
Available online
June 20 2024

 The stochastic contextual bandit problem, recognized for its effectiveness in navigating the classic
exploration-exploitation dilemma through ongoing player-environment interactions, has found
broad applications across various industries. This utility largely stems from the algorithms’ ability
to accurately forecast reward functions and maintain an optimal balance between exploration and
exploitation, contingent upon the precise selection and calibration of hyperparameters. However,
the inherently dynamic and real-time nature of bandit environments significantly complicates
hyperparameter tuning, rendering traditional offline methods inadequate. While specialized
methods have been developed to overcome these challenges, they often face three primary issues:
difficulty in adaptively learning hyperparameters in ever-changing environments, inability to
simultaneously optimize multiple hyperparameters for complex models, and inefficiencies in data
utilization and knowledge transfer from analogous tasks. To tackle these hurdles, this paper
introduces an innovative transfer learning-based approach designed to harness past task knowledge
for accelerated optimization and dynamically optimize multiple hyperparameters, making it well-
suited for fluctuating environments. The method employs a dual Gaussian meta-model strategy—
one for transfer learning and the other for assessing hyperparameters’ performance within the
current task —enabling it to leverage insights from previous tasks while quickly adapting to new
environmental changes. Furthermore, the framework’s meta-model-centric architecture enables
simultaneous optimization of multiple hyperparameters. Experimental evaluations demonstrate that
this approach markedly outperforms competing methods in scenarios with perturbations and
exhibits superior performance in 70% of stationary cases while matching performance in the
remaining 30%. This superiority in performance, coupled with its computational efficiency on par
with existing alternatives, positions it as a superior and practical solution for optimizing
hyperparameters in contextual bandit settings.

© 2024 by the authors; licensee Growing Science, Canada

Keywords:
Hyperparameter Optimization
Contextual Bandit
Transfer Learning
Bayesian optimization

1. Introduction

The stochastic contextual bandit problem presents a classic exploration-exploitation dilemma within a continuous interaction
framework between a player and their environment. In each stage of this iterative process, the player chooses one arm to pull
from a set, with each arm characterized by an N-dimensional vector representing contextual features (Ding et al., 2022). The
outcome of this choice is a stochastic reward specific to the selected arm, which is the only feedback provided to the player.
The overarching objective for the player is to either maximize the total accumulated reward over time or minimize the overall
regret experienced. This scenario necessitates a strategic balance by the player: on one hand, exploiting by repeatedly choosing
the arm believed to offer the highest reward based on available data, and on the other, exploring by testing other arms that
potentially could yield greater rewards, despite the uncertainty surrounding their outcomes. Given the contextual bandit’s
adeptness at navigating the exploration-exploitation trade-off, it has found extensive applications across diverse fields such
as recommender systems (Lihong Li, Chu, Langford, & Schapire, 2010), online advertising (Schwartz, Bradlow, & Fader,
2017), clinical trials (Woodroofe, 1979), and personalized medicine (Bastani & Bayati, 2020) among others. This widespread

2

adoption can be attributed to the bandit algorithms’ proficiency in accurately predicting reward functions while effectively
managing the exploration-exploitation balance. The efficacy of these algorithms in achieving their objectives is significantly
influenced by the selection and tuning of hyperparameters. Such parameters, including the exploration rate α, the
regularization parameter λ in ridge regression, and the array of parameters tied to the NeuralUCB algorithm (Zhou, Li, & Gu,
2020) like network width, depth, learning rate, and momentum, are crucial determinants of a bandit model’s performance.
These hyperparameters directly impact the algorithm’s ability to accurately predict rewards and judiciously balance the act of
exploring new options against exploiting known ones. Consequently, the quest to optimize these hyperparameters is not just
a technical challenge but a fundamental necessity to harness the full potential of contextual bandit models. Optimizing
hyperparameters ensures that these models can perform optimally across a range of dynamic environments, thereby
maximizing cumulative rewards and minimizing overall regret in a scientifically robust manner.

However, the dynamic and real-time nature of bandit environments poses a significant challenge for hyperparameter tuning,
making traditional offline methods like cross-validation less effective. To navigate these challenges, specialized approaches
have been developed. Greedy strategies, as explored by Bouneffouf (Bouneffouf, 2016) and Bastani et al. (Bastani, Bayati, &
Khosravi, 2021), alongside the MÊLÉE algorithm—a meta-learning approach by Sharaf and Daumé (Sharaf & Daumé III,
2019) —and bandit-over-bandit frameworks such as the OPLINUCB and DOPLINUCB algorithms (Bouneffouf & Claeys,
2020) and the Continuous Dynamic Tuning (CDT) framework (Kang, Hsieh, & Lee, 2023), offer tailored solutions for
hyperparameter optimization in these settings. Despite the innovative nature of these solutions, they are not without their
limitations. Greedy strategies, for example, may not efficiently utilize available information, potentially requiring additional
evaluations and compromising performance. The MÊLÉE algorithm, while promising, may struggle with the adaptive learning
of exploration parameters in the constantly changing contexts of live bandit environments. This could render it less effective
where adaptability is crucial. Additionally, while the OPLINUCB and DOPLINUCB algorithms excel in optimizing individual
hyperparameters, their effectiveness diminishes when multiple hyperparameters need simultaneous optimization. The CDT
framework attempts to overcome this limitation but faces challenges in data efficiency, especially when compared to meta-
learning approaches like MÊLÉE.

To address the above-mentioned challenges, this paper introduces a novel transfer learning-based approach for contextual
bandit hyperparameter optimization. This proposed algorithm capitalizes on the insights derived from similar past contextual
bandit tasks, utilizing Bayesian optimization to enhance data efficiency and accelerate the achievement of the optimal solution.
Furthermore, by incorporating two Gaussian meta-models that operate in tandem—one focused on transfer learning from past
tasks and the other on analyzing historical data from the current task—this method achieves a level of dynamism that allows
for rapid adaptation to changes. Notably, the meta-model-based design of the proposed method facilitates the optimization of
multiple hyperparameters simultaneously, effectively addressing the limitations encountered by other frameworks, such as
bandit-over-bandit strategies.

The structure of this paper is outlined as follows: Section 2 delves into the existing body of research concerning
hyperparameter optimization in bandit contexts, providing a literature review. Section 3 introduces the methodology of the
proposed hyperparameter optimization approach. The experimental setup, alongside the outcomes and discussion of these
results, is detailed in Section 4. The paper concludes with Section 5, where the final remarks and conclusions are presented.

2. Related Work

The effectiveness of multi-armed bandit frameworks in optimization and strategy selection is fundamentally driven by the
adept management of the exploration-exploitation trade-off. Efficient exploration stands as the focal point of contextual bandit
learning (Agarwal, Dudík, Kale, Langford, & Schapire, 2012; Agarwal et al., 2014; Agrawal & Goyal, 2013; Dudik et al.,
2011; Langford & Zhang, 2007; Russo, Van Roy, Kazerouni, Osband, & Wen, 2018). To manage this trade-off, several
methods such as stochastic formulation ((Lai & Robbins, 1985; Auer, Cesa-Bianchi, & Fischer, 2002; Bouneffouf,
Parthasarathy, Samulowitz, & Wistub, 2019; Lin, Bouneffouf, Cecchi, & Rish, 2018; Bouneffouf & Féraud, 2016;
Balakrishnan, Bouneffouf, Mattei, & Rossi, 2019a; Balakrishnan, Bouneffouf, Mattei, & Rossi, 2019b; Bouneffouf, Laroche,
Urvoy, Féraud, & Allesiardo, 2014; Noothigattu et al., 2018), Bayesian formulation (Bouneffouf & Rish, 2019; Bouneffouf,
Rish, Cecchi, & Féraud, 2017), adversarial formulation (Auer, Cesa-Bianchi, Freund, & Schapire, 2002; Balakrishnan,
Bouneffouf, Mattei, & Rossi, 2018), and context-based frameworks (Lihong Li et al., 2010; Bastani et al., 2021; Agrawal &
Goyal, 2013; Allesiardo, Féraud, & Bouneffouf, 2014) have been proposed. However, the magnitude of exploration in these
algorithms, a critical hyperparameter with substantial effects on performance, must be specified by the user. In more
sophisticated multi-armed bandit frameworks such as NeuralUCB (Zhou et al., 2020), additional hyperparameters need to be
provided. These hyperparameters influence the model's ability to predict the regret of actions for various contexts, thereby
impacting the overall performance of the bandit framework. Given the significant influence of hyperparameters on the
performance of multi-armed bandit algorithms, finding their optimal values is imperative.

