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 The Covid-19 pandemic has significantly impacted consumer behavior and commerce, prompting 
a shift towards online goods and services.  The surge in demand has led to inefficiencies and 
disruptions, especially in the last-mile delivery (LMD) process. Because of the LMD, the final stage 
of the supply chain, plays a crucial role in transporting goods from businesses to consumers, 
challenges such as the cost inefficiencies of direct home delivery have underscored the need for 
innovative solutions. In this study, the collection delivery points (CDPs) approach was adopted 
instead of direct home delivery. It focuses on addressing these challenges by adopting service points 
as dynamic CDPs and handling the problem as a dynamic location routing problem (DLRP). Two 
solutions approaches are proposed, to select candidate depots strategically and determine efficient 
route configurations, to aim to minimize travel distance. One of them is a two-phased hierarchical 
method that starts with clustering and continues with an Ant Colony Optimization (ACO) based-
hybrid algorithm, and the other one is based solely on an ACO-based hybrid algorithm.  The 
performance of these approaches is evaluated on modified benchmark instances from the literature. 
It has been observed that the ACO based-hybrid algorithm is more successful in terms of total travel 
distance, and if an evaluation is made in terms of the number of routes, it is recommended that the 
results of the two-phased hierarchical method should also be considered. Furthermore, a real word 
case study was conducted with the proposed methods and the results were compared from different 
perspectives. The results corroborate the findings regarding benchmark instances, thereby 
providing additional validation to the results obtained. 
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1. Introduction 

With the Covid-19 pandemic, sheltering in place and social distance rules have forced consumers to turn to online goods and 
services, which has also affected consumer behavior and the nature of current commerce. In particular, the lockdown decisions 
taken to stop the spread of the virus have affected people's shopping habits and the retail industry and current supply chain 
models (Sarkis, 2020) and accelerated the trend towards e-commerce and m-commerce (Guthrie et al., 2021; Wang et al., 
2020). Before the pandemic, there were a limited number of local and/or global cargo and logistics companies that e-commerce 
platforms partnered with. Generally, all shipment operations have been carried out through these companies according to the 
agreements made. As a result of the unexpected increase in e-commerce and m-commerce volumes, it has been observed that 
the supply chain has reached the breaking point at the stage of reaching the final consumer due to insufficient responsiveness 
and flexibility. The excessive demand that came with the pandemic made the current model no longer working and the search 
for more flexible modes began (Paul et al., 2021).  Since the current supply chain models, which are fragile, could not show 
enough flexibility against this unexpected trend, serious slowdowns and disruptions were experienced in the entire especially 
last-mile delivery (LMD) process (Bhatti et al., 2020). 
 
LMD constitutes the final leg of the supply chain, aiming to deliver the consumer's order either directly to the recipient's 
residence or to a designated collection delivery point (CDP). It represents the ultimate phase in the delivery service from 
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business to consumer, facilitating the transport of consignments from the business entity to consumers, either through direct 
home delivery or at a CDP (Gevaers et al., 2011).  In direct home delivery, situations such as the fact that there is usually only 
one package per house (due to economies of scale), the difficulty of couriers in finding the home address, and the consumer 
not being at home both make the process difficult and create a disadvantage in terms of cost (Lin et al., 2020). On the other 
hand, CDPs can reduce the carrier's cost because they collect customer requests at a single delivery point. It can also help 
avoid transportation costs and additional costs resulting from unsuccessful delivery attempts (Janjevic et al., 2019). In order 
to eliminate these disadvantages, two types of CDP, called 'parcel lockers' and 'service points', are generally identified in the 
literature within the scope of CDP. Parcel lockers are personalized unattended delivery points with a locking system located 
in a specific area. They can often be found in public areas, shopping malls or busy urban areas. Couriers or delivery personnel 
can drop off packages using these locking systems. Recipients can then pick up their packages themselves from these locked 
points. Service points generally refer to a delivery point designated by a particular business or service provider. This could be 
a convenience store, branch, gas station or similar facility. A parcel locker usually includes storage units equipped with 
automatic locking systems (sometimes called automatic parcel locker), is generally preferred to be in public areas and can be 
available 24/7. In contrast, service point generally refers to the physical location of a business, belongs to a specific business 
or service provider, and can generally only provide service during business hours (Molin et al., 2022).  
 
In this study, since an e-commerce platform wants to get rid of the problems caused by establishing stationary distribution 
locations that do not allow enough flexibility when delivering its products to its customers, high fixed costs, and costs arising 
from customer dissatisfaction, service points are preferred as CDPs and the problem is addressed as a dynamic location routing 
problem (DLRP). Because DLRPs involve determining the lowest-cost set of the depot, vehicle fleet, and route configurations 
over a planning horizon in a time period r (Laporte & Dejax, 1989). The problem addressed is determining the alternative 
delivery points closest to the geographical locations where customer demands are intense, selecting the candidate depot or 
depots among these delivery points, and planning the shipment from these candidate depot locations to the delivery points. In 
this model, candidate depot determined among the candidate delivery points can be selected differently for each data set. The 
main goal is to minimize the total travel distance. In the study, two solutions are proposed for the location problem in which 
temporary depots are determined and the routing problem that arises during the shipment from the determined temporary 
depots to the delivery points. The first is a hierarchical method in which the depot location determination and routing problem 
is addressed based on the clustering method, and the second is an ant colony-based hybrid algorithm in which the two problems 
are addressed simultaneously. Their performance is evaluated based on 36 benchmark instances that adapted to our problem 
from the dataset presented by Zhou et al. (2018). Furthermore, we applied these approaches to a real case study of an e-
commerce company. 
 
The main contributions of this paper can be summarized as follows: 
 
• We proposed a new multi-echelon LMD system to avoid the cost of direct home delivery and fixed depot locations. 
• Two metaheuristic solution approaches are proposed, the ACO based-hybrid algorithm and the two-phased hierarchical 

method, for solving large instances. 
• The effectiveness of these proposed approaches was validated on benchmark instances modified to our problem. 
• Furthermore, we applied the proposed approaches on a real word LMD problem, and the results were compared from 

different perspectives.  
 
The rest of this paper is organized as follows. Section 2 includes a relevant literature review. In Section 3, details of the 
problem and the proposed multi-echelon LMD system are given. The proposed solution approaches are detailed in Section 4. 
In Section 5, computational experiments are given to reveal the performance of the proposed approaches. Section 6 exhibits 
our experimental case study using real-world data and the findings are discussed. Finally, conclusion is given in Section 7. 
 
2. Literature review 
 
2.1 LMD problem 
 
Recent studies in the literature indicate that as online shopping and e-commerce habits become widespread around the world, 
consumers' expectations for fast, reliable and effective delivery have increased, and parallel to this, increasing parcel volumes 
are causing problems such as traffic congestion and, pollution in urban areas (Deutsch & Golany, 2018; Boysen et al., 2021; 
Kiba-Janiak et al., 2021; Molin et al., 2022). It is observed that the motivation of the studies presented in the literature is based 
on these and similar reasons. These studies were carried out with the aim of researching innovative methods for the LMD 
process generally taking into account technological innovations, mitigating the environmental impacts of LMD and designing 
different distribution structures. 
 
Weltevreden (2008) presented a study that pioneered the discussion of parcel locker or service points alternative by presenting 
the details of the strengths and weaknesses of parcel lockers and service points alternatives in different aspects to the literature. 
Accordingly, both parcel lockers and service points are advantageous in terms of paying when collecting parcels. It is stated 
that parcel lockers are more advantageous in terms of opening hours, requiring time for collecting parcels, and anonymity 
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when receiving the parcel. Conversely, it is emphasized that service points are more advantageous in terms of payment options, 
storing capability, using public space, sensitivity to crime and vandalism, opportunity to combine the collection of the parcel 
with other shopping activities, ease of using the service. Another comprehensive study addressing the research on preferences 
of parcel lockers or service points, which is one of the important problems of LMD, was presented by Molin et al. (2022). 
They investigated consumers' preferences for receiving parcels ordered online to better understand how consumers may prefer 
using pick-up points, including home delivery, service point, and parcel locker alternatives. The findings indicate that changes 
in prices significantly affect preferences. Research focusing solely on the parcel locker problem is presented by Deutsch and 
Golany (2018). They addressed the problem of selecting parcel locker facilities in the optimal number, location and size, 
focusing on LMD with parcel lockers.  Another research on determining the most suitable locations of parcel lockers was also 
presented by Lin et al. (2020). On the other hand, Kedia et al. (2020) studied the service points alternative as collection and 
delivery points. These studies focus on the delivery points of the LMD process. 
 
