
* Corresponding author
E-mail address ialobaidi@nwmissouri.edu (I. A. Alobaidi)

ISSN 2561-8156 (Online) - ISSN 2561-8148 (Print)
© 2025 by the authors; licensee Growing Science, Canada.
doi: 10.5267/j.ijdns.2025.4.002

International Journal of Data and Network Science 9 (2025) ****–****

Contents lists available at GrowingScience

International Journal of Data and Network Science

homepage: www.GrowingScience.com/ijds

Maximizing edge connectivity in graph partitioning using hotspots

Isam A. Alobaidia*, Hiba G. Fareedb, Jennifer L. Leopoldc, and Andrea E. Smithc

aSchool of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, United States
bMathematics Department, Mustansiriyah University, Baghdad, Iraq
cDepartment of Computer Science, Missouri University of Science and Technology, Rolla, MO, United States
 C H R O N I C L E A B S T R A C T

Article history:
Received October 31, 2024
Received in revised format March
10, 2025
Accepted April 24 2025
Available online
April 24 2025

 Graphs have long been used to model relationships between entities. For some applications, a single
graph is sufficient; for other problems, a collection of graphs may be more appropriate to represent
the underlying data. Many contemporary problem domains, for which graphs are an ideal data
model, contain an enormous amount of data (e.g., social networks). Hence, researchers frequently
employ parallelized or distributed processing. The graph data must first be partitioned and assigned
to the multiple processors in a way that the workload is balanced and inter-processor
communication is minimized. The latter problem may be complicated by the existence of edges
between vertices in a graph that have been assigned to different processors. Herein we introduce a
strategy that combines vocabulary-based summarization of graphs (𝑉𝑉𝑉𝑉𝑉𝑉) and detection of hotspots
(i.e., vertices of high degree) to determine how a single undirected graph should be partitioned to
optimize multi-processor load balancing and minimize the number of edges that exist between the
partitioned subgraphs. We benchmark our method against another well-known partitioning
algorithm (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) to demonstrate the benefits of our approach.

by the authors; licensee Growing Science, Canada. 5© 202

Keywords:
Graph partitioning
Graph data mining
Structures
Hotspot

1. Introduction

Graphs are often used to model relationships between entities. For some applications, a single graph is sufficient; for other
problems, a collection of graphs may be more appropriate to represent the underlying data. Some of these graphs may contain
an enormous amount of data (e.g., social networks) so parallelized or distributed processing often is employed. Before the
analysis can commence, the graph dataset is partitioned and a subset of data is assigned to each processor. The partitioning
should be done in such a way that the ensuing workload will be balanced, and inter-processor communication will be
minimized. These tasks can be particularly challenging for a single graph and consideration must be given to which vertices
are assigned to which partitions (i.e., processors) and what edges originally existed between those vertices. Ideally, partitions
should be of approximately equal size, and the number of edges between vertices in different partitions should be minimized.
The problem of finding good partitions in these respects has been studied in graph theory. Despite the numerous algorithms
that have been proposed and implemented, the complexity of this problem is still considered NP-complete (Verma et al., 2017;
Chen et al., 2019; Sakouhi et al., 2018). In general, most graph partitioning algorithms utilize either edge-cut partitioning or
vertex-cut partitioning. Edge-cut partitioning splits the vertices of a graph into disjoint sets of approximately equal size
considering the minimum number of cut-edges (e.g., PowerGraph (Gonzalez et al., 2012), Spark GraphX (Gonzalez et al.,
2014), and Chaos (Roy et al., 2015). In contrast, vertex-cut partitioning splits the edges of a graph into equal-sized sets. In
this approach, the partitioning of a single graph must satisfy two requirements: the quality graph partitioning criterion (which
guarantees no lost data) and load balancing. Many studies have shown that edge-cut partitioning produces more accurate
results on large real-world graphs (Gonzalez et al., 2012; Gonzalez et al., 2014; Chen et al., 2019).

mailto:ialobaidi@nwmissouri.edu

 2

Herein we introduce a novel vertex-cut partitioning strategy that determines how a single, undirected graph should be
partitioned to optimize multi-processor load balancing and minimize the number of edges that exist between the partitioned
subgraphs. Our approach, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, first uses vocabulary-based summarization (Koutra et al., 2015) to identify the most
highly connected structures that exist in the graph (e.g., cliques, stars, and chains). We define hotspots as the vertices in
these structures with the highest degree. The hotspots become the starting points from which subgraph partitions are formed.