Several methods have been developed for optimizing machine learning hyperparameters, generally classified into six groups
(Seifi & Niaki, 2023): search-based algorithms ((Abreu, 2019; Hutter, Kotthoff, & Vanschoren, 2019; Bergstra & Bengio,
2012; Zöller & Huber, 2021), heuristic algorithms (Di Francescomarino et al., 2018; Lorenzo, Nalepa, Ramos, & Pastor, 2017;
Guo, Hu, Wu, Peng, & Wu, 2019), Bayesian algorithm (Injadat, Salo, Nassif, Essex, & Shami, 2018; Hutter, Hoos, & Leyton-
Brown, 2011; Bergstra, Bardenet, Bengio, & Kégl, 2011), multi-fidelity algorithms (Swersky, Snoek, & Adams, 2014; Karnin,

F. Seifi and S. T. A. Niaki / International Journal of Industrial Engineering Computations 15 (2024) 3

Koren, & Somekh, 2013; Lisha Li, Jamieson, DeSalvo, Rostamizadeh, & Talwalkar, 2017; Falkner, Klein, & Hutter, 2018),
population-based algorithms (Jaderberg et al., 2017; Parker-Holder, Nguyen, & Roberts, 2020), and reinforcement learning
algorithms (Jomaa, Grabocka, & Schmidt-Thieme, 2019). Each method has its own advantages and disadvantages, but due to
the real-time nature of multi-armed bandit frameworks, they cannot be directly employed for bandit hyperparameter
optimization. Consequently, the literature proposes numerous methodologies customized for bandit hyperparameter
optimization.

As an initial step, Bouneffouf (2016) and Bastani et al. (2021) explored greedy strategies to ascertain the optimal exploration
rate, albeit with the risk of converging to suboptimal solutions. Similarly, Bietti et al. (2018) reviewed contextual bandit
algorithms, emphasizing minimizing the exploration rate. They studied common exploration strategies such as Bootstrap
Thompson Sampling, Online Cover, and ϵ-greedy across more than 500 datasets, demonstrating that minimizing exploration
is crucial for practical performance. However, this approach is not universally applicable, as in nonstationary situations, it can
lead to significant optimality gaps.

Ding et al. (2021) and Jun et al. (2017) employed grid search to optimize hyperparameters, but this approach is infeasible in
practice, and manually discretizing the hyperparameter space is unclear. Chu (Chu, 2024) investigated the importance of
selecting appropriate hyperparameters for an Explore-Then-Commit (ETC) algorithm using a trial-and-error method.
Although this method is neither efficient nor practical, Chu emphasized the effect of hyperparameter selection on multi-armed
bandit regret.

Meanwhile, Sharaf and Daumé (Sharaf & Daumé III, 2019) introduced the MÊLÉE algorithm leveraging data from simulated
contextual bandit tasks to formulate effective exploration strategies. Despite its innovative approach and the power of meta-
learning, this methodology struggles to adapt exploration parameters from live contextual bandit environments, potentially
leading to ineffective solutions in dynamic contexts. Importantly, research (Ding et al., 2022) underscores that optimal
exploration parameters vary across different scenarios, necessitating the dynamic adjustment of optimization algorithms to
accommodate evolving conditions.

To address these challenges and facilitate dynamic learning of the exploration rate, the introduction of the OPLINUCB and
DOPLINUCB algorithms (Bouneffouf & Claeys, 2020) marks significant progress. These algorithms, utilizing Thompson
Sampling (TS) and Conditional Inference Tree (CTree), respectively, aim to dynamically tune the exploration rate. However,
their efficacy is limited as they focus on optimizing a single hyperparameter. In the contextual bandit landscape, the need to
tune multiple hyperparameters concurrently, such as the exploration parameter α, the regularization parameter λ in ridge
regression, and various parameters associated with NeuralUCB (Zhou, Li, & Gu, 2020) (e.g., network width, depth, learning
rate, and momentum), becomes evident. Therefore, methods that efficiently optimize multiple hyperparameters are
imperative, and OPLINUCB and DOPLINUCB algorithms (Bouneffouf & Claeys, 2020) face challenges in this context.

To address these challenges and facilitate the dynamic learning of exploration rate, the introduction of the OPLINUCB and
DOPLINUCB algorithms (Bouneffouf & Claeys, 2020) marks a significant advancement. These algorithms, utilizing
Thompson Sampling (TS) and Conditional Inference Tree (CTree), respectively, aim to dynamically tune the exploration rate.
However, their efficacy is tempered by a limitation: they primarily focus on optimizing a singular hyperparameter. In the
contextual bandit landscape, the necessity to concurrently tune multiple hyperparameters, such as the exploration parameter
α, the regularization parameter λ in ridge regression, and various parameters associated with NeuralUCB (Zhou et al., 2020)
(e.g., network width, depth, learning rate, and momentum), becomes evident. Therefore, methods that efficiently optimize
multiple hyperparameters are imperative, and OPLINUCB and DOPLINUCB algorithms (Bouneffouf & Claeys, 2020) face
challenges in this context.

To overcome this issue, the Syndicated Bandits framework was proposed, addressing the multi-hyperparameter challenge
without succumbing to the exponential growth in regret bounds associated with the number of parameters (Ding et al., 2022).
Nevertheless, this framework’s reliance on a predefined set of hyperparameter candidates and the need to discretize continuous
hyperparameters present notable constraints. The Continuous Dynamic Tuning (CDT) framework (Kang et al., 2023) seeks
to mitigate these limitations through a novel bandit-over-bandit approach, ensuring adaptability in dynamic and shifting
environments. Despite its innovations, the CDT framework does not fully capitalize on the insights from previously optimized
bandit tasks, a strategy that could significantly expedite the hyperparameter tuning process (Seifi & Niaki). This gap highlights
an opportunity to harness the wealth of existing knowledge within the field to enhance algorithmic efficiency further.

In this paper, we propose a hyperparameter optimization framework for contextual multi-armed bandit problems with the
following features:

• Efficient Multi-Hyperparameter Optimization: Considering the complexity of modern contextual bandit methods,
the proposed framework should be capable of simultaneously optimizing multiple hyperparameters efficiently.

• Dynamic Adaptation: The framework should dynamically optimize hyperparameters, swiftly capturing new trends
in the data.

• Knowledge Leveraging: The proposed algorithm is expected to leverage existing knowledge from similar tasks to
expedite the time to reach an optimal solution and enhance the quality of results.

4

3. Methodology

In the preceding discussions, three primary challenges facing contextual bandit hyperparameter optimization methodologies
were identified. The first challenge arises from certain algorithms’ inability to function effectively within non-stationary and
switching environments. The second challenge is the growing necessity for frameworks capable of concurrently optimizing
multiple hyperparameters, a need accentuated by the advancement of bandit algorithms and the introduction of more
sophisticated methods like NeuralUCB. The third issue pertains to data inefficiency, a problem that has become more
pronounced as the complexity and dimensionality of these problems have expanded.

To address these challenges, this paper introduces a novel method that harnesses the capabilities of transfer learning and
Bayesian optimization. This approach leverages the strength of transfer learning to utilize knowledge from similar prior tasks,
thereby improving data efficiency and accelerating the optimization process. Additionally, to utilize the current problem’s data
and avoid issues caused by switching environments or adversarial attacks, two Gaussian meta-models are employed. The first
meta-model facilitates knowledge transfer from analogous tasks through meta-features, while the second predicts the
performance of various hyperparameter sets based on historical data. Should there be any alterations in the reward function,
an increase in the prediction error of the second meta-model triggers the selection of new points via the transfer learning
mechanism, ensuring the adaptability of our algorithm. Finally, unlike bandit-over-bandit frameworks, which face exponential
complexity with the addition of more hyperparameters, our meta-model-based approach allows for the simultaneous
optimization of multiple hyperparameters.

Key to our method is the assessment of task similarity, which is crucial for transferring knowledge effectively. To quantify the
similarity among diverse bandit tasks, it is imperative to employ certain indices of similarity. These metrics, or meta-features,
are designed to encapsulate all facets of the tasks under consideration comprehensively. In pursuit of this objective, seven
meta-features, that encapsulate various dimensions of bandit tasks, have been introduced. Initially, the number of features and
actions serve as foundational meta-features, playing a pivotal role in the similarity assessment among tasks. Their significance
cannot be overstated, as they profoundly influence the exploration-exploitation balance. To gauge the attractiveness of
different actions along with the variation of that among different actions, two additional meta-features have been proposed.
These include the normalized likelihood of the most frequently chosen action and the normalized discrepancy between the
selection probabilities of the two top-most chosen actions. These metrics elucidate the relative advantage of one action over
others and underscore the importance of exploration. However, it is important to acknowledge that these two meta-features,
while informative, may be susceptible to biases introduced by hyperparameters such as exploration rate 𝛼. To mitigate this
vulnerability, two further meta-features that are not influenced by the effects of hyperparameters have been introduced. The
first is the normalized difference between the highest predicted value of the reward function 𝜇 and the second-highest, and
the second quantifies the normalized difference when incorporating the standard deviation 𝜎 to these predicted values. Lastly,
to assess the accuracy of predictions at each step and determine the ongoing necessity for exploration or exploitation, we have
utilized the Mean Absolute Percentage Error (MAPE) of the rewards’ prediction. This metric serves as a crucial indicator of
prediction quality and the adaptive requirements for exploration-exploitation dynamics. These meta-features are presented in
Table 1.