In addition, the design of the process was inspired by studies with various perspectives on the problem, focusing on the LMD 
process generally, technologically or structurally. Gdowska et al. (2018) addressed a different issue, assuming that occasional 
couriers are free to reject assignments for the first time and took probability of acceptance into consideration. They proposed 
a bi-level methodology to solve the professional delivery fleet matching and routing problem with stochastic occasional 
couriers that emerged with this assumption. An alternative urban delivery method is presented to literature by Charisis and 
Kaisar (2019). They proposed a mathematical model with the goal of optimizing LMD, incorporating handcarts or self-pick-
up methods by establishing a network of small logistics centers. The model considers constraints such as delivery deadlines, 
maximum allocation distance, and the number of customers. Janjevic et al. (2019) proposed a non-linear model that includes 
location decisions to integrate collection and delivery points into the design of omni-channel distribution networks and 
considers changes in demand patterns with their placement, and in addition, a heuristic solution method for solving large-
scale problems. Orenstein et al. (2019) introduced the concept of the flexible parcel delivery problem. They assume that each 
customer is inclined to accept self-service only from a specific set of lockers, such as those within walking distance, and offer 
a mixed-integer programming model along with a metaheuristic to address the resulting combined assignment and routing 
challenge. Schwerdfeger and Boysen (2020) introduced the dynamic location model of mobile parcel lockers, suggesting that 
lockers have the capability to shift locations throughout the day. The primary goal was to minimize the count of mobile lockers 
while guaranteeing service to all customers and they optimized the locker positions, ensuring accessibility to customers within 
a predefined range.   Guerrero-Lorente et al. (2020) proposed a mixed integer programming model for the network design 
problem of a parcel carrier managing online orders from omni-channel retailers. The proposed model aims to optimize the 
strategic design of urban distribution networks by integrating customer preferences, maximum walking distance and the 
impact of the channel on customer preference. Janjevic et al. (2021), slightly different from his previous research (Janjevic et 
al., 2019), focused on the multi-echelon location routing problem (LRP) encountered in the operating environment of 
contemporary e-commerce last mile distribution systems, and presented an integrated omni-channel modeling framework that 
addresses strategic last mile design in e-commerce. Liu et al. (2021) introduced a two-echelon LRP with mixed vehicles and 
mixed satellites, addressing the complexities of a multi-modal LMD system. They proposed a hybrid immune algorithm, 
demonstrating its effectiveness through performance comparisons with a non-dominated sorting genetic algorithm-II and a 
hybrid particle swarm optimization. In addition to these studies, Mangiaracina et al. (2019) examined LMD studies by 
categorizing them according to their methods, focusing on the main factors affecting the cost of LMD and what innovative 
solutions are offered to reduce these costs. In discussing research on LMD, Kiba-Janiak et al. (2021) focused on the 
perspectives of specific stakeholder groups, such as receivers and shippers, and they evaluated them in terms of sustainability, 
organization and technology areas. They determined the research fields as organization, technology, sustainability, 
optimization, crowdsourcing & crowdshipping, cooperation and behavior regarding sustainable LMD in the urban e-
commerce market. In another review study, Boysen et al. (2021) systematically examined existing and innovative last mile 
concepts, with a special emphasis on the decision problems that need to be solved during the installation and operation of 
each concept. 
 
Many different systems are designed for LMD in the literature, and within these systems, different problems that take into 
account different environmental conditions and constraints are focused on. Our study is like Zhou et al. (2019) in terms of 
addressing the LMD structure. They addressed the LMD problem as a bi-level LRP and proposed a method that hybridized 
genetic algorithm and simulated annealing algorithms for the solution. In our study, it was considered the service points that 
will serve as CDPs in the LMD problem may vary depending on each order. In other words, as orders in a certain region 
differ, different service points may become active for each order. Therefore, determining the location of CDPs problem is 
discussed from the dynamic location routing problem (DLRP) perspective, where the location and allocation problem and 
vehicle routing problem are discussed together. In this context, studies in the literature addressing the DLRP were also 
examined. 
 
2.2 DLRP 
 
The location allocation problem (LAP) is finding a set of the optimum number of new facility locations meeting customer 
demand to minimize the cost of transportation from facilities to customers and facility operating costs (Azarmand & 
Neishabouri, 2009).  The vehicle routing problem (VRP) is aimed to determine a set of routes that start and end at a particular 
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node to serve particular customers considering total traveling distance (Baker & Ayechew, 2003). LRP is an integrated 
problem type that aims to solve these two problems simultaneously (Nagy and Salhi, 2007). The aim is to allocate the best 
facility locations considering especially the routes of the vehicles that serve the demand points from the facility locations, and 
the other problem constraints. The best facility location is where the total cost of opening the facility and routing is the 
minimum. Both LAP and VRP are NP-hard problems therefore, LRP is in the NP-hard problem class too (Ferdi and Layeb, 
2018). 

The emergence of the LRP concept with the integrated approach of LAP and VRP almost parallels the growth of international 
trade, which requires distribution efficiency (Hassanzadeh et al., 2009). Many studies have been published with LRP, which 
has been popular since the early 1980s. The first study to comprehensively review and classify these studies was presented by 
Min et al. (1998). Similarly, Nagy and Salhi (2007) also classified the LRP problem and examined the studies in the literature 
according to variants. Prodhon and Prince (2014) examined in detail the publications that were not addressed in the studies of 
Nagy and Salhi (2007) and later presented them to the literature, according to the class of the problem and the constraints they 
addressed. Based on these studies, it can be concluded that LRP has many variants under very different constraints, and a 
wide variety of methods have been introduced to the literature for their solution. Hassanzadeh et al. (2009) emphasized that 
future potential LRP studies will be in stochastic LRPs, time windows LRPs, DLRPs and LRPs with multiple objective classes. 
 
Our paper is in the DLRP class in literature. Nagy and Salhi (2007) stated that modeling LAPs that contain VRPs with short 
planning intervals as DLRPs is more compatible with real-life problems. Based on this view, we considered modeling the 
real-life LRP problem that emerged in the Covid-19 period in the most accurate way in this paper. 
 
Although DLRP is a very important area of the LRP, there are a limited number of studies presented in the literature 
(Nadizadeh & Nasab, 2014). The first study that brought the concept of DLRP to the literature was presented by Laporte and 
Dejax (1989). In this study, LRP was handled dynamically by considering multiple planning periods, and so both locations 
and routes could be changed in each period. Nadizadeh and Nasab (2014) handled the DLRP under the constraints that the 
fuzzy customer demands in each time and depots and heterogeneous vehicle fleets which have a limited capacity. The 
objectives of the problem are minimizing the total cost of opening depots and routing the vehicles. Li and Keskin (2014) 
addressed the patrol route problem of state troopers and modeled the problem as a DLRP to increase petrol efficiency on 
highways. Also, they stand out for considering the time window constraint in the LRP and aim to maximize the benefit of 
critical location coverage while minimizing the cost of stopping locations, vehicle utilizations, and route/travel. Gao et al. 
(2016) studied and dynamically modeled LRP under environmental conditions including random and cyclic traffic factors. 
Bozorgi-Amiri and Khorsi (2016) considered uncertain conditions in demand, travel time and cost parameters of humanitarian 
relief logistics LRP. They modelled LRP multi-objective (minimizing the maximum number of shortages among the affected 
areas in all periods, the total travel time, and sum pre- and post-disaster costs) and dynamically. Memari et al. (2020) modelled 
the air and ground ambulance LRP which emerges after a disaster case dynamically. Their bi-objective model minimizes the 
operational costs along with the rate of human loss and the critical time spent before the medical treatment considering fuzzy 
traveling times and patient demands. 
 
In these reviewed DLRP studies, various exact algorithms such as mixed-integer programming model applying the ε-
constraint method, augmented e-constraint approach were presented for solution of the small-scaled problems. For realistic 
instances or real cases, various solution approaches were developed based on heuristic and/or metaheuristic algorithms such 
as greedy search, ant colony optimization, and genetic algorithms. In addition, it is noteworthy that the proposed solution 
approaches for large-scaled problems are multiphase, hierarchical or decomposition based (Nadizadeh & Nasab, 2014; Li and 
Keskin, 2014). Indeed, it is more practical to consider LRP as two sub-problems, routing and locating. But in our opinion, it 
is important to resolve the LRP in one step to deal with it dynamically. Because the aim is to find the best temporary location 
for each scenario, rather than finding the routes according to the most suitable locations for different scenarios as in the studies 
summarized above. Therefore, in this study, unlike various studies in the literature, a hybrid algorithm based on ant colony 
optimization that offers a solution for large-scaled DLRP was developed considering the locating and routing problem 
simultaneously. 
 