This paper is organized as follows. In Section 2 we briefly discuss some of the related work in graph partitioning. We present
the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 algorithm in Section 3 and include a discussion of the 𝑉𝑉𝑉𝑉𝑉𝑉 summarization algorithm. In Section 4 we benchmark
our method against another well-known partitioning algorithm (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) to demonstrate the benefits of our approach.
Concluding remarks and a discussion of future work are provided in Section 5.

2. Related works

In this section, we briefly review some of the research that has been done in graph partitioning. Graph partitioning is
considered NP-Complete despite the numerous sequential, distributed, and parallel algorithms that have been developed. One
of the most significant challenges of the problem continues to be minimizing the loss of information from the original graph
dataset when the partitions are formed by minimizing the number of edges that exist between vertices in different partitions.
This situation is more likely to occur as the number of partitions increases.

Some heuristic methods for sequential graph partitioning of a single graph are discussed in (Echbarthi & Kheddouci, 2016;
Karypis & Kumar, 1998a). One offline method (wherein the entire graph resides in memory), 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, is proposed in (Karypis
& Kumar, 1998). This method produces high-quality partitions in terms of uniformity of partition size and minimization of
“lost” edges. However, it cannot handle large graphs because of the offline setting. The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 algorithm consists of three
phases: coarsening, partitioning, and refinement. During each phase, a sequence of specialized algorithms is applied. These
algorithms select the maximal matchings in the coarsening phase, partition the coarse graph in the partitioning phase, and
project the graph back to the original graph in the refinement phase. Others propose the Streaming 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 partitioning (SMP)
method by extending 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 with an online setting (Echbarthi & Kheddouci, 2016; Bourse et al., 2014). 𝑆𝑆𝑆𝑆𝑆𝑆 provides the
ability to adjust the memory capacity and subsequently decrease computational requirements by applying the partitioning
method to small subgraphs.

Some graph partitioning techniques are designed for specific application problems. A technique for local (i.e., memory-
resident, sequential processing) graph partitioning (Bonnet et al., 2015) specifically targets fixed cardinality problems such as
𝑘𝑘 -densest subgraph and max 𝑘𝑘 -vertex cover by developing a fixed parameter algorithm using a greediness-for-
parameterization technique. Zhang et al. (2017) propose a heuristic graph edge partitioning strategy called Neighbor
Expansion (NE) with polynomial running time. Their goal was to reduce the running time and communication cost for some
specific applications such as triangle counting and PageRank.

Graph partitioning in a distributed environment is addressed by different researchers (Karypis & Kumar, 1998b; Kiveris et
al., 2014; Park et al., 2016; Rahimian et al., 2015; Wang et al., 2014). Rahimian et al. (2015) propose a fully distributed
algorithm called JA-BE-JA. This algorithm is built on two types of partitioning: vertex-cut and edge-cut partitioning; the
absence of central coordination and the processing of each vertex independently make this algorithm well-designed for
distributed processing. Another distributed algorithm, PACC (Partition-Aware Connected Components), based on graph
partitioning for edge- filtering and load-balancing, is proposed in (Park et al., 2016). Wang et al. (2014) propose a multi-level
label propagation (MLP) method that uses distributed memory across several machines for partitioning the graphs. PARallel
Submodular Approximation (PARSA) was developed by Li et al. (2015) to partition a graph to fit the storage and computation
ability of each machine. One important characteristic of graph partitioning algorithms is the strategy employed for selecting
the vertex around which the subgraph will be built for each partition. Many algorithms select such vertices randomly. Our
approach is motivated by MELT (Ward et al., 2017), MapReduce-based Efficient Large-scale Trajectory anonymization. The
main objective of that work was to examine paths traveled by people in a geographical space and then partition the space into
regions around popular locations (e.g., a coffee house, an exercise center, etc.); those locations are referred to as hotspots. The
utilization of hotspots as a basis for forming partitions is a novel feature of our partitioning strategy.

3. Methodology

In this section, we present the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 strategy for partitioning a single undirected graph. We begin with some preliminary
definitions that will facilitate this discussion. An explanation of the vocabulary-based summarization of graphs (𝑉𝑉𝑉𝑉𝑉𝑉)
technique developed in (Koutra et al., 2015) then follows; this is a key component for our approach as it is used to determine
subgraphs of high connectivity (e.g., cliques, stars, and chains). Finally, we present our complete set of algorithms, detailing
how the vocabulary-based summarization and identification of hotspots lead to the creation of optimal partitioning.