Table 1
Meta-features Used for Transfer Learning

Meta-Feature Formula

Number of Features 𝐹

Number of Actions 𝐴

Probability Ratio of Top Action Max௜ 𝐶௜ × 𝐴𝑇

Gap Between Top Two Actions’ Probabilities (Max௜ 𝐶௜ − Secondmax௜ 𝐶௜) × 𝐴𝑇

Gap Between Top Two Predicted Action Values Max௜ 𝜇௜ − Secondmax௜ 𝜇௜Max௜ 𝜇௜ − Min௜ 𝜇௜

Gap With Uncertainty Between Top Two Predicted Action Values Max௜ (𝜇௜ + 𝜎௜) − Secondmax௜ (𝜇௜ + 𝜎௜)Max௜ (𝜇௜ + 𝜎௜) − Min௜ (𝜇௜ + 𝜎௜)

MAPE ฬActual Reward − Predicted RewardActual Reward ฬ
 Note. 𝐶௜:Number of selections for action i. T: Number of iterations.

At each step (t), meta-features (𝑓) from previous tasks, along with their corresponding sets of hyperparameters (𝒉) and
observed regret (𝑅), are used to fit a Gaussian meta-model as equation 1.

F. Seifi and S. T. A. Niaki / International Journal of Industrial Engineering Computations 15 (2024) 5

 𝒢𝒫௧் ௥௔௡௦௙௘௥ = 𝒢𝒫ቌ቎𝑓ଵ,௧ଵ … 𝑓௡,௧ଵ 𝒉௧ଵ⋮ ⋱ ⋮ ⋮𝑓ଵ,௧௠ … 𝑓௡,௧௠ 𝒉௧௠቏ , ൥𝑅௧ଵ⋮𝑅௧௠൩ቍ (1)

Then the meta-features of the current task would be extracted as [𝑓ଵ,௧௧௔௥௚௘௧,𝑓ଶ,௧௧௔௥௚௘௧, … , 𝑓௡,௧௧௔௥௚௘௧]. Using this vector and Gaussian
meta-model presented in Eq. (1), the set of hyperparameters that minimizes the regret given the current task’s meta-features
would be proposed as 𝒉௧∗்௥௔௡௦௙௘௥. 𝒉௧∗்௥௔௡௦௙௘௥ = argmin𝒉 𝒢𝒫௧் ௥௧௔௡௦௙௘௥ |[𝑓ଵ,௧௧௔௥௚௘௧,𝑓ଶ,௧௧௔௥௚௘௧ , … ,𝑓௡,௧௧௔௥௚௘௧] (2)

In parallel, a Gaussian meta-model would be set to selected hyperparameters and observed regrets as Eq. (3).

𝒢𝒫௧ௌ௨௥௥௢௚௔௧௘ = 𝒢𝒫ቌ቎𝒉଴௧௔௥௚௘௧⋮𝒉௧௧௔௥௚௘௧቏ , ቎𝑅଴௧௔௥௚௘௧⋮𝑅௧௧௔௥௚௘௧቏ቍ (3)

Using this model, the optimum hyperparameters that minimize regret based on Eq. (4) would be proposed as 𝒉௧∗ௌ௨௥௥௢௚௔௧௘.
 𝒉௧∗ௌ௨௥௥௢௚௔௧௘ = argmin𝒉 𝒢𝒫௧ௌ௨௥௥௢௚௔௧௘ (4)

Now we should select between 𝒉௧∗்௥௔௡௦௙௘௥ or 𝒉௧∗ௌ௨௥௥௢௚௔௧௘ for evaluation in next step. To this aim, the accuracy of 𝒢𝒫௧ିଵ்௥௔௡௦௙௘௥
and 𝒢𝒫௧ିଵௌ௨௥௥௢௚௔௧௘ in forecasting the performance of 𝒉௧ିଵ would be measured and the proposed hyperparameters of those with
more accuracy would be selected. In other words, the predicted regret of transfer learning meta-model (𝑅෠௧ିଵ்௥௔௡௦௙௘௥) and the
predicted regret of the surrogate meta-model (𝑅෠௧ିଵௌ௨௥௥௢௚௔௧௘) would be calculated as Eq. (5) and Eq. (6).
 𝑅෠௧ିଵ்௥௔௡௦௙௘௥ = 𝒢𝒫௧ିଵ்௥௧௔௡௦௙௘௥(ൣ𝑓ଵ,௧ିଵ௧௔௥௚௘௧,𝑓ଶ,௧ିଵ௧௔௥௚௘௧, … , 𝑓௡,௧ିଵ௧௔௥௚௘௧,𝒉௧ିଵ൧) (5)
 𝑅෠௧ିଵௌ௨௥௥௢௚௔௧௘ = 𝒢𝒫௧ିଵௌ௨௥௥௢௚௔௧௘(𝒉௧ିଵ) (6)

By these predictions and the realization of 𝑅௧ିଵ the MAPE of both models can be written as Eq. (7) and Eq. (8).

𝑀𝐴𝑃𝐸௧ିଵ்௥௔௡௦௙௘௥ = ห𝑅௧ିଵ − 𝑅෠௧ିଵ்௥௔௡௦௙௘௥ห𝑅௧ିଵ (7)

𝑀𝐴𝑃𝐸௧ିଵௌ௨௥௥௢௚௔௧௘ = ห𝑅௧ିଵ − 𝑅෠௧ିଵௌ௨௥௥௢௚௔௧௘ห𝑅௧ିଵ (8)

Finally, if the 𝑀𝐴𝑃𝐸௧ିଵ்௥௔௡௦௙௘௥ be less than 𝑀𝐴𝑃𝐸௧ିଵௌ௨௥௥௢௚௔௧௘, the 𝒉௧∗்௥௔௡௦௙௘௥ would be selected as next-step hyperparameters and
vice versa. This framework, referred to as the Transfer Learning for Contextual Bandit Hyperparameter Optimization (TLCB-
HPO), harnesses the power of transfer learning and Bayesian optimization. It is designed to enhance data efficiency and
expedite the optimization process, enabling the simultaneous optimization of multiple hyperparameters and ensuring robust
performance in dynamic and adversarial settings, thus offering a comprehensive solution to the challenges of hyperparameter
optimization in contextual bandit environments. The proposed algorithm is displayed in Algorithm 1.

Algorithm1: Transfer Learning for Contextual Bandit Hyperparameter Optimization (TLCB-HPO) framework
Initialization: Set the Budget (B), Number of Features (NF), Number of Actions (NA), and Initial HPs 𝒉଴
 Source data: ሼ[𝒇ଵ,𝒉ଵ,𝑹ଵ], [𝒇ଶ,𝒉ଶ,𝑹ଶ], … , [𝒇௠ ,𝒉௠ ,𝑹௠]ሽ
For 𝑡 = 1, 2, … , B :
 1: 𝑎௧ = argm𝑎𝑥 ௔ 𝑔(𝒙௧ ,𝑎௧)

 2: Update coefficients of g (A, b, 𝜽 for LinUCB or w for neural network)
 3: Extract the target task’s meta-features [𝑓ଵ,௧௧௔௥௚௘௧,𝑓ଶ,௧௧௔௥௚௘௧, … ,𝑓௡,௧௧௔௥௚௘௧]
 4: Fit a Gaussian process to the source data: 𝒢𝒫௧் ௥௔௡௦௙௘௥ = 𝒢𝒫ቌ቎𝑓ଵ,௧ଵ … 𝑓௡,௧ଵ 𝒉௧ଵ⋮ ⋱ ⋮ ⋮𝑓ଵ,௧௠ … 𝑓௡,௧௠ 𝒉௧௠቏ , ൥𝑅௧ଵ⋮𝑅௧௠൩ቍ

 5: Find the optimum value for the hyperparameters based on the fitted Gaussian process and extracted meta-features 𝒉௧∗்௥௔௡௦௙௘௥ = argmin𝒉 𝒢𝒫௧் ௥௧௔௡௦௙௘௥ |[𝑓ଵ,௧௧௔௥௚௘௧ ,𝑓ଶ,௧௧௔௥௚௘௧ , … , 𝑓௡,௧௧௔௥௚௘௧]
 6: Fit a Gaussian process to the selected hyperparameters and their corresponding regrets: 𝒢𝒫௧ௌ௨௥௥௢௚௔௧௘ = 𝒢𝒫 ቌ቎𝒉଴௧௔௥௚௘௧⋮𝒉௧௧௔௥௚௘௧቏ , ቎𝑅଴௧௔௥௚௘௧⋮𝑅௧௧௔௥௚௘௧቏ቍ