3. Problem description 
 
The proposed LMD system for an e-commerce platform is illustrated in Fig. 1. Accordingly, the LMD starts from a main 
depot. CDPs are determined as contracted gas stations, markets, florists, etc., which are called service points in the literature. 
Since the LMD is planned to be done in multi-echelon (delivery from the main depot to L-CDP, delivery from L-CDP to S-
CDP when necessary, and customer pick-up of the product from the CDP determined by him/her), some of the CDPs are 
named 'Local CDP or L-CDP' and some are named 'Satellite CDP or S-CDP'. A dynamic structure was designed, as whether 
CDP will be L-CDP or S-CDP will change in each delivery period. 
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Fig. 1. Proposed multi-echelon LMD system 
 
In this system, customers themselves determine which CDP they will receive their orders from. Therefore, how many 
customers will come to which CDP and the weight of the products to be delivered are known. Since the vehicles that will be 
distributed from L-CDP to S-CDPs have limited capacity, it is known that more than one route may occur at this distribution 
level. Accordingly, solutions to the following questions need to be sought: 
 
- Which CDPs should be L-CDPs? 
- Which ones will be selected as S-CDPs linked to the relevant L-CDP? 
- Which will be L-CDP and S-CDP within the same route? 
- What about routes created with capacity-limited vehicles. 
 
While searching for answers to these questions, vehicles with different capacities will be used at both levels and the total 
distance at both levels will be minimized. Two different proposed solution methodologies are explained in detail in section 4. 
 
4. Proposed solution approaches 
 

4.1. ACO-based hybrid algorithm 
 

4.1.1. Ant colony optimization 
 
Inspired by the behavior of ants in nature, Ant Colony Optimization (ACO) was developed by Dorigo et al. (1991) and is a 
population-based meta-heuristic algorithm introduced to the literature. Ants can find the shortest path between their nest and 
food source and adapt to changes in the environment. Ants secrete a scent called pheromone in every path they pass. A 
pheromone is a chemical substance that enables ants to communicate. Ants make their route choices by following the smell 
of pheromones. The path where the pheromone is concentrated is more likely to be preferred. Since more passages will be on 
the short route, the amount of pheromone accumulated will also be higher. The accumulated pheromone helps the ants find 
their way back and the ants in the nest to find food sources. In ACO, accumulated pheromones are repeatedly updated, and 
path selection is made according to the updated pheromone amounts. This rule, which is effective in path selection, is called 
the transition rule (Dorigo et al., 1991).  
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• Transition Rule  
 
In ACO, an ant (k) positioned at a node i selects the next node j to visit with a probability given by Eq. (1). In Equation 
(1), τሺi, uሻ shows the amount of pheromone between i and u node, ηሺi, uሻ shows the inverse of the distance from point i to 
point u (η୧୨ = 1/d୧୨), and j୩ሺiሻ shows the points that ant k does not visit. α and β represent the relative importance of a trail and 
its attractiveness. This rule calculates the probability of choosing the paths to be taken. Therefore, the greater the amount of 
pheromone, the more likely the ant is to choose that path (Dorigo et al., 1996).  
 P୩ሺi, jሻ = ቐ ሾτሺi, jሻሿ஑ሾηሺi, jሻሿஒ∑ ሾτሺi, uሻሿ஑ሾηሺi, uሻሿஒ ୳∈୨ౡሺ୧ሻ                  if j ∈ j୩ሺiሻ                                              0                         other  (1) 

 
• Pheromone update 
 
After all ants complete their tour, the pheromone amounts are updated. Initially, pheromones on all paths evaporate at a 
determined rate. Then, the amount of pheromone on the paths traveled by the ants is increased inversely proportional to the 
total distance traveled by the ant using that path. After a while, the amount of pheromone accumulated on the short path 
becomes more than on other paths. Pheromone updates are of two types: local and global (Dorigo et al., 1996).  
 
Local pheromone updating prevents alternative solutions from being blocked and ensures that the ants coming from behind 
take different paths. After all ants complete their tour, the amount of pheromone evaporates at the determined rate. Then, the 
number of pheromones on the paths that each ant passes while completing its tour is increased according to Eq. (2). 
 τ୧୨ሺt + 1ሻ = ሺ1 − ρሻτ୧୨ሺtሻ + ෍∆τ୧୨୩(t + 1)୫

୩ୀଵ  (2) 

 ∆τ୧୨୩(t + 1)is calculated by Equation (3): 

∆τ୧୨୩(t + 1) = ൝ 1L୩(t + 1)                   if ant k uses edge i– j in its tour0                                                                          other  

 

(3) 

ρ is the pheromone evaporation rate, and ρ ∈ (0, 1]. τ୧୨(t) represents an amount of pheromone between nodes i and j at 
iteration t. L୩(t + 1) is corresponds to the total tour length of ant k. 
 
Global pheromone update is best accomplished by adding pheromone to the edges of the tour after all ants have completed 
their tour. Global pheromone update is done according to Eq. (4). 
 τ୧୨(t + 1) = (1 − ρ)τ୧୨(t) + ෍∆τ୧୨ୠୣୱ୲(t + 1)୫

୩ୀଵ   (4) 

 ∆τ୧୨ୠୣୱ୲(t + 1)is calculated by the following Eq. (5): 
 ∆τ୧୨ୠୣୱ୲(t + 1) = ൝ 1Lୠୣୱ୲(t + 1)                  if i − j is part of the best solution0                                                                          other  

 

(5) 

                                Lୠୣୱ୲(t + 1), corresponds to the total length of the best tour in each iteration. 
 

4.1.2. Local search  
 
Local search is a heuristic algorithm that produces fast and good solutions to NP-hard optimization problems. LA starts with 
generating the initial solution according to the algorithm's structure, and new solutions are obtained according to the defined 
neighborhood relationship. This cycle continues until a solution considered optimal is found or for a certain number of 
iterations. In the OR heuristic, the main factor determining the solution's speed and quality is the neighborhood structure. The 
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neighborhood structure is created by point or arc change movements (Gendrau & Tarantilis, 2010). We applied local search 
operators as in (Comert & Yazgan, 2023): 
 
Reversion: Two nodes are randomly selected from the route, and these nodes between them are swapped in the reversion 
form. 
 
Exchange: Two nodes are randomly selected from the route and are swapped. 
 
Insertion: Two nodes are randomly selected, and the first customer is inserted behind the second customer. 
 
In this paper, we propose an ant colony-based hybrid algorithm. A high-level summary of this algorithm for DLRP is provided 
in Algorithm 1. 
 

Algorithm 1. ACO-Based Hybrid Algorithm for DLRP 
1: Start 

2:       Determine the number of ants, α, β and ρ parameters, number of CDPs, vehicle load capacity, load capacity of warehouses, shipment 
quantities to CDPs 

3:       do 
4:          for each ant 
5: Assign each CDP as depot respectively 
6: Determine a random initial CDP for each ant that is not assigned as a depot 
7: Determine the order of CDPs to be shipped next using Equation 1 
8: Assign CDPs to vehicles, taking into account the vehicle's load capacity constraint 
9:               Calculate the total amount of demand met per kilometer for all vehicles 
10:               Compare the best solution with the current solution and save if it is better 
11:               Apply local search method 
12:               Update pheromone using Equation 2 and Equation 3 
13:               Compare the best solution with the current solution and save if it is better 
14:         end for 
15:      until the maximum number of iterations is satisfied 
16: Finish 

 

4.2. Two-phased hierarchical method 
 
Another proposed solution methodology consists of two hierarchical phases and four steps, as shown in Fig. 2. At the first 
level, the first step begins with determining how many clusters the CDPs will be divided into, using the Elbow Method and 
Silhouette Score. After the number of clusters is determined, the second step is completed by dividing CDPs into clusters with 
the K-means algorithm. In the third step, an L-CDP is determined for each cluster using p-median. When these three steps are 
completed, the first phase is completed and the problem is divided into sub-problems. The routes between L-CDPs and S-
CDPs is determined using the developed an Ant Colony Optimization Algorithm at the second phase. 

 

 

Fig. 2. Proposed hierarchical solution methodology 
 
4.2.1. Phase #1 
 
The first phase of the proposed hierarchical method consists of three separate steps. In STEP#1, the elbow method and 
silhouette scores (Kodinariya & Makwana, 2013; Rousseeuw, 1987), which are approaches that help in deciding the optimal 
value of the number of clusters k, were used. 
 
After determining the optimal k number, CDPs are clustered using the k-means algorithm in STEP#2. K-Means Algorithm 
was introduced by MacQueen (1967). The assignment mechanism of this algorithm is one of the most widely used 
unsupervised learning methods, which allows each data to be included in only one cluster. The basic idea in this method is 
that the central point represents a cluster (Han & Kamber, 2001). One of the most used criteria to evaluate the K-Means 
clustering algorithm is the Sum of Square Error (SSE) criterion. The algorithm tries to identify k groups that will reduce the 
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SSE. The K-Means algorithm divides the data set consisting of n data into k clusters with k parameters determined by the 
user. Cluster similarity is measured by the average of the objects in the cluster, which is the center of gravity of the cluster 
(Xu and Wunsch, 2005). The pseudo-code for the K-Means algorithm is provided in Algorithm 2. 
 