I. A. Alobaidi et al. /International Journal of Data and Network Science 9 (2025)

3

3.1 Preliminaries

Definition 1. Graph: A graph 𝐺𝐺 is a tuple (𝑉𝑉,𝐸𝐸, 𝐿𝐿) where 𝑉𝑉 is a finite set of nodes called the vertex set of 𝐺𝐺, and 𝐸𝐸 is a set
of 2-element subsets of 𝑉𝑉(𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉) called the edge set of 𝐺𝐺. The nodes and edges are labeled by the function 𝐿𝐿.

Definition 2. Graph partitioning: A graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) will be partitioned into 𝑘𝑘 subgraphs 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠′ = (𝑉𝑉′,𝐸𝐸′), 𝑠𝑠𝑠𝑠𝑠𝑠 = 1, . . . , 𝑘𝑘.
Each 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ ⊂ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 where 𝑉𝑉𝑖𝑖 ∩ 𝑉𝑉𝑗𝑗 = 0 for 𝑖𝑖 ≠ 𝑗𝑗, and each 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ ⊂ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 .

Definition 3. Full-clique: Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be an undirected graph. A set 𝐹𝐹𝐹𝐹 of vertices in 𝐺𝐺 is called a Full-clique if any two
distinct vertices in 𝐹𝐹𝐹𝐹 are adjacent in 𝐺𝐺, when 𝑘𝑘 ≥ 1. The Full-clique term may refer to the subgraph in some cases. If several
edges are missing, this will be defined as a Near-clique.

Definition 4. Full bipartite core: Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be an undirected graph. A set 𝐹𝐹𝐹𝐹 of vertices in 𝐺𝐺 is called full-bipartite if
two sets of vertices 𝑆𝑆1 and 𝑆𝑆2, 𝑆𝑆1 ∩ 𝑆𝑆2 = 𝜙𝜙, have edges between them, where each vertex in 𝑆𝑆1will be connected to every
edge in 𝑆𝑆2 but not within the same set. When the core is not fully connected this will be defined as a Near-bipartite core.

Definition 5. Star: A Star consists of one internal vertex in set 𝑆𝑆1 connected to 𝑘𝑘 edges of other sets 𝑆𝑆𝑖𝑖+1 (spokes). A Star is
considered as a special case of a Full bipartite core.

Definition 6. Chain: A Chain is a sequence of vertices such that all vertices have degree 2, except two which have degree 1.

Fig. 1 shows examples of these structure types.

(a) Full-Clique (b) Near-Clique (c) Full-bipartite

(d) Chain (e) Star

Fig. 1. Types of Structures

3.2 𝑽𝑽𝑽𝑽𝑽𝑽 Graph Summarization

The ability to summarize information about highly connected groups of nodes within a graph can significantly improve our
overall comprehension of the graph's structure and relationships. Vocabulary-based summarization of Graphs (𝑉𝑉𝑉𝑉𝑉𝑉) (Koutra
et al., 2015) is a formal methodology developed for this purpose. Using a set of terms (i.e., a vocabulary) like those defined
in section 3.1, 𝑉𝑉𝑉𝑉𝑉𝑉 provides a summary of the most highly connected and frequently occurring structures in a graph. For
problem domains like social networks and communication networks, these are typically the most interesting structures.

Algorithm 1 𝑉𝑉𝑉𝑉𝑉𝑉
 Input Graph 𝐺𝐺

Output Graph summary 𝑀𝑀, encoding cost.

 1: Subgraph Generation. Using graph decomposition methods, produce a set of candidate subgraphs, which may overlap with each other
 2: Subgraph Labeling. Characterize each subgraph as one of the vocabulary structure types.
 3: Summary Assembly. From the candidate structures, select a non-redundant subset to instantiate the graph model 𝑀𝑀. Utilizing a heuristic model

(e.g., PLAIN, TOP10, TOP100, GREEDY’nFORGET), the set of structures with the lowest description cost will be selected.