6

 7: Find the optimum value for the hyperparameters based on the fitted Gaussian process 𝒉௧∗ௌ௨௥௥௢௚௔௧௘ = argmin𝒉 𝒢𝒫௧ௌ௨௥௥௢௚௔௧௘
 If 𝑡 ≥ 1:
 8: Predict the gained reward using the 𝒢𝒫௧ିଵ்௥௧௔௡௦௙௘௥ 𝑅෠௧ିଵ்௥௔௡௦௙௘௥ = 𝒢𝒫௧ିଵ்௥௧௔௡௦௙௘௥(ൣ𝑓ଵ,௧ିଵ௧௔௥௚௘௧ ,𝑓ଶ,௧ିଵ௧௔௥௚௘௧ , … , 𝑓௡,௧ିଵ௧௔௥௚௘௧,𝒉௧ିଵ൧)
 9: Predict the gained reward using the 𝒢𝒫௧ିଵௌ௨௥௥௢௚௔௧௘ 𝑅෠௧ିଵௌ௨௥௥௢௚௔௧௘ = 𝒢𝒫௧ିଵௌ௨௥௥௢௚௔௧௘(𝒉௧ିଵ)
 10: Compare the models’ prediction accuracy 𝑀𝐴𝑃𝐸௧ିଵ்௥௔௡௦௙௘௥ = ห𝑅௧ିଵ − 𝑅෠௧ିଵ்௥௔௡௦௙௘௥ห𝑅௧ିଵ 𝑀𝐴𝑃𝐸௧ିଵௌ௨௥௥௢௚௔௧௘ = ห𝑅௧ିଵ − 𝑅෠௧ିଵௌ௨௥௥௢௚௔௧௘ห𝑅௧ିଵ

 If 𝑀𝐴𝑃𝐸௧ିଵ்௥௔௡௦௙௘௥ ≤ 𝑀𝐴𝑃𝐸௧ିଵௌ௨௥௥௢௚௔௧௘: 𝒉௧ = 𝒉௧∗்௥௔௡௦௙௘௥
 Else: 𝒉௧ = 𝒉௧∗ௌ௨௥௥௢௚௔௧௘
End for

4. Experiments and Results

In this section, the efficacy of the proposed algorithm is evaluated through two distinct case studies designed to encompass a
broad range of scenarios. The first case study focuses on assessing the ability of the TLCB framework to optimize the
exploration rate 𝛼 within the LinUCB algorithm. The second case study aims to refine the learning rate and momentum
parameters in the NeuralUCB method. To rigorously test the algorithm’s adaptability to dynamic environments, each case
study is conducted under two markedly different conditions. The initial condition reverses rewards after a predetermined
number of steps, whereas the second condition shuffles the reward functions associated with varying arms after a specific
interval. These modifications facilitate examining the algorithm’s performance across stationary and non-stationary
environments. Furthermore, compared to its competitors, the proposed method’s effectiveness is systematically analyzed
across various actions and features in each case study.

The study examines five competing algorithms alongside the proposed method for a comprehensive comparison. The Bayesian
Optimization algorithm is initially included due to its recognized success as the meta-model-based approach in
hyperparameter optimization literature. This is complemented by two contemporary bandit-over-bandit frameworks, which
represent the cutting edge in bandit hyperparameter optimization. The first of these frameworks employs an Upper Confidence
Bound (UCB)-based approach, while the second utilizes a SoftMax-based strategy. Additionally, the analysis incorporates the
greedy search algorithms and a gradual decrease algorithm, both acknowledged for their simplicity and practicality in various
hyperparameter optimization scenarios. A series of simulations are conducted to construct a knowledge base for transfer
learning. Specifically, for the LinUCB case study, simulations explore various configurations, encompassing differing
numbers of actions, features, and exploration rates (𝛼). A similar approach is applied to the NeuralUCB scenario, where
simulations vary regarding actions, features, learning rate, and momentum parameters. The specific values for these
parameters, as they pertain to both LinUCB and NeuralUCB, are detailed in Tables 2 and 3, respectively. Additionally, reward
functions are altered at random intervals in specific simulations to simulate changing environments.

Table 2
Parameter Settings for LinUCB Simulations

Variable Values for Simulation
Number of Action [5, 7, 10, 12, 15]
Number of Features [3, 5, 7, 10, 12, 15]
Exploration Rate 𝛼 [0.1, 0.3, 0.5, 0.75, 1, 3, 5, 7,

10]

Table 3
Parameter Settings for NeuralUCB Simulations

Variable Values for Simulation
Number of Action [5, 7, 10, 12, 15]
Number of Features [3, 5, 7, 10, 12, 15]
Learning Rate [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2]
Momentum [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

To construct a knowledge base for transfer learning, a series of simulations were conducted. Specifically, for the LinUCB case
study, simulations explored various configurations, encompassing differing numbers of actions, features, and exploration rates
(𝛼). A similar approach was applied to the NeuralUCB scenario, where simulations varied in terms of actions, features,
learning rate, and momentum parameters. The specific values for these parameters, as they pertain to both LinUCB and
NeuralUCB, are detailed in Table 2 and Table 3, respectively. Additionally, reward functions are altered at random intervals
in specific simulations to simulate changing environments.

In each scenario, simulations are conducted over 5,000 steps, with results and meta-features collected and aggregated at every
100-step interval. Similarly, the hyperparameters for both the proposed algorithm and its competitors are optimized at these
intervals. Each combination of actions and features is optimized five times for all the methods to ensure thorough comparison.
It is important to note that the reward function is consistent across all simulations within each run.

F. Seifi and S. T. A. Niaki / International Journal of Industrial Engineering Computations 15 (2024) 7

Table 4
Performance Analysis of LinUCB with Inverted Reward Function Post-2500 Steps - Average Regret and Standard Deviation