Algorithm 2. K-Means algorithm 
1: Start 
2:       Determine the number of clusters (k) 
       Determine the number of clusters (k) as many center points 

3:       do 
4: Include each data in the cluster by assigning it to the nearest center point 
5: Calculate the new center point of each cluster as the average of the data points belonging to that cluster 
6: Recalculate the new center points 
7:      until the center points is not changed 
8: Finish 

 
After the CDPs are clustered, in the STEP#3, the L-CDP of each cluster is determined by the p-median method. 
 
P-median method was first introduced to the literature by Hakimi in 1964. The P-median method is defined as selecting p 
facility locations from n demand locations and allocating demand points to these locations to minimize the demand-weighted 
average distance between demand points and the relevant facilities (Hakimi, 1964). 
 
In the P-median model, facilities can only be located on nodes in the network. This thought may suggest that the solution 
could be more optimal. However, Hakimi (1965) proved that when the facilities to be opened in the p-median model are 
placed at the nodes in the network, there is at least one optimal result. Based on this feature, the number of potential solutions 
to a problem consisting of n nodes and p facilities to be opened can be shown by Eq. (6) below. 

 ቀ𝑛𝑝ቁ = 𝑛!𝑝! (𝑛 − 𝑝)! (6) 

 
The notations of the P-median model are summarized as follows. 
 

Sets 
i Set of CDPs 
j Candidate L-CDP locations 𝑝 Number of L-CDPs to be selected 
Parameters 𝑤௜ Shipment amount of CDP i 𝑑௜௝ Distance from CDP i and L-CDP j 
Decision Variables 𝑦௜௝ Take the value 1 if CDP i is assigned to L-CDP j, and 0 otherwise 𝑥௝ Take the value 1 if and only if L-CDP j is chosen, and 0 otherwise 

 
The objective function and constraint equations of the P-median model are as follows (ReVelle and Swain, 1970): 
 min𝑍 = ෍ ෍𝑤௜𝑦௜௝𝑑௜௝௡

௝ୀଵ
௡௜ୀଵ  

 
(7) 

෍ 𝑦௜௝  =  1௡௝ୀଵ  ∀௜∈  ሼ1, 2, 3 . . .𝑛ሽ (8) ෍ 𝑥௝  =  𝑝௡௝ୀଵ  ∀௝∈  ሼ1, 2, 3 . . .𝑛ሽ (9) 𝑦௜௝  ≤  𝑥௝ ∀௜∈  ሼ1, 2, 3 . . .𝑛ሽ , ∀௝∈  ሼ1, 2, 3 . . .𝑛ሽ (10) 𝑥௝ =  ሼ0, 1ሽ  ∀௝∈  ሼ1, 2, 3 . . .𝑛ሽ (11) 𝑦௜௝ =  ሼ0, 1ሽ  ∀௜∈  ሼ1, 2, 3 . . .𝑛ሽ ,∀௝∈  ሼ1, 2, 3 . . .𝑛ሽ (12) 
 
Eq. (7), the objective function, aims to minimize the shipment (𝑤௜) weighted sum of the distances between L-CDP 𝑗 and CDP 𝑖. Equation (8) ensures that each CDP is assigned to only one L-CDP. Eq. (9) ensures that there will be p number of L-CDPs 
to be selected among the CDPs. It refers to assigning shipping points to the L-CDPs selected in Eq.  (10). Eq. (11) and Eq. 
(12) state that the decision variables should take integer values of 0 or 1. 
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4.2.2. Phase #2 
 

In the second phase of the hierarchical method, the shortest distance routes between L-CDPs and S-CDPs are determined. At 
this stage of the method, the problem is designed as a capacitated vehicle routing problem (CVRP). The ant colony-based 
hybrid algorithm pseudo code for CVRP is provided in Algorithm 3. 
 

Algorithm 3. ACO-Based Hybrid Algorithm for CVRP 
1: Start 
2:       Determine the number of ants, α, β and ρ parameters, number of CDPs, vehicle load capacity, and shipment quantities to CDPs. 
3:       do 
4:          for each ant 
5: Determine a random starting CDP for each ant 
6: Determine the order of CDPs to be shipped next using Equation 1 
7: Assign CDPs to vehicles, taking into account the vehicle's load capacity constraint 
8:               Calculate total distance traveled (km) for all vehicles 
9:               Compare the best solution with the current solution and save if it is better 
10:               Apply local search method 
11:               Update pheromone using Equation 2 and Equation 3 
12:               Compare the best solution with the current solution and save if it is better 
13:         end for 
14:      until the maximum number of iterations is satisfied 
15: Finish 

 
5. Computational experiments 
 
Computational experiments were conducted to evaluate the proposed approaches’ performance in solving the multi-echelon 
LMD problem. The previously outlined solution, implemented in MATLAB, is executed on a computing system with an Intel 
Core i7 CPU running at 4.5 GHz and 16.00 GB of RAM. 
 
Firstly, the test instances generated in this paper are presented in Section 4.1. In Section 4.2, the procedure for adjusting 
parameters for the proposed approaches is described. The performance of the proposed approaches is evaluated in Section 
4.3. Finally, statistical tests are presented in Section 4.4 to compare the solutions of the proposed algorithms. 
 
5.1. Test instances 
 
In the problem addressed in the study, satellites are dynamic and can change in the data set. For this reason, there is no 
benchmark in the literature suitable for the problem we are addressing. In this study, we adapted the dataset presented by 
Zhou et al. (2018) to our problem. There are 36 instances in this dataset. These datasets are adapted based on one depot, 𝑛 ௦  
satellite station is dynamic and can change for each data set. Our customers determine their pick-up facilities, called CDPs, 
so we consider only 𝑛 ௖ ={50, 100, 150, 200} customer data for our instances. This customer data represents the CDPs in our 
problem. 
 
5.2. Parameter setting 
 
The Taguchi method was used to determine our proposed ACO-based hybrid algorithm’ best combination of parameters 
(Taguchi and Wu, 1979). Five parameters are defined. These are the number of iterations, the number of ants, 𝛼, 𝛽, 𝜌. Three 
levels of each parameter are considered. We used the same parameter levels and ranges as in (Comert and Yazgan, 2023). 
L18 orthogonal array was chosen by the number of parameters and levels. While setting the parameters, 36 test instances that 
we adapted to our problem were used and run 100 times. The levels of parameters’ values for the tuning process are provided 
in Table 2. 
 
Table 2 
The tuning process of parameters and selected levels 

Parameter Level 1 Level 2 Level 3 Selected Level 
The number of iterations 10 50 100 Level 3 

The number of ants 10 100 1000 Level 1 
α 0.1 0.5 1 Level 3 
β 1 5 9 Level 3 
ρ 0.01 0.065 0.65 Level 3 

 
5.3. Results 
 
Table 3 presents the results for all the 36 benchmark instances using the hierarchical method and ACO-based hybrid algorithm. 
Average results of the proposed methods correspond to the average solution obtained by ten runs, while the best corresponds 
to the best solution found of those ten runs. The first column contains the instance names. Column 2 shows the number of 
CDPs. Columns 3 and 6 indicate the number of L-CDP. Columns 4 and 7 report the best solutions obtained by the ACO-based 
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hybrid algorithm and hierarchical method, respectively. In Columns 5 and 8, are the average solution values obtained for 
ACO-based hybrid algorithm and hierarchical method, respectively. The gap metric is defined as the percentage deviation of 
the solution by the ACO-based hybrid algorithm from the hierarchical method. The gap metric is defined as: Gap (value) = 
((value (Hierarchical method) - value (ACO-based hybrid algorithm)) ∕ value (ACO-based hybrid algorithm)) * 100. Value 
represents the best or the average total distances traveled and number of L-CDP found by each approach. 
 