 4

Algorithm 1 outlines the main steps that are performed in 𝑉𝑉𝑉𝑉𝑉𝑉; see (Koutra et al., 2015) for a more detailed discussion. Using
graph decomposition methods, candidate subgraphs are generated then classified as various connected structures such as
cliques, stars, and chains; if a subgraph qualifies as more than one of these structure types, a scoring method based on
minimum description length (MDL) is used to determine which structure type that subgraph best fits. 𝑉𝑉𝑉𝑉𝑉𝑉 then uses another
scoring system to determine which collection of those structures best characterizes the graph. This is called the summary
model, and could include all the structures (PLAIN), just the 𝑘𝑘 structures with the best scores (TOP10, TOP100), or a
combination of structures whose total score is best (GREEDY’nFORGET).

3.3 Proposed Algorithm

In 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, we first use 𝑉𝑉𝑉𝑉𝑉𝑉 to identify the most highly connected, and frequently occurring, subgraphs. That produces a set
of structures (i.e., the model summary), 𝑆𝑆. Algorithm 2 is then used to select a subset of 𝑆𝑆 which we call the majority
structures, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. The number of majority structures depends on the desired number of partitions, 𝑛𝑛. The 𝑛𝑛 structures in 𝑆𝑆 that
have the largest number of vertices become the majority structures.

Algorithm 2 Select the Majority Structures

Input 𝑆𝑆 is set of structures produced by 𝑉𝑉𝑉𝑉𝑉𝑉,

 𝑛𝑛 is number of desired partitions
Output 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 contains 𝑛𝑛 structures in 𝑆𝑆 that have the largest number of vertices

 1: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = Sort structures in 𝑆𝑆 in descending order by number of vertices

 2: for 𝑖𝑖 = 1 to 𝑛𝑛 do

 3: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑖𝑖] = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖]

 4: end-for

 5: return 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

For each majority structure, Algorithm 3 is applied to identify the vertex that has the highest degree; in the case of a tie, an
arbitrary choice between those qualifying vertices is made. These vertices of highest degree are called hotspots.

Algorithm 3 Assign the HotSpot

Input 𝑆𝑆 = (𝑉𝑉𝑆𝑆,𝐸𝐸𝑆𝑆) is a structure

Output 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is a vertex in 𝑉𝑉𝑆𝑆 that is the hotspot vertex for structure 𝑆𝑆 = (𝑉𝑉𝑆𝑆,𝐸𝐸𝑆𝑆)

 1: for 𝑖𝑖 = 1 to |𝑉𝑉𝑆𝑆| do

 2: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑖𝑖] = 0

 3: end-for

 4: for 𝑖𝑖 = 1 to |𝑉𝑉𝑆𝑆| do

 5: for 𝑗𝑗 = 1 to |𝑉𝑉𝑆𝑆| do

 6: if there is an 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖, 𝑗𝑗) in 𝐸𝐸𝑆𝑆 then

 7: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑖𝑖] = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑖𝑖] + 1

 8: end-if

 9: end-for

10: end-for

11: 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 1

12: for 𝑖𝑖 = 2 to |𝑉𝑉𝑆𝑆| do

13: if 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻] ≤ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑖𝑖] then

14: 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑖𝑖

15: end-if

16: end-for

17: return 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

I. A. Alobaidi et al. /International Journal of Data and Network Science 9 (2025)

5

After assigning the hotspots, the actual partitioning commences. The subgraph that will be assigned to a partition consists of
all the vertices in a hotspot’s structure unless that number of vertices exceeds the total number of vertices in the graph divided
by the number of desired partitions; that is considered the ideal partition size.

In Algorithm 4, we start a depth-first search from a hotspot vertex (denoted as 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻). The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 denoted in the algorithm
is the set of structures from which the hotspot was selected.

There are two discontinuation criteria for building a subgraph partition; the expansion will stop when either of those
conditions is satisfied:
1. The current size of a partition subgraph has reached the ideal partition size.
2. The path length from the current vertex to the hotspot has reached a maximum threshold (i.e., the total number of
desired partitions).

Some vertices from the original graph may not be included in any partition using these conditions. To handle those cases, we
perform a breadth-first search starting from each hotspot until all nodes are included in some partition.