Actions Features Measure TLCB Bayesian UCB-BoB SoftMax-BoB GD GS

7 12

Best Regret Before
Perturbation

0.00064 ±
0.0004

0.00062 ±
0.0001

0.00076 ±
0.0006 0.00074 ± 0.0002 0.00039 ±

0.0001
0.00071 ±

0.0003
Average Regret Before

Perturbation
0.0060±
0.0015

0.0056±
0.0013

0.0056±
0.0011 0.0068 ± 0.0043 0.0048 ±

0.0006
0.0058 ±
0.0009

Best Regret After
Perturbation

0.2582 ±
0.0409

0.3221 ±
0.0572

0.3092 ±
0.0574 0.3228 ± 0.0461 0.2970 ±

0.0598
0.3117 ±
0.0557

Average Regret After
Perturbation

0.3171 ±
0.0298

0.3734±
0.0616

0.3633±
0.0641 0.3658± 0.0396 0.3420±

0.0531
0.3793 ±
0.0714

10 10

Best Regret Before
Perturbation

0.00079 ±
0.0002

0.00087 ±
0.0004

0.00118 ±
0.0006 0.00161 ± 0.0010 0.00070 ±

0.0003
0.00091 ±

0.0005
Average Regret Before

Perturbation
0.0095 ±
0.0029

0.0076 ±
0.0018

0.0082±
0.0018 0.0122 ± 0.0047 0.0063 ±

0.0007
0.0098 ±
0.0027

Best Regret After
Perturbation

0.2825 ±
0.0255

0.3285 ±
0.0420

0.3530 ±
0.0285 0.3379 ± 0.0304 0.3631 ±

0.0496
0.3530 ±
0.0562

Average Regret After
Perturbation

0.3410 ±
0.0303

0.3694 ±
0.0403

0.3963 ±
0.0320 0.3973 ± 0.0466 0.4108 ±

0.0448
0.3974 ±
0.0438

12 7

Best Regret Before
Perturbation

0.0011±
0.0008

0.0016 ±
0.0007

0.0034 ±
0.0022 0.0013 ± 0.0006 0.0023 ±

0.0012
0.0022 ±
0.0015

Average Regret Before
Perturbation

0.0122 ±
0.0016

0.0119 ±
0.0039

0.0132 ±
0.0060 0.0217 ± 0.0059 0.0117 ±

0.0362
0.0169 ±
0.0077

Best Regret After
Perturbation

0.2720 ±
0.0202

0.3108 ±
0.0210

0.3196 ±
0.0218 0.3237 ± 0.0156 0.3356 ±

0.0282
0.3366 ±
0.0319

Average Regret After
Perturbation

0.3123 ±
0.0214

0.3435 ±
0.0305

0.3671 ±
0.0374 0.3580 ± 0.0238 0.3872 ±

0.0393
0.3641 ±
0.0361

12 12

Best Regret Before
Perturbation

0.0014 ±
0.0006

0.0019 ±
0.0015

0.0016 ±
0.0011 0.0011 ± 0.0004 0.0027 ±

0.0014
0.0019 ±
0.0006

Average Regret Before
Perturbation

0.0115 ±
0.0035

0.0081 ±
0.0020

0.0146 ±
0.0045 0.0136 ± 0.0027 0.0159 ±

0.0039
0.0121 ±
0.0033

Best Regret After
Perturbation

0.2882 ±
0.0116

0.3567 ±
0.01578

0.3578 ±
0.0350 0.3524 ± 0.0325 0.3679 ±

0.0354
0.3554 ±
0.0163

Average Regret After
Perturbation

0.3461 ±
0.0277

0.4000 ±
0.0351

0.3972 ±
0.0435 0.3965 ± 0.0561 0.4434 ±

0.0409
0.4152 ±
0.0196

The outcomes of these simulations, explicitly focusing on regret metrics for both the LinUCB and NeuralUCB models under
different conditions, are detailed in Tables 4, 6, 8, and 10. These tables present the average regret and standard deviation for
LinUCB and NeuralUCB when rewards are reversed, or the arms’ reward functions are shuffled after 2,500 steps. For each
set of actions and features within these tables, four key metrics are calculated:

1. Best Regret Before Perturbation: This metric represents the lowest average regret (in each 100 calculation steps)
obtained from the method across the initial 2500 steps (before any perturbations), offering insight into the best
performance achievable by the algorithm under stable conditions.

2. Average Regret Before Perturbation: This indicates the overall performance level of the method before any
disturbances, providing a general assessment of its effectiveness in a stable environment.

3. Best Regret After Perturbation: This shows the lowest average regret (in each 100 calculation steps) following
perturbations, demonstrating the algorithm’s capacity to adapt and recover its performance in the face of changes.

4. Average Regret After Perturbation: Useful for evaluating the method’s long-term stability and adaptability, this
metric reflects the overall performance during the final 500 steps, capturing how well the algorithm adjusted post-
perturbation.

These metrics serve to assess the algorithms’ performances before and after environmental changes, thus evaluating their
resilience and adaptability to dynamic conditions. To enhance the comparison between the proposed method and its
competitors, a Student’s t-test is employed. This statistical test is utilized to quantify the difference between the average
improvement achieved by the proposed method over its competitors for each case study. The analysis tests the following
hypotheses: ൜𝐻଴: 𝜇஼௛௔௡௚௘ > 0𝐻௔: 𝜇஼௛௔௡௚௘ ≤ 0 (9)

The outcomes of these statistical tests are presented in Tables 5, 7, 9, and 11. In these tables, the t-value, derived from the
formula: 𝑡 = ఓෝ಴೓ೌ೙೒೐√௡ିଵఙෝ಴೓ೌ೙೒೐ (10)

where 𝑐ℎ𝑎𝑛𝑔𝑒௜ is as follows:

𝑐ℎ𝑎𝑛𝑔𝑒௜ = TLCB୮ୣ୰୤୭୰୫ୟ୬ୡୣ୧ − Competitor୮ୣ୰୤୭୰୫ୟ୬ୡୣ୧Competitor୮ୣ୰୤୭୰୫ୟ୬ୡୣ୧ (11)

8

The calculated t-values are then compared against the critical values for 95% confidence. The results in Tables 5, 7, 9, and 11
indicate whether the changes resulted in a statistically significant improvement (noted as an Improvement in the tables) or if
the changes are not statistically meaningful (indicated as “No change”).

Table 5
The Results of Student’s t-Test for LinUCB with Inverted Reward Function Post-2500 Steps

Variable Metric Bayesian UCB-BoB SoftMax-BoB GD GS
Best Regret

Before
Perturbation

Average Improvement 76.180% 84.268% 184.997% 97.920% 88.896%
t-value 2.0854 2.8343 5.0246 2.0266 2.5216

Significant level No Change Improvement Improvement No Change Improvement
Average Regret

Before
Perturbation

Average Improvement -11.166% 6.020% 134.623% 0.937% 14.504%
t-value -1.6530 0.7375 12.0778 0.0896 1.4113

Significant level No Change No Change Improvement No Change No Change
Best Regret

After
Perturbation

Average Improvement 19.794% 22.158% 121.743% 23.748% 23.173%
t-value 9.7296 6.4154 60.8268 8.0267 10.2766

Significant level Improvement Improvement Improvement Improvement Improvement
Average Regret

After
Perturbation

Average Improvement 12.957% 16.214% 115.253% 19.614% 18.164%
t-value 5.5780 4.7705 66.0329 6.0951 8.1687

Significant level Improvement Improvement Improvement Improvement Improvement

Table 6
Performance Analysis of LinUCB with Shuffled Reward Function Post-2500 Steps - Average Regret and Standard Deviation

Actions Features Measure TLCB Bayesian UCB-BoB SoftMax-BoB GD GS

7 12

Best Regret Before
Perturbation

0.00025 ±
0.0002

0.00054 ±
0.0006

0.00098 ±
0.0005 0.00035 ± 0.0002 0.00046 ±

0.0003
0.00055 ±

0.0002
Average Regret Before

Perturbation
0.0057 ±
0.0008

0.0040 ±
0.0009

0.0051 ±
0.0015 0.0058 ± 0.0014 0.0044 ±

0.0011
0.0064 ±
0.0010

Best Regret After
Perturbation

0.1208±
0.0229

0.1750±
0.0512

0.1664±
0.0582 0.1768 ± 0.0320 0.1874 ±

0.0551
0.1811 ±
0.0628

Average Regret After
Perturbation

0.1482 ±
0.0362

0.2080 ±
0.0538

0.2055 ±
0.0435 0.2093 ± 0.0424 0.2202 ±

0.0522
0.2182 ±
0.0570

10 10

Best Regret Before
Perturbation

0.00082 ±
0.0004

0.00077 ±
0.0003

0.00168 ±
0.0012 0.00085 ± 0.0002 0.00100 ±

0.0003
0.00137 ±

0.0009
Average Regret Before

Perturbation
0.0094 ±
0.0026

0.0079 ±
0.0021

0.0114 ±
0.0029 0.0114 ± 0.0030 0.0065 ±

0.0016
0.0118 ±
0.0032

Best Regret After
Perturbation

0.1288 ±
0.0278

0.1840 ±
0.0203

0.1755 ±
0.0139 0.1795 ± 0.0177 0.1815 ±

0.0142
0.1827 ±
0.0221

Average Regret After
Perturbation

0.1599 ±
0.0261

0.2058 ±
0.0236

0.2016 ±
0.0177 0.2023 ± 0.0204 0.2044 ±

0.0193
0.2096 ±
0.0233

12 7

Best Regret Before
Perturbation

0.0010±
0.0006

0.0017 ±
0.0002

0.0032 ±
0.0008 0.0012 ± 0.0004 0.0016 ±

0.0007
0.0019 ±
0.0014

Average Regret Before
Perturbation

0.0106 ±
0.0014

0.0129 ±
0.0027

0.0149 ±
0.0022 0.0175 ± 0.0055 0.0113 ±

0.0015
0.0169 ±
0.0059

Best Regret After
Perturbation

0.1081 ±
0.0168

0.1543 ±
0.0292

0.1221 ±
0.0222 0.1282 ± 0.0206 0.1388 ±

0.0463
0.1438 ±
0.0176

Average Regret After
Perturbation

0.1307 ±
0.0138

0.1756 ±
0.0382

0.1573 ±
0.0203 0.1569 ± 0.0285 0.1710 ±

0.0433
0.1636 ±
0.0219

12 12

Best Regret Before
Perturbation

0.0010 ±
0.0006

0.0012 ±
0.0008

0.0018 ±
0.0009 0.0012 ± 0.0007 0.0016 ±

0.0007
0.0011 ±
0.0007

Average Regret Before
Perturbation

0.0128 ±
0.0021

0.0103 ±
0.0053

0.0182 ±
0.0099 0.0127 ± 0.0029 0.0152 ±

0.0024
0.0118 ±
0.0016

Best Regret After
Perturbation

0.1254 ±
0.0202

0.1648 ±
0.0262

0.1599 ±
0.0101 0.1634 ± 0.0152 0.1409 ±

0.0286
0.1513 ±
0.0160

Average Regret After
Perturbation

0.1518 ±
0.0229

0.1874 ±
0.0221

0.1815 ±
0.0183 0.1896 ± 0.0204 0.1803 ±

0.0237
0.1773 ±
0.0204

Table 7
The Results of Student’s t-Test for LinUCB with Shuffled Reward Function Post-2500 Steps