Table 3 
Average and best solutions for the ACO-based hybrid algorithm and hierarchical method  

Instance 
 ACO-Based Hybrid Algorithm Hierarchical Method 𝒏 𝒄  L-CDP Number Total Distances  L-CDP Number Total Distances  

Best Average Best Average Best Average Best Average 
#1 50 6 6 34.14 36.1 4 5 37.17 39.2 
#2 100 10 10 59.69 61.5 8 9 63.46 65.3 
#3 50 10 10 38.69 40.7 8 9 41.86 43.9 
#4 100 10 11 62.07 64.2 9 10 65.90 68.2 
#5 100 7 7 55.54 57.6 6 6 59.19 61.25 
#6 150 7 7 86.56 88.4 6 6 91.10 93.1 
#7 100 8 9 63.38 65.1 7 8 67.25 68.9 
#8 150 8 8 93.32 95.2 7 7 98.05 99.9 
#9 150 9 10 87.86 89.8 7 8 92.43 94.5 
#10 200 8 8 121.17 123.1 7 7 126.70 128.9 
#11 150 10 11 86.94 92.5 7 9 96.63 100.4 
#12 200 12 13 118.89 123.8 10 11 127.43 130.3 
#13 50 7 7 31.81 33.5 6 6 34.78 36.5 
#14 100 5 5 63.86 65.6 4 4 67.74 69.6 
#15 50 9 10 39.06 41.2 8 9 42.23 44.4 
#16 100 8 9 72.12 74.1 7 8 76.24 78.3 
#17 100 8 8 66.45 68.4 7 7 70.41 72.4 
#18 150 7 7 108.27 110.3 6 6 113.43 115.5 
#19 100 10 10 60.34 62.5 9 9 64.13 66.2 
#20 150 8 8 97.17 99.1 7 7 102.01 103.9 
#21 150 8 8 89.22 91.2 7 7 93.84 95.9 
#22 200 9 9 122.72 124.8 8 8 128.29 130.4 
#23 150 10 12 94.39 99.4 9 10 102.24 107.3 
#24 200 14 15 125.25 127.3 13 14 130.89 132.9 
#25 50 7 8 41.91 43.4 6 7 45.16 46.7 
#26 100 4 4 77.18 79.2 3 3 81.45 83.4 
#27 50 8 10 42.21 44.3 6 8 45.48 47.6 
#28 100 9 10 72.00 74.03 8 9 76.12 78.2 
#29 100 5 5 60.48 62.5 4 4 64.27 66.3 
#30 150 6 6 90.59 92.6 5 5 95.24 97.4 
#31 100 9 10 64.54 66.5 8 9 68.45 70.4 
#32 150 7 8 98.32 100.2 6 7 103.20 106.1 
#33 150 10 10 94.04 96.1 9 9 98.78 101.4 
#34 200 10 10 144.34 146.5 9 9 150.53 151.1 
#35 150 10 12 97.37 102.4 9 10 105.30 108.3 
#36 200 12 14 134.25 139.3 11 12 143.24 146.5 

Average 
Gap% 

 -14.4% -13.2% 6% 5.6%     

 
The ACO-based hybrid algorithm gave better results than the hierarchical method regarding total distances traveled in 36 test 
instances. In all 36 instances, the hierarchical method gave better results in terms of the number of L-CDP. Since increasing 
the number of L-CDP means increasing the number of routes between L-CDP and satellites, the hierarchical method has fewer 
routes. Also, average gap values confirm these results. 
 
36 benchmark instances were solved with both solution methodologies and the obtained values are shown comparatively in 
the graphs in Fig. 3. When all graphs are evaluated in general, there are no contradictory results in the solution values obtained 
in different runs. This can be considered as one of the positive outcomes of selecting ACO in both solution methodologies. 
 
When the graphs of benchmark instances # 1, 3, 13, 15 and 27, where nc = 50, are compared with the others, it is observed 
that the solution values obtained from both solution methodologies are closer to each other. On the other hand, when the 
graphs of benchmark instances #10, 12, 22, 24, 34 and 36, where nc = 200, are compared with the others, it is observed that 
the solution values obtained from both solution methodologies indicate values that are further away from each other. These 
two situations can be considered as an indication that as the problem size decreases, the success of both methods approaches 
each other, while as the size increases, the results differ. 
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Fig. 3. Comparative graphics of solutions by ACO-based hybrid and Hierarchical methodologies 

 
 
5.4. Statistical tests 
 
Paired sample t test was performed to compare the solutions illustrated in Table 3. First, we compared the solutions of the 
Hierarchical method and the ACO-based hybrid algorithm in terms of total distances traveled and number of L-CDP with 
paired sample t test. The null hypotheses are below. The test results are illustrated in Table 4 and Table 5 respectively.  
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Null Hypothesis 1: There is no significant difference between the solutions’ means of the Hierarchical method and the ACO-
based hybrid algorithm’s solutions in terms of total distances traveled. 
 
Null Hypothesis 2: There is no significant difference between the solutions’ means of the Hierarchical method and the ACO-
based hybrid algorithm’s solutions in terms of number of L-CDP. 
 
Table 4 
Paired sample t test in terms of total distances traveled.  

 Mean Std. Deviation Std. Error Mean 95% CI for mean difference T-value df P-value 
Best HA- Best HM -4.84667 1.73106 .28851 -5.43237 -4.26096 -16.799 35 .000 
Avg. HA- Avg. HM -4.67000 1.28264 .21377 -5.10398 -4.23602 -21.846 35 .000 

 
Table 5 
Paired sample t test in terms of number of L-CDP 

 Mean Std. Deviation Std. Error Mean 95% CI for mean difference T-value df P-value 
Best HA- Best HM 1.22222 .48469 .08078 1.05823 1.38622 15.130 35 .000 
Avg. HA- Avg. HM 1.19444 .40139 .06690 1.05863 1.33025 17.855 35 .000 

 
According to the results in Table 4, Null hypothesis 1 is rejected with %95 confidence interval. So, there is a significant 
difference between the solutions’ means of the hierarchical method and the ACO-based hybrid algorithm’s solutions regarding 
total distances traveled. The means of the hierarchical method’s solution values are higher than the ACO-based hybrid 
algorithm’s solution values, considering the negative mean difference interval. This means that the ACO-based hybrid 
algorithm is better than the hierarchical method in terms of total distances traveled. 
 
The results in Table 4 indicate that null hypothesis 2 is accepted. However, the situation here indicates that the solution values 
of the hierarchical method are lower than those of the ACO-based hybrid algorithm. This means that the hierarchical method 
is better than the ACO-based hybrid algorithm in terms of the number of L-CDP. Therefore, the hierarchical method has less 
number of routes. 
 
These options can be chosen according to the user's needs. If the user values the reduction in total distance traveled and can 
consider the costs of using vehicles for each route, ACO-based hybrid algorithm can be preferred. If the number of routes 
and, consequently, the costs of vehicles are significant, then the hierarchical method might be preferred. Here, the user's 
preference takes precedence. 
 
6. Case study 
 
This study discusses the LMD problem that occurs when an e-commerce company delivers its products to its customers. The 
problem addressed is determining the alternative CDPs closest to locations where customer demands are intense, selecting L- 
CDPs and S-CDPs from candidate CDPs and, planning the shipment from these L-CDPs to the S-CDPs. In the LMD model 
we propose, the L-CDPs determined between the CDPs can be selected differently for each data set. The dynamic structure 
of the problem emerges for this reason. The main goal is to minimize the total distance traveled. The company's shipments to 
the Marmara region will be planned. For this purpose, 81 CDPs (florist, market, cargo branch, etc.) in this region were 
determined. Products are shipped once in two days from the company's main depot in Gebze to L-CDPs. The average once in 
two days shipment quantity to be made to each candidate depot is known. Identical vans provide distribution and each of them 
can carry 175 boxes. They leave the L-CDPs with a reasonable capacity to deliver the orders to S-CDPs and return by 
following the determined route. Each S-CDPs can only be served by L-CDP and is visited by only one van. 
 
The company's weekly shipment plan is divided into four, and the total shipment quantities to be made are given in Table 6. 
Weekly shipment quantities based on CDPs are given in Appendix A. We employ an ACO-based hybrid algorithm and 
hierarchical method to solve the LMD problem of the e-commerce company and compare their results. 
 
Table 6 
Weekly shipment quantities 

Shipment No Total Shipment Quantities 
1 2114 
2 2434 
3 2963 
4 3663 

 
6.1. Results of ACO-based hybrid algorithm 
 
In this subsection, the LMD problem is solved by the ACO-based hybrid algorithm according to the solution steps given in 
Section 4, and the results are presented.  
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In the proposed ACO-based hybrid algorithm, we used the same parameter values reported in Section 4. After solving the 
LMD problem by considering the quantities of the first shipment of the week, the L-CDPs and S-CDPs and, routes in Table 
7 were determined, and the total kilometers of each route were given. 
 