Variable Metric Bayesian UCB-BoB SoftMax-BoB GD GS
Best Regret

Before
Perturbation

Average Improvement 151.281% 312.061% 198.258% 165.888% 213.619%
t-value 2.0458 4.0015 4.6566 2.2396 2.0639

Significant level No Change Improvement Improvement Improvement No Change
Average Regret

Before
Perturbation

Average Improvement -11.512% 22.154% 121.960% -9.190% 19.807%
t-value -1.4577 1.9328 10.9859 -1.2803 1.8683

Significant level No Change No Change Improvement No Change No Change
Best Regret

After
Perturbation

Average Improvement 41.379% 29.677% 135.564% 34.953% 37.557%
t-value 8.6231 5.5875 26.2925 4.9260 6.5405

Significant level Improvement Improvement Improvement Improvement Improvement
Average Regret

After
Perturbation

Average Improvement 32.973% 27.867% 129.754% 32.777% 31.488%
t-value 6.0970 5.7827 25.2942 5.4698 6.0321

Significant level Improvement Improvement Improvement Improvement Improvement

F. Seifi and S. T. A. Niaki / International Journal of Industrial Engineering Computations 15 (2024) 9

Table 8
Performance Analysis of NeuralUCB with Inverted Reward Function Post-2500 Steps - Average Regret and Standard
Deviation

Actions Features Measure TLCB Bayesian UCB-BoB SoftMax-BoB GD GS

7 7

Best Regret Before
Perturbation

0.0394 ±
0.0128

0.0628 ±
0.0098

0.0699 ±
0.0160 0.0698 ± 0.0139 0.0592 ±

0.0168
0.0665 ±
0.0041

Average Regret Before
Perturbation

0.0733 ±
0.0104

0.1212 ±
0.0188

0.1124 ±
0.0058 0.1185 ± 0.0179 0.1120 ±

0.0223
0.1088 ±
0.0073

Best Regret After
Perturbation

0.1308±
0.0233

0.2704±
0.0922

0.3161±
0.0249 0.2728 ± 0.0717 0.2602 ±

0.0598
0.2928 ±
0.1111

Average Regret After
Perturbation

0.1618 ±
0.0287

0.3075 ±
0.1049

0.3621 ±
0.0164 0.3182 ± 0.0833 0.2961 ±

0.0682
0.3274 ±
0.1129

7 12

Best Regret Before
Perturbation

0.0561 ±
0.0328

0.0833 ±
0.0103

0.0837 ±
0.0184 0.0743 ± 0.0180 0.0885 ±

0.0147
0.0732 ±
0.0136

Average Regret Before
Perturbation

0.1026 ±
0.0347

0.1371 ±
0.0047

0.1361 ±
0.0082 0.1315 ± 0.0036 0.1423 ±

0.0132
0.1312 ±
0.0175

Best Regret After
Perturbation

0.0723 ±
0.0257

0.1863 ±
0.0310

0.2366 ±
0.0763 0.2011 ± 0.0205 0.1689 ±

0.0227
0.1671 ±
0.0288

Average Regret After
Perturbation

0.0938 ±
0.0270

0.2360 ±
0.0330

0.2664 ±
0.0633 0.2474 ± 0.0266 0.2110 ±

0.0371
0.2192 ±
0.0272

10 10

Best Regret Before
Perturbation

0.0744±
0.0194

0.0998 ±
0.0180

0.0898 ±
0.0095 0.0918 ± 0.0189 0.0812 ±

0.0096
0.0842 ±
0.0093

Average Regret Before
Perturbation

0.1237 ±
0.0281

0.1502 ±
0.0126

0.1462 ±
0.0076 0.1402 ± 0.0104 0.1477 ±

0.0122
0.1293 ±
0.0068

Best Regret After
Perturbation

0.0903 ±
0.0244

0.2111 ±
0.0228

0.2271 ±
0.0424 0.1920 ± 0.0358 0.1830 ±

0.0214
0.2241 ±
0.0307

Average Regret After
Perturbation

0.1162 ±
0.0214

0.2322 ±
0.0255

0.2607 ±
0.0396 0.2281 ± 0.0377 0.2106 ±

0.0216
0.2500 ±
0.0281

12 7

Best Regret Before
Perturbation

0.0821 ±
0.0218

0.0872 ±
0.0106

0.1035 ±
0.0151 0.0848 ± 0.0137 0.0840 ±

0.0112
0.0845 ±
0.0060

Average Regret Before
Perturbation

0.1313 ±
0.0234

0.1287 ±
0.0221

0.1494 ±
0.0089 0.1434 ± 0.0182 0.1387 ±

0.0132
0.1292 ±
0.0078

Best Regret After
Perturbation

0.1129 ±
0.0410

0.2213 ±
0.0378

0.1759 ±
0.0289 0.2163 ± 0.0458 0.2024 ±

0.0276
0.1984 ±
0.0308

Average Regret After
Perturbation

0.1406 ±
0.0404

0.2521 ±
0.0366

0.2186 ±
0.0292 0.2552 ± 0.0395 0.2414 ±

0.0154
0.2301 ±
0.0324

Table 9
The Results of Student’s t-Test for NeuralUCB with Inverted Reward Function Post-2500 Steps

Variable Metric Bayesian UCB-BoB SoftMax-BoB GD GS
Best Regret

Before
Perturbation

Average Improvement 53.784% 57.961% 147.381% 45.297% 42.798%
t-value 3.4544 4.2490 10.3104 2.9561 2.9989

Significant level Improvement Improvement Improvement Improvement Improvement
Average Regret

Before
Perturbation

Average Improvement 34.376% 34.833% 132.710% 33.721% 23.990%
t-value 3.9934 4.7787 16.8280 4.4688 3.4521

Significant level Improvement Improvement Improvement Improvement Improvement
Best Regret

After
Perturbation

Average Improvement 139.056% 160.491% 239.596% 122.094% 133.664%
t-value 7.7432 5.9579 12.4927 6.1508 7.5913

Significant level Improvement Improvement Improvement Improvement Improvement
Average Regret

After
Perturbation

Average Improvement 115.464% 132.784% 220.817% 103.788% 112.680%
t-value 6.9694 6.5928 13.5838 5.5292 7.7963

Significant level Improvement Improvement Improvement Improvement Improvement

The results, as presented in Tables 5 and 7, demonstrate that in the first case study, which focuses on optimizing the exploration
rate (𝛼) within the LinUCB framework, the proposed method significantly outperformed all its competitors following
perturbation events. This superior performance can be attributed to the TLCB framework’s ability to dynamically adjust its
exploration rate in response to perturbations. Specifically, in the event of changes in the reward function, the Mean Absolute
Percentage Error (MAPE) of reward prediction (as a measured meta-feature presented in Table 1) increases. By analyzing this
value and leveraging knowledge from similar tasks—either their initial stages where MAPE is higher or tasks experiencing
perturbations—the TLCB framework proactively increases the exploration rate, facilitating rapid adaptation to changes in the
reward function. In contrast, competing methods tend to rely on historical performance data to determine exploration rates,
which may hinder their ability to quickly respond to new shifts in reward dynamics.

Before the perturbation, the TLCB framework demonstrated dominant performance over the UCB-based Bandit-over-Bandit
(UCB-BoB), SoftMax-based Bandit-over-Bandit (SoftMax-BoB), and Greedy Search (GS) algorithms, as indicated in Table
5, and over UCB-BoB, SoftMax-BoB, and Gradual Decrease (GD) methods, as shown in Table 7. While the TLCB method
also exhibited superior performance in other comparisons, these improvements were not statistically significant at the 95%
confidence level. Consequently, the TLCB framework is recommended for use not only in dynamic, perturbation-prone
environments but also in stationary settings, given its consistent and robust performance across scenarios.

10

In the second case study, aimed at optimizing both the learning rate and momentum within the NeuralUCB framework, the
proposed method outperformed all competitors across all evaluated metrics, both before and after perturbation events. This
superiority can be attributed to several aspects of the TLCB framework compared to its competitors. Firstly, unlike the bandit-
over-bandit algorithms and the Greedy Search algorithm, which, when faced with multiple hyperparameters, embark on an
exhaustive exploration of all possible hyperparameter combinations—thereby prolonging the journey to the optimal
solution—the TLCB employs a Gaussian meta-model to predict the performance of different hyperparameter sets. This
approach helps the algorithm avoid exhaustive searches, reducing time to the optimal solution and enhancing efficiency.
Secondly, compared to the Bayesian optimization algorithm, the advantage of utilizing insights from similar tasks through the
TLCB approach becomes apparent. Leveraging knowledge from similar tasks in initial steps has helped the TLCB algorithm
combat cold-start problems and reduce time to optimal solutions. Similarly, using transfer learning allows the TLCB
framework to capture and respond to abrupt changes in the reward function, leading to its superior performance compared to
competitors. Consequently, the proposed algorithm has shown better performance in all metrics at the 95% confidence level
in both static and dynamic environments when optimizing multiple hyperparameters simultaneously.

Table 10
Performance Analysis of NeuralUCB with Shuffled Reward Function Post-2500 Steps – Average Regret and Standard
Deviation

Actions Features Measure TLCB Bayesian UCB-BoB SoftMax-BoB GD GS

7 7

Best Regret Before
Perturbation

0.0365 ±
0.0080

0.0582 ±
0.0091

0.0736 ±
0.0110 0.0751 ± 0.0257 0.0669 ±

0.0144
0.0708 ±
0.0162

Average Regret Before
Perturbation

0.0825 ±
0.0171

0.1129 ±
0.0131

0.1258 ±
0.0142 0.1272 ± 0.0229 0.1141 ±

0.0136
0.1127 ±
0.0136

Best Regret After
Perturbation

0.0429 ±
0.0076

0.1047 ±
0.0241

0.0859 ±
0.0192 0.0930 ± 0.0199 0.1069 ±

0.0293
0.0973 ±
0.0319

Average Regret After
Perturbation

0.0629 ±
0.0117

0.1347 ±
0.0170

0.1287 ±
0.0296 0.1427 ± 0.0221 0.1317 ±

0.0325
0.1338 ±
0.0335

7 12

Best Regret Before
Perturbation

0.0317 ±
0.0122

0.0732 ±
0.0090

0.0798 ±
0.0151 0.0787 ± 0.0125 0.0889 ±

0.0162
0.0761 ±
0.0104

Average Regret Before
Perturbation

0.0869 ±
0.0187

0.1206 ±
0.0108

0.1333 ±
0.0092 0.1268 ± 0.0141 0.1387 ±

0.0049
0.1257 ±
0.0090

Best Regret After
Perturbation

0.0559 ±
0.0249

0.1122 ±
0.0197

0.1097 ±
0.0273 0.1270 ± 0.0410 0.1057 ±

0.0283
0.0921 ±
0.0255

Average Regret After
Perturbation

0.0744 ±
0.0195

0.1401 ±
0.0193

0.1460 ±
0.0256 0.1597 ± 0.0457 0.1430 ±

0.0239
0.1244 ±
0.0331

10 10

Best Regret Before
Perturbation

0.0559±
0.0127

0.0856 ±
0.0163

0.0937 ±
0.0121 0.0795 ± 0.0137 0.0690 ±

0.0156
0.0867 ±
0.0123

Average Regret Before
Perturbation

0.1114 ±
0.0161

0.1282 ±
0.0092

0.1433 ±
0.0170 0.1381 ± 0.0126 0.1298 ±

0.0119
0.1266 ±
0.0121

Best Regret After
Perturbation

0.0680 ±
0.0187

0.1035 ±
0.0222

0.1144 ±
0.0139 0.1106 ± 0.0179 0.0951 ±

0.0202
0.1040 ±
0.0177

Average Regret After
Perturbation

0.0825 ±
0.0179

0.1301 ±
0.0174

0.1447 ±
0.0210 0.1380 ± 0.0177 0.1244 ±

0.0128
0.1368 ±
0.0335

12 7

Best Regret Before
Perturbation

0.0582 ±
0.0140

0.0871 ±
0.0077

0.0832 ±
0.0084 0.0885 ± 0.0090 0.0890 ±

0.0193
0.0968 ±
0.0112

Average Regret Before
Perturbation

0.1175 ±
0.0173

0.1381 ±
0.0117

0.1418 ±
0.0155 0.1388 ± 0.0057 0.1447 ±

0.0117
0.1439 ±
0.0099

Best Regret After
Perturbation

0.0762 ±
0.0123

0.1097 ±
0.0215

0.0973 ±
0.0132 0.1194 ± 0.0269 0.1206 ±

0.0214
0.1086 ±
0.0188

Average Regret After
Perturbation

0.1000 ±
0.0104

0.1408 ±
0.0294

0.1286 ±
0.0161 0.1424 ± 0.0211 0.1520 ±

0.0311
0.1397 ±
0.0284

Table 11
The Results of Student’s t-Test for NeuralUCB with Shuffled Reward Function Post-2500 Steps

Variable Metric Bayesian UCB-BoB SoftMax-BoB GD GS
Best Regret

Before
Perturbation

Average Improvement 86.762% 107.680% 204.056% 105.305% 102.585%
t-value 4.6884 4.4987 8.9540 3.4485 5.3431

Significant level Improvement Improvement Improvement Improvement Improvement
Average Regret

Before
Perturbation

Average Improvement 30.796% 43.549% 138.805% 38.832% 32.207%
t-value 4.4997 4.7342 19.6067 4.7450 5.7299

Significant level Improvement Improvement Improvement Improvement Improvement
Best Regret

After
Perturbation

Average Improvement 92.788% 80.731% 200.564% 91.223% 79.124%
t-value 6.3844 6.1690 12.0380 5.8925 5.3430

Significant level Improvement Improvement Improvement Improvement Improvement
Average Regret

After
Perturbation

Average Improvement 79.980% 80.670% 193.412% 82.557% 75.157%
t-value 6.9969 6.7294 13.1673 5.8536 6.0470

Significant level Improvement Improvement Improvement Improvement Improvement

In summary, the TLCB algorithm has demonstrated superior performance across all cases in the presence of perturbations,
attributable to its ability to capture and respond to changes by readjusting hyperparameters using transfer learning. Moreover,
the TLCB algorithm exhibited significantly better performance compared to its competitors in 70% of scenarios under

F. Seifi and S. T. A. Niaki / International Journal of Industrial Engineering Computations 15 (2024) 11

stationary conditions. In the remaining 30% of stationary cases, the TLCB algorithm offered better solutions in nearly all
instances, though these were not statistically significant improvements. This consistent superiority in performance, both in
dynamic and stable environments, underscores the TLCB algorithm’s capability to excel over its competitors.

Furthermore, regarding computational efficiency, the complexity of the TLCB framework is denoted as 𝒪(max(𝐵ଷ,𝑚ଷ)),
where B represents the budget for evaluations, and m is the number of similar tasks considered. This indicates that in terms of
execution time, the TLCB algorithm matches its competitors, including Bayesian optimization, exhibiting no significant
discrepancy in running time. This parallel in computational performance, coupled with the qualitative advantages in solution
quality, positions the TLCB framework as a highly competitive choice in the realm of hyperparameter optimization.

5. Conclusion

In this study, we introduced a novel framework for optimizing hyperparameters in contextual bandit environments, utilizing
a transfer learning approach. Our methodology employs a dual Gaussian meta-model structure: one model for assimilating
knowledge from analogous tasks and another for assessing hyperparameter performance within the current context. The
selection of evaluation points is guided by accuracy metrics, employing Bayesian optimization to navigate the decision-
making process effectively. This dual-structured approach empowers the algorithm to both draw upon historical task insights
and swiftly adapt to environmental shifts. Additionally, the framework’s meta-model-centric architecture enables
simultaneous optimization of multiple hyperparameters, overcoming challenges that have hampered previous solutions.

In comparative analyses with five distinct competing methods, reflective of various strategic paradigms within the field, our
Transfer Learning for Contextual Bandit Hyperparameter Optimization (TLCB) framework demonstrated marked superiority
in all cases under conditions of environmental perturbation. In stable conditions, the TLCB framework outperformed its
counterparts in 70% of stationary scenarios, while matching performance in the remaining 30%. The algorithm’s
computational complexity, akin to that of the Bayesian optimization approach, underscores its viability as both a robust and
efficient tool for hyperparameter tuning in dynamic contextual bandit environments.

Code Availability: The complete source code used in this study, including scripts for the experiments, data processing, and
analysis, is available on GitHub. Interested researchers can access and download the code from github.com/farshad-
seifi/Transfer-Learning_for_Contextual_Bandit. This repository aims to facilitate further research and exploration in the field
of contextual bandit hyperparameter optimization.

References

Abreu, S. (2019). Automated architecture design for deep neural networks. arXiv preprint arXiv:1908.10714.
Agarwal, A., Dudík, M., Kale, S., Langford, J., & Schapire, R. (2012). Contextual bandit learning with predictable rewards.