Table 7 
First shipment plan of the week (Determined L-CDP locations, routes and total kilometers) 

L-CDP# L-CDP 
Location 

Vehicle 
No Route Total 

Km 

#1 CDP11 
1 CDP11-CDP16-CDP10-CDP77-CDP41-CDP54-CDP11 132 
2 CDP11-CDP34-CDP59-CDP39-CDP22-CDP17-CDP11 228 
3 CDP11-CDP26-CDP43-CDP11 55 

#2 CDP79 
1 CDP79-CDP63-CDP47-CDP21-CDP2-CDP46-CDP79 197 
2 CDP79-CDP80-CDP1-CDP33-CDP51-CDP31-CDP79 212 
3 CDP79-CDP27-CDP79 26 

#3 CDP71 
1 CDP71-CDP66-CDP19-CDP5-CDP55-CDP57-CDP37-CDP18-CDP71 204 
2 CDP71-CDP14-CDP81-CDP67-CDP74-CDP78-CDP6-CDP71 179 
3 CDP71-CDP50-CDP38-CDP40-CDP71 106 

#4 CDP24 1 CDP24-CDP69-CDP29-CDP61-CDP28-CDP52-CDP60-CDP58-CDP24 217 
2 CDP24-CDP23-CDP44-CDP12-CDP62-CDP24 176 

#5 CDP15 
1 CDP15-CDP32-CDP3-CDP42-CDP68-CDP70-CDP7-CDP15 259 
2 CDP15-CDP64-CDP45-CDP35-CDP9-CDP48-CDP15 174 
3 CDP15-CDP20-CDP15 60 

#6 CDP76 1 CDP76-CDP65-CDP30-CDP73-CDP56-CDP72-CDP13-CDP49-CDP76 280 
2 CDP76-CDP36-CDP75-CDP8-CDP53-CDP25-CDP4-CDP76 219 

TOTAL KM  2724 
 
As seen in Table 7, CDP11, 79, 71, 24, 15 and 76, which are the service points with the highest demand per kilometer 
according to the quantities in the first shipment, were determined as L-CDP. Three vehicles departed from the first, second, 
third, and fifth L-CDPs, two from the fourth and sixth L-CDPs, and products were delivered to all S-CDPs. As a result of the 
completion of the tours of the vehicles departing from the L-CDPs, a total of 2724 km was covered. 
 
See Appendix B for detailed the second, third and fourth shipment plans of the week. After solving the LMD problem by 
considering the quantities of the second shipment, CDP 81, 27, 64, 40, 12, 57, and 70 and were selected as L-CDPs. Three 
vehicles departed from the first, second, third, and fifth L-CDPs, two from the fourth, sixth, and seventh L-CDPs, and products 
were delivered to all S-CDPs. For the third delivery of the week, CDP 77, 80, 48, 40, 12, 5, 36, and 10 and were determined 
as L-CDPs. Three vehicles departed from the first, second, fourth, and fifth L-CDPs, two from the third, sixth, seventh, and 
eighth L-CDPs. Finally the fourth delivery of the week, CDP 54, 46, 64, 50, 56, 5, 17, and 24 and were selected as L-CDPs. 
Three vehicles departed from the first, second, third, fourth, seventh, and eighth L-CDPs, two from the fifth and sixth L-
CDPs. Also, the total travel distances of the plans obtained for the second, third and fourth shipments were calculated as 3037, 
2961 and 2572 km, respectively. 
 

6.2. Results of hierarchical method  
 
In this subsection, the LMD problem is solved by the hierarchical method according to the solution steps given in Section 4, 
and the results are presented. First, considering their distance, 81 CDPs determined in the Marmara region are desired to be 
clustered. The first parameter to be specified here is the optimal number of clusters. Two different methods were used to 
determine the most appropriate number of clusters. One of these is the Elbow method. According to the Elbow method, 
dividing 81 delivery points into 2 clusters, considering their distance, gave the most appropriate result. The Elbow graph of 
CDPs is shown in Fig. 4. 
 

  
 
 
Table 8 
Silhouette Score values 

“k” 
Value  

2 3 4 5 6 7 8 9 

Silhouette 
Score 

0.533 0.479 0.389 0.384 0.339 0.345 0.362 0.374 
 

Fig. 4. The Elbow graph of S-CDPs  
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Another method used to determine the most appropriate number of clusters is Silhouette Score. Here, Silhouette Score values 
up to the number of clusters k = 2,…,9 are calculated as in the Table 8. 
According to both methods, k = 2 was found to be the most appropriate value, and 81 CDPs were divided into 2 clusters 
according to the distance between each other. Clusters created k=2 using the K-Means algorithm are given in Table 9. 
 
Table 9 
CDPs divided into clusters using the K-Means algorithm 

Cluster # 1 

CDP3, CDP68, CDP6, CDP7, CDP9, CDP10, CDP74, CDP11, CDP14,  CDP15, CDP16, CDP17, CDP18, CDP19, 
CDP20, CDP81, CDP22, CDP26, CDP32, CDP34, CDP35, CDP78, CDP70, CDP37, CDP71,  CDP39, CDP40, 
CDP41, CDP42, CDP43, CDP45, CDP33, CDP48, CDP50, CDP51, CDP54, CDP57, CDP59, CDP64, CDP77, 
CDP66,  CDP67 

Cluster # 2 
CDP1, CDP2, CDP4, CDP5, CDP75, CDP8, CDP72, CDP69, CDP12, CDP13, CDP21, CDP23, CDP24, CDP25, 
CDP27, CDP28, CDP29, CDP30, CDP31, CDP76, CDP46, CDP36, CDP38, CDP79, CDP44,  
CDP47, CDP49, CDP52, CDP80, CDP53, CDP55, CDP56, CDP58, CDP63, CDP73, CDP60, CDP61, CDP62, CDP65 

 
Depot locations (L-CDPs) were determined using the P-Median method based on the weekly shipment quantities of Cluster 
#1 and Cluster #2, as shown in Table 10. 
 
Table 10 
Depot locations (L-CDPs) for Cluster #1 

Week L-CDPs for Cluster #1 L-CDPs for Cluster #2 
1 CDP18 CDP79 
2 CDP57 CDP5  
3 CDP18 CDP79 
4 CDP57 CDP5 

 
After the L-CDPs were determined, the shipping routes from the L-CDP to the CDPs were created with the ACO-based hybrid 
algorithm. The routes and total travel distances for Cluster #1 and Cluster #2 are displayed in Table 11 and Table 12 
respectively. 
 
Table 11 
Shipment plans of Cluster #1 (Determined routes and total kilometers) 

L-CDP 
Location Vehicle No Route Total Km 

  First Shipment  

CDP18 

1 CDP18-CDP48-CDP9-CDP35-CDP45-CDP18 392 
2 CDP18-CDP10-CDP17-CDP59-CDP39-CDP22- CDP18 199 
3 CDP18-CDP34-CDP41-CDP54-CDP81-CDP14-CDP18 292 
4 CDP18-CDP78-CDP74-CDP67-CDP37-CDP57-CDP19-CDP66-CDP40-CDP18 230 
5 CDP18-CDP50-CDP68-CDP51-CDP70-CDP42-CDP71- CDP18 212 
6 CDP18-CDP6-CDP26-CDP11-CDP16-CDP77- CDP18 302 
7 CDP18-CDP3-CDP43-CDP64-CDP20-CDP15-CDP32-CDP18 343 

TOTAL KM    1970 
  Second Shipment  

CDP57 

1 CDP57-CDP42-CDP68-CDP51-CDP50-CDP40-CDP66-CDP57 311 
2 CDP57-CDP19-CDP18-CDP71-CDP6-CDP26-CDP11-CDP57 311 
3 CDP57-CDP16-CDP77-CDP41-CDP54-CDP57 282 
4 CDP57-CDP81-CDP14-CDP78-CDP74-CDP67-CDP37-CDP57 245 
5 CDP57-CDP34-CDP59-CDP39-CDP22-CDP57 387 
6 CDP57-CDP17-CDP10-CDP45-CDP35-CDP57 470 
7 CDP57-CDP9-CDP48-CDP20-CDP64-CDP3-CDP57 441 
8 CDP57-CDP43-CDP15-CDP32-CDP7-CDP57 422 

TOTAL KM    2869 
  Third Shipment  

CDP18 

1 CDP18-CDP68-CDP50-CDP40-CDP66-CDP19-CDP18 173 
2 CDP18-CDP6-CDP71-CDP14-CDP81-CDP18 159 
3 CDP18-CDP54-CDP41-CDP77-CDP18 180 
4 CDP18-CDP16-CDP11-CDP26-CDP43-CDP18 243 
5 CDP18-CDP3-CDP64-CDP45-CDP18 282 
6 CDP18-CDP35-CDP9-CDP48-CDP18 340 
7 CDP18-CDP20-CDP15-CDP32-CDP7-CDP18 327 
8 CDP18-CDP42-CDP70-CDP51-CDP33-CDP18 286 
9 CDP18-CDP37-CDP78-CDP74-CDP67-CDP18 137 

10 CDP18-CDP34-CDP59-CDP39-CDP18 291 
TOTAL KM    2418 

 Fourth Shipment  

CDP57 

1 CDP57-CDP68-CDP51-CDP70-CDP42-CDP57 328 
2 CDP57-CDP32-CDP15-CDP7-CDP57 383 
3 CDP57-CDP20-CDP64-CDP3-CDP57 368 
4 CDP57-CDP43-CDP26-CDP11-CDP57 310 
5 CDP57-CDP16-CDP77-CDP57 283 
6 CDP57-CDP41-CDP54-CDP57 232 
7 CDP57-CDP81-CDP14-CDP78-CDP74-CDP67-CDP57 245 
8 CDP57-CDP37-CDP18-CDP71-CDP6-CDP57 175 
9 CDP57-CDP40-CDP50-CDP66-CDP19-CDP57 232 

10 CDP57-CDP34-CDP59-CDP57 328 
11 CDP57-CDP39-CDP22-CDP17-CDP57 435 
12 CDP57-CDP10-CDP45-CDP57 396 
13 CDP57-CDP35-CDP9-CDP57 429 

TOTAL KM    4144 
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Table 11 illustrates those seven vehicles for the first shipment, eight for the second shipment, ten for the third shipment, and 
thirteen for the fourth shipment completed the product distribution to all CDPs. The total distances traveled were calculated 
according to shipments as 1970, 2869, 2418, and 4144 km, respectively. 
 