Paper presented at the Artificial Intelligence and Statistics.
Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., & Schapire, R. (2014). Taming the monster: A fast and simple algorithm

for contextual bandits. Paper presented at the International Conference on Machine Learning.
Agrawal, S., & Goyal, N. (2013). Thompson sampling for contextual bandits with linear payoffs. Paper presented at the

International conference on machine learning.
Allesiardo, R., Féraud, R., & Bouneffouf, D. (2014). A neural networks committee for the contextual bandit problem. Paper

presented at the Neural Information Processing: 21st International Conference, ICONIP 2014, Kuching, Malaysia,
November 3-6, 2014. Proceedings, Part I 21.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine Learning,
47, 235-256.

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (2002). The nonstochastic multiarmed bandit problem. SIAM journal
on computing, 32(1), 48-77.

Balakrishnan, A., Bouneffouf, D., Mattei, N., & Rossi, F. (2018). Using Contextual Bandits with Behavioral Constraints for
Constrained Online Movie Recommendation. Paper presented at the IJCAI.

Balakrishnan, A., Bouneffouf, D., Mattei, N., & Rossi, F. (2019a). Incorporating behavioral constraints in online AI systems.
Paper presented at the Proceedings of the AAAI Conference on Artificial Intelligence.

Balakrishnan, A., Bouneffouf, D., Mattei, N., & Rossi, F. (2019b). Using multi-armed bandits to learn ethical priorities for
online AI systems. IBM Journal of Research and Development, 63(4/5), 1: 1-1: 13.

Bastani, H., & Bayati, M. (2020). Online decision making with high-dimensional covariates. Operations Research, 68(1),
276-294.

Bastani, H., Bayati, M., & Khosravi, K. (2021). Mostly exploration-free algorithms for contextual bandits. Management
Science, 67(3), 1329-1349.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. Advances in neural
information processing systems, 24.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research,
13(2).

Bietti, A., Agarwal, A., & Langford, J. (2018). Practical evaluation and optimization of contextual bandit algorithms. Statistics,
1050, 12.

12

Bouneffouf, D. (2016). Exponentiated gradient exploration for active learning. Computers, 5(1), 1.
Bouneffouf, D., & Claeys, E. (2020). Hyper-parameter tuning for the contextual bandit. arXiv preprint arXiv:2005.02209.
Bouneffouf, D., & Féraud, R. (2016). Multi-armed bandit problem with known trend. Neurocomputing, 205, 16-21.
Bouneffouf, D., Laroche, R., Urvoy, T., Féraud, R., & Allesiardo, R. (2014). Contextual bandit for active learning: Active

thompson sampling. Paper presented at the Neural Information Processing: 21st International Conference, ICONIP 2014,
Kuching, Malaysia, November 3-6, 2014. Proceedings, Part I 21.

Bouneffouf, D., Parthasarathy, S., Samulowitz, H., & Wistub, M. (2019). Optimal exploitation of clustering and history
information in multi-armed bandit. arXiv preprint arXiv:1906.03979.

Bouneffouf, D., & Rish, I. (2019). A survey on practical applications of multi-armed and contextual bandits. arXiv preprint
arXiv:1904.10040.

Bouneffouf, D., Rish, I., Cecchi, G. A., & Féraud, R. (2017). Context attentive bandits: Contextual bandit with restricted
context. arXiv preprint arXiv:1705.03821.

Chu, J.-C. (2024). Hyperparameter optimization strategy for Multi-Armed Bandits: Genre recommendation in MovieLens
dataset. Paper presented at the Proceedings of the 2023 International Conference on Machine Learning and Automation.

Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F. M., Rizzi, W., & Simonetto, L. (2018). Genetic
algorithms for hyperparameter optimization in predictive business process monitoring. Information Systems, 74, 67-83.

Ding, Q., Hsieh, C.-J., & Sharpnack, J. (2021). An efficient algorithm for generalized linear bandit: Online stochastic gradient
descent and thompson sampling. Paper presented at the International Conference on Artificial Intelligence and Statistics.

Ding, Q., Kang, Y., Liu, Y.-W., Lee, T. C. M., Hsieh, C.-J., & Sharpnack, J. (2022). Syndicated bandits: A framework for auto
tuning hyper-parameters in contextual bandit algorithms. Advances in Neural Information Processing Systems, 35, 1170-
1181.

Dudik, M., Hsu, D., Kale, S., Karampatziakis, N., Langford, J., Reyzin, L., & Zhang, T. (2011). Efficient optimal learning for
contextual bandits. arXiv preprint arXiv:1106.2369.

Falkner, S., Klein, A., & Hutter, F. (2018). BOHB: Robust and efficient hyperparameter optimization at scale. Paper presented
at the International Conference on Machine Learning.

Guo, B., Hu, J., Wu, W., Peng, Q., & Wu, F. (2019). The Tabu_genetic algorithm: a novel method for hyper-parameter
optimization of learning algorithms. Electronics, 8(5), 579.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm
configuration. Paper presented at the International conference on learning and intelligent optimization.

Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated machine learning: methods, systems, challenges: Springer Nature.
Injadat, M., Salo, F., Nassif, A. B., Essex, A., & Shami, A. (2018). Bayesian optimization with machine learning algorithms

towards anomaly detection. Paper presented at the 2018 IEEE global communications conference (GLOBECOM).
Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., . . . Simonyan, K. (2017). Population

based training of neural networks. arXiv preprint arXiv:1711.09846.
Jomaa, H. S., Grabocka, J., & Schmidt-Thieme, L. (2019). Hyp-rl: Hyperparameter optimization by reinforcement learning.

arXiv preprint arXiv:1906.11527.
Jun, K.-S., Bhargava, A., Nowak, R., & Willett, R. (2017). Scalable generalized linear bandits: Online computation and

hashing. Advances in neural information processing systems, 30.
Kang, Y., Hsieh, C.-J., & Lee, T. (2023). Online continuous hyperparameter optimization for contextual bandits. arXiv preprint

arXiv:2302.09440.
Karnin, Z., Koren, T., & Somekh, O. (2013). Almost optimal exploration in multi-armed bandits. Paper presented at the

International Conference on Machine Learning.
Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1),

4-22.
Langford, J., & Zhang, T. (2007). The epoch-greedy algorithm for multi-armed bandits with side information. Advances in

neural information processing systems, 20.
Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to personalized news article

recommendation. Paper presented at the Proceedings of the 19th international conference on World wide web.
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A novel bandit-based approach to

hyperparameter optimization. The Journal of Machine Learning Research, 18(1), 6765-6816.
Lin, B., Bouneffouf, D., Cecchi, G. A., & Rish, I. (2018). Contextual bandit with adaptive feature extraction. Paper presented

at the 2018 IEEE International Conference on Data Mining Workshops (ICDMW).
Lorenzo, P. R., Nalepa, J., Ramos, L. S., & Pastor, J. R. (2017). Hyper-parameter selection in deep neural networks using

parallel particle swarm optimization. Paper presented at the Proceedings of the Genetic and Evolutionary Computation
Conference Companion.

Noothigattu, R., Bouneffouf, D., Mattei, N., Chandra, R., Madan, P., Varshney, K., . . . Rossi, F. (2018). Interpretable multi-
objective reinforcement learning through policy orchestration. arXiv preprint arXiv:1809.08343.

Parker-Holder, J., Nguyen, V., & Roberts, S. (2020). Provably efficient online hyperparameter optimization with population-
based bandits. arXiv preprint arXiv:2002.02518.

Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial on thompson sampling. Foundations and
Trends® in Machine Learning, 11(1), 1-96.

F. Seifi and S. T. A. Niaki / International Journal of Industrial Engineering Computations 15 (2024) 13

Schwartz, E. M., Bradlow, E. T., & Fader, P. S. (2017). Customer acquisition via display advertising using multi-armed bandit
experiments. Marketing Science, 36(4), 500-522.

Seifi, F., & Niaki, S. T. A. Dynamic Meta-Learning Acquisition Function Method for Bayesian Optimization with Early
Stopping Criteria for Hyperparameter Optimization. Available at SSRN 4205030.

Seifi, F., & Niaki, S. T. A. (2023). Extending the hypergradient descent technique to reduce the time of optimal solution
achieved in hyperparameter optimization algorithms. International Journal of Industrial Engineering Computations,
14(3), 501-510.

Sharaf, A., & Daumé III, H. (2019). Meta-learning for contextual bandit exploration. arXiv preprint arXiv:1901.08159.
Swersky, K., Snoek, J., & Adams, R. P. (2014). Freeze-thaw Bayesian optimization. arXiv preprint arXiv:1406.3896.
Woodroofe, M. (1979). A one-armed bandit problem with a concomitant variable. Journal of the American Statistical

Association, 74(368), 799-806.
Zhou, D., Li, L., & Gu, Q. (2020). Neural contextual bandits with ucb-based exploration. Paper presented at the International

Conference on Machine Learning.
Zöller, M.-A., & Huber, M. F. (2021). Benchmark and survey of automated machine learning frameworks. Journal of Artificial

Intelligence Research, 70, 409-472.

14

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