Table 12 
Shipment plans of Cluster #2 (Determined routes and total kilometers) 

L-CDP 
Location Vehicle No Route Total Km 

  First Shipment  

CDP79 

1 CDP79-CDP72-CDP56-CDP73-CDP30-CDP65-CDP13-CDP49-CDP79 249 
2 CDP79-CDP12-CDP23-CDP44-CDP2-CDP63-CDP79 392 
3 CDP79-CDP21-CDP47-CDP25-CDP69-CDP29-CDP24-CDP62-CDP46- CDP79 123 
4 CDP79-CDP27-CDP80-CDP1-CDP31-CDP79 344 
5 CDP79-CDP38-CDP58-CDP60-CDP5-CDP55-CDP79 480 
6 CDP79-CDP52-CDP28-CDP61-CDP53-CDP8-CDP75-CDP36-CDP76-CDP79 381 

TOTAL KM    1969 
  Second Shipment  

CDP5 

1 CDP5-CDP60-CDP58-CDP38-CDP2-CDP63-CDP5 332 
2 CDP5-CDP27-CDP79-CDP31-CDP80-CDP1-CDP5 321 
3 CDP5-CDP46-CDP44-CDP23-CDP62-CDP24-CDP29-CDP69-CDP5 355 
4 CDP5-CDP25-CDP12-CDP49-CDP13-CDP56-CDP72-CDP5 383 
5 CDP5-CDP21-CDP47-CDP73-CDP30-CDP65-CDP5 471 
6 CDP5-CDP4-CDP76-CDP36-CDP75-CDP8-CDP53-CDP61-CDP5 381 
7 CDP5-CDP28-CDP52-CDP55-CDP5 129 

TOTAL KM    2372 
  Third Shipment  

CDP79 

1 CDP79-CDP8-CDP75-CDP36-CDP76-CDP4-CDP25-CDP79 449 
2 CDP79-CDP69-CDP29-CDP61-CDP53-CDP28-CDP52-CDP79 412 
3 CDP79-CDP55-CDP5-CDP60-CDP58-CDP79 318 
4 CDP79-CDP38-CDP46-CDP27-CDP79 158 
5 CDP79-CDP80-CDP1-CDP31-CDP79 118 
6 CDP79-CDP63-CDP2-CDP44-CDP79 159 
7 CDP79-CDP23-CDP62-CDP24-CDP12-CDP49-CDP13-CDP56-CDP79 357 
8 CDP79-CDP73-CDP30-CDP65-CDP72- CDP79 340 
9 CDP79-CDP21-CDP47- CDP79 170 

TOTAL KM    2481 
 Fourth Shipment 

CDP5 

1 CDP5-CDP1-CDP80-CDP46-CDP5 260 
2 CDP5-CDP27-CDP79-CDP31-CDP5 292 
3 CDP5-CDP63-CDP2-CDP44-CDP5 293 
4 CDP5-CDP23-CDP62-CDP24-CDP29-CDP69-CDP5 299 
5 CDP5-CDP25-CDP4-CDP76-CDP36-CDP5 357 
6 CDP5-CDP75-CDP8-CDP53-CDP61-CDP5 315 
7 CDP5-CDP28-CDP52-CDP55-CDP5 129 
8 CDP5-CDP60-CDP58-CDP38-CDP5 154 
9 CDP5-CDP12-CDP49-CDP13-CDP56-CDP5 364 
10 CDP5-CDP72-CDP21-CDP47-CDP5 360 

TOTAL KM    2823 
 
It is also apparent from Table 12 that six vehicles for the first shipment, seven for the second shipment, nine for the third 
shipment, and ten for the fourth shipment completed the product distribution to all CDPs. The total distances traveled were 
calculated according to shipments as 1969, 2372, 2481 and 2823 km, respectively. 
 
6.3. Comparison of results 
 
A weekly shipment plan was created with an ACO-based hybrid algorithm and hierarchical method, and the results obtained 
are summarized in Table 13. The columns ‘‘Gap %’’ indicate percentage difference with the result of the ACO-based hybrid 
algorithm and calculated as ((Total KM (Hierarchical method) - Total KM (ACO-based hybrid algorithm)) ∕ Total KM (ACO-
based hybrid algorithm)) ∗ 100. Examining the Gap value proves that the ACO-based hybrid algorithm performs better than 
the hierarchical method. 
 
Table 13 
Comparisons of the results in terms of total distances traveled 

 Shipment 1 Shipment 2 Shipment 3 Shipment 4 
 HA HM HA HM HA HM HA HM 

Total KM 2724 3939 3037 5241 2961 4899 2572 6967 
Gap %  0.45  0.73  0.65  1.71 

HA: ACO-based hybrid algorithm, HM: Hierarchical method 
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When the findings obtained as a result of the solution of the case study according to two different methodologies are compared 
in terms of the number of routes, the results in Table 14 appear. In the solutions obtained with the two-stage hierarchical 
method, it is seen that the number of routes for the first three shipments is less than the ACO-based hybrid algorithm. We can 
attribute the reason for this to the fact that the two-phased hierarchical method distributes with fewer L-CDPs (only 2). 
However, it is seen that as the order amount increases, the difference decreases, and for the last shipment, the ACO-based 
hybrid algorithm distributes with fewer routes. It may be preferable to have a small number of routes due to a restriction on 
the number of vans to be used in daily delivery, a high fixed cost, etc. When the user decides which distribution plan to apply, 
taking into account the current order, we recommend that the two proposed solution approaches be taken into consideration. 
 
Table 14 
Comparisons of the results in terms of number of routes 

 Shipment 1 Shipment 2 Shipment 3 Shipment 4 
HA HM HA HM HA HM HA HM 

Number of Routes 16 13 18 15 20 19 22 23 
Gap % -18.75% -16.65% -5% 4.55% 

 

7. Conclusion 

In this study, a multi-echelon LMD system in which deliveries to a certain region are collected in a single warehouse called 
the main warehouse and distributed to CDPs from there is designed and this system is discussed from the DLRP perspective. 
Because CDPs are divided into L-CDP and S-CDP and will be assigned as L-CDP or S-CDP according to the order quantities 
in each delivery. Two different solution methods have been proposed to solve the problem. One of these is the ACO-based 
hybrid algorithm, which evaluates the entire delivery process in a single stage and produces a solution, and the other is the 
two-phased hierarchical method, which handles the delivery process at two hierarchical levels. ACO-based hybrid algorithm 
assigns CDPs as L-CDP or S-CDP according to the current order status, determines which L-CDP will be on the same route 
with which S-CDPs and determines the optimum routes. This method works dynamically depending on the status of the order. 
The two-phased hierarchical method clusters all CDPs according to their distance from each other and assigns the CDPs at 
the midpoints of these clusters as L-CDP. Therefore, it is not dynamic as it does not consider the status of the order at the first 
level. However, in the second stage, it determines the optimal routes considering the status of the order.  
 
The performance of two different solution methods is evaluated based on 36 benchmark instances that adapted to our problem 
from the dataset presented by Zhou et al. (2018).  Considering the results obtained from these experiments, it has been 
determined that in the all-benchmark instances with respect to both average and best solutions where the ACO-based hybrid 
algorithm is superior in terms of total distance traveled, it generally cannot show the same superiority in terms of the number 
of routes. Moreover, this superiority is statistically confirmed by the paired sample t test. According to this; it is recommended 
that the user who will implement a shipment plan decides by taking into account restrictions such as the status of fixed and 
variable costs and the number of available vehicles. 
  
In this paper, we also applied two different methodologies developed for the proposed multi-echelon LMD system in real 
word instances of an e-commerce company involving 81 CDPs (florist, market, cargo branch, etc.) in the Marmara region. 
The results obtained support the results obtained from the solution of benchmark instances. The obtained outcomes 
substantiate the findings derived from the resolution of benchmark instances, fortifying the validity and reliability of the 
results. 
 
The presented work can be extended in the future by adding time windows, heterogeneous vehicle fleets, and time-dependent 
travel time constraints to this problem. 
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Appendix A Weekly shipment quantities 

L-CDP Location 

Shipment Quantity 

L-CDP Location 

Shipment Quantity 

L-CDP Location 

Shipment Quantity 

L-CDP Location 

Shipment Quantity 

First
 Second

 

Third
 Fourth
 

First
 Second

 

Third
 Fourth
 

First
 Second

 

Third
 Fourth
 

First
 Second

 

Third
 Fourth
 

CDP1 42 39 60 59 CDP21 37 38 52 57 CDP41 36 46 51 69 CDP61 30 36 43 55 
CDP2 30 30 42 45 CDP22 25 26 35 39 CDP42 40 45 57 68 CDP62 8 9 11 14 
CDP3 29 28 41 42 CDP23 25 36 35 54 CDP43 29 30 40 46 CDP63 39 45 56 68 
CDP4 24 24 33 36 CDP24 12 22 17 33 CDP44 33 32 47 48 CDP64 21 25 30 37 
CDP5 19 20 27 30 CDP25 32 30 45 45 CDP45 36 44 50 66 CDP65 35 41 49 62 
CDP6 43 39 61 59 CDP26 35 40 48 60 CDP46 33 37 46 56 CDP66 24 28 33 42 
CDP7 41 45 58 68 CDP27 37 38 52 57 CDP47 30 35 42 53 CDP67 31 27 44 40 
CDP8 15 11 21 16 CDP28 23 33 32 50 CDP48 35 31 50 47 CDP68 24 28 34 42 
CDP9 36 42 51 63 CDP29 10 12 13 19 CDP49 21 24 29 37 CDP69 9 14 13 21 
CDP10 35 35 50 52 CDP30 18 27 26 41 CDP50 18 21 25 32 CDP70 15 20 21 30 
CDP11 15 24 20 36 CDP31 39 35 54 52 CDP51 24 21 34 31 CDP71 14 19 19 28 
CDP12 18 29 24 43 CDP32 22 34 31 51 CDP52 32 34 45 51 CDP72 28 31 39 46 
CDP13 19 19 27 28 CDP33 36 46 51 69 CDP53 21 21 29 32 CDP73 29 27 40 40 
CDP14 19 21 27 32 CDP34 54 64 77 97 CDP54 33 43 46 64 CDP74 15 16 21 24 
CDP15 16 22 22 33 CDP35 42 50 59 75 CDP55 36 43 50 65 CDP75 12 17 17 26 
CDP16 42 50 60 75 CDP36 20 27 28 41 CDP56 18 22 25 33 CDP76 15 24 21 36 
CDP17 24 30 33 46 CDP37 23 26 32 39 CDP57 12 15 16 23 CDP77 17 27 24 41 
CDP18 12 16 16 24 CDP38 36 40 51 60 CDP58 29 28 40 42 CDP78 15 23 20 35 
CDP19 26 23 36 35 CDP39 20 30 27 45 CDP59 34 42 48 63 CDP79 9 22 12 33 
CDP20 35 38 48 57 CDP40 13 18 18 27 CDP60 29 29 41 44 CDP80 24 26 34 39 

               CDP81 22 29 31 44 
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Appendix B- Detailed of the second, third and fourth shipment plans  
L-

C
D

P 
 #

 

Second Shipment Plan Third Shipment Plan Fourth Shipment Plan 
L-

C
D

P 
Lo

ca
tio

n
 

VN Route (S-CDPs) Total 
Km L-

C
D

P 
Lo

ca
tio

n
 

VN Route (S-CDPs) Total 
Km L-

C
D

P 
Lo

ca
tio

n
 

VN Route (S-CDPs) Total 
Km 

#1 

CD
P8

1
 

1 CDP81-CDP54-CDP11-CDP77-CDP41-CDP81 93 

CD
P7

7
 

1 CDP77-CDP67-CDP74-CDP14-CDP81-CDP54-
CDP77 152 

CD
P5

4
 

1 CDP54-CDP81-CDP14-CDP41-CDP54 60 

2 CDP81-CDP59-CDP39-CDP22-CDP34-CDP81 196 2 CDP77-CDP41-CDP34-CDP77 70 2 CDP54-CDP26-CDP43-CDP11-CDP54 93 
3 CDP81-CDP67-CDP14-CDP81 63 3 CDP77-CDP16-CDP11-CDP77 58 3 CDP54-CDP77-CDP54 41 

#2 

CD
P2

7
 

1 CDP27-CDP21-CDP72-CDP56-CDP73-CDP47-CDP27 224 

CD
P8

0
 

1 CDP80-CDP46-CDP27-CDP79-CDP31-CDP80 104 

CD
P4

6
 

1 CDP46-CDP2-CDP63-CDP27-CDP46 98 

2 CDP27-CDP63-CDP2-CDP44-CDP46-CDP27 147 2 CDP80-CDP63-CDP2-CDP44-CDP80 174 2 CDP46-CDP80-CDP1-CDP31-CDP46 111 

3 CDP27-CDP80-CDP31-CDP79-CDP27 93 3 CDP80-CDP1-CDP80 35 3 CDP46-CDP79-CDP46 54 

#3 

CD
P6

4
 

1 CDP64-CDP45-CDP35-CDP9-CDP48-CDP64 150 

CD
P4

8
 

1 CDP48-CDP20-CDP64-CDP3-CDP9-CDP48 171 

CD
P6

4
 

1 CDP64-CDP45-CDP35-CDP64 88 

2 CDP64-CDP10-CDP17-CDP16-CDP43-CDP3-CDP64 217 2 CDP48-CDP15-CDP32-CDP7-CDP48 147 2 CDP64-CDP9-CDP48-CDP20-CDP64 133 

3 CDP64-CDP20-CDP64 60 - - - 3 CDP64-CDP3-CDP15-CDP64 91 

#4 

CD
P4

0
 

1 CDP40-CDP68-CDP50-CDP38-CDP58-CDP66-CDP40 159 

CD
P4

0
 

1 CDP40-CDP66-CDP38-CDP50-CDP68-CDP40 115 

CD
P5

0
 

1 CDP50-SCPD33-CDP70-CDP42-CDP50 172 

2 CDP40-CDP71-CDP18-CDP6-CDP26-CDP40 197 2 CDP40-CDP51-CDP33-CDP70-CDP42-CDP40 197 2 CDP50-CDP7-CDP32-CDP68-CDP50 230 
- - - 3 CDP40-CDP71-CDP6-CDP40 74 3 CDP50-CDP51-CDP50 33 

#5 

CD
P1

2
 

1 CDP12-CDP25-CDP36-CDP75-CDP8-CDP53-CDP69-
CDP24-CDP62-CDP12 287 

CD
P1

2
 

1 CDP12-CDP49-CDP13-CDP56-CDP72-CDP21-
CDP12 123 

CD
P5

6
 

1 CDP56-CDP13-CDP65-CDP30-CDP56 149 

2 CDP12-CDP49-CDP13-CDP65-CDP30-CDP76-CDP4-
CDP12 288 2 CDP12-CDP47-CDP73-CDP30-CDP65-CDP12 229 2 CDP56-CDP72-CDP21-CDP47-CDP56 102 

3 CDP12-CDP23-CDP12 58 3 CDP12-CDP23-CDP62-CDP12 85 -  - 

#6 

CD
P5

7
 

1 CDP57-CDP55-CDP52-CDP28-CDP61-CDP29-CDP57 219 

CD
P5

 

1 CDP5-CDP60-CDP58-CDP52-CDP5 163 

CD
P5

 

1 CDP5-CDP60-CDP38-CDP66-CDP5 155 

2 CDP57-CDP5-CDP60-CDP19-CDP37-CDP78-CDP74-
CDP57 263 2 CDP5-CDP55-CDP57-CDP37-CDP78-CDP18-

CDP19-CDP5 205 2 CDP5-CDP52-CDP55-CDP57-CDP19-CDP5 188 

#7 

CD
P7

0
 

1 CDP70-CDP42-CDP32-CDP15-CDP7-CDP70 186 

CD
P3

6
 

1 CDP36-CDP8-CDP53-CDP61-CDP28-CDP29-
CDP24-CDP69-CDP36 271 

CD
P1

7
 

1 CDP17-CDP10-CDP16-CDP17 124 

2 CDP70-CDP33-CDP1-CDP51-CDP70 137 2 CDP36-CDP76-CDP4-CDP25-CDP75-CDP36 159 2 CDP17-CDP34-CDP59-CDP17 127 

- - - - - - 3 CDP17-CDP39-CDP22-CDP17 102 

#8 - 
- - - 

CD
P1

0
 

1 CDP10-CDP22-CDP39-CDP59-CDP17-CDP10 195 

CD
P2

4
 

1 CDP24-CDP62-CDP12-CDP23-CDP44-CDP24 176 

- - - 2 CDP10-CDP26-CDP43-CDP35-CDP10 178 2 CDP24-CDP58-CDP28-CDP61-CDP29-CDP24 183 
- - - - - - 3 CDP24-CDP69-CDP24 62 

TOTAL KM 3037 TOTAL KM 2961 TOTAL KM 2572 
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