Algorithm 4 Graph Partitioning

Input Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸),𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is a vertex in the structure connected to the largest number of edges

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is a set containing structures that have the largest number of vertices

 𝑛𝑛 is the number of partitions
Output All 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ of 𝐺𝐺, where |𝑉𝑉| of each subgraph ≥ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 1: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = |𝑉𝑉|/ 𝑛𝑛

 2: if |𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖| ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 then

 3: Include all nodes of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖

 4: end-if

 5: Perform 𝐷𝐷𝐷𝐷𝐷𝐷 starting from each 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

 6: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐷𝐷𝐷𝐷𝐷𝐷 ⟵ 𝐷𝐷𝐷𝐷𝐷𝐷

 7: Perform 𝐵𝐵𝐵𝐵𝐵𝐵 starting from each 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

 8: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐵𝐵𝐵𝐵𝐵𝐵 ⟵ 𝐵𝐵𝐵𝐵𝐵𝐵

 9: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ ⟵ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐷𝐷𝐷𝐷𝐷𝐷 ∪ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐵𝐵𝐵𝐵𝐵𝐵

10: return 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ

3.4 Computational Complexity

The complexity of one well-known partitioning method that is considered to produce high-quality partitions, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(implemented as kmetis), is approximately 𝑂𝑂(𝑉𝑉 + 𝐸𝐸 + 𝑘𝑘 log 𝑘𝑘) where 𝑉𝑉 is the number of nodes, 𝐸𝐸 the number of edges,
and 𝑘𝑘 is the number of partitions (G. Karypis, Accessed: 2019-22-01). In contrast, the complexity of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is
approximately 𝑂𝑂(𝑉𝑉 + 𝐸𝐸 + 𝑛𝑛 log𝑛𝑛) where 𝑉𝑉 is the number of nodes, 𝐸𝐸 is the number of edges, and 𝑛𝑛 is the number of
structures. Contributing to the overall complexity of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is the complexity of BFS and DFS, which are 𝑂𝑂(𝑉𝑉 + 𝐸𝐸), and
the complexity of sorting 𝑛𝑛 structures, which is 𝑂𝑂(𝑛𝑛 log𝑛𝑛). We are not including the complexity of the 𝑉𝑉𝑉𝑉𝑉𝑉 processing,
which has not been published by its authors.

4. Results and Analysis

In this section we compare the results of partitioning three datasets using 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and another well-known partitioning method,
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, which was discussed in Section 2. The 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 algorithms presented in Section 3.2 and 3.3 were (collectively)
implemented in Matlab and C++. A C++ implementation of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 was downloaded from the Karypis Lab website [G.
Karypis, Accessed: 2019-22-01]. Our experiments were executed on an Intel(R) Core(TM) i7-6700 CPU@3.40GHz computer
with 32 GB memory.

4.1 Data Description

Three single undirected graphs were used to evaluate our approach. Table 1 lists descriptive information about the graphs.
One graph was synthetically generated; the second graph represented a two-dimensional finite element mesh; the third graph
represented a three-dimensional finite element mesh.

 6

Table 1
Description of the Graphs Tested

Graph Name Number of Nodes Number of Edges Description
Synthetic 1565 3561 Synthetically generated

4ELT 15606 45878 2D Finite element mesh
COPTER2 55476 352238 3D Finite element mesh

4.2 Experiment and Results

We executed 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 on each of the graphs listed in Table 1, testing seven different numbers of partitions for
each graph. The results from each test were analyzed in terms of three different metrics: the number of interior edges per
partition (i.e., edges in a partition’s graph), the number of exterior edges per partition (i.e., edges between vertices in a partition
and vertices assigned to other partitions), and the total number of edges lost (i.e., edges from the original graph that were not
represented in any of the partition graphs). Seven tests were conducted to create 10, 20, 30, 40, 50, 60, and 70 partitions,
respectively, of the Synthetic graph. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 failed to partition this graph into either 20 or 40 partitions; the program simply
failed to return any results. 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 produced results for all the tested numbers of partitions for this graph. The representation
of edges amongst partitions was not well distributed when 10 partitions were requested. Specifically, the number of interior
edges in one of those partitions was much higher than in the other partitions, which was not an optimal partitioning. This was
likely since when a hotspot is selected from a structure, if the structure can fit entirely into a partition, all nodes from that
structure automatically will be added to the partition before the depth-first search algorithm is run. This can then prevent other
partitions from growing during depth-first search (as would be the case in unconnected components), encouraging
disproportionate partition sizes. Because the 4ELT and COPTER2 graphs were much larger than the Synthetic graph, we
tested larger numbers of partitions for those graphs, namely: 100, 200, 300, 400, 500, 600, and 700.

(a) (b)

(c)

Fig. 2. (a, b, and c) Interior Edges per Partition

(a) (b)

I. A. Alobaidi et al. /International Journal of Data and Network Science 9 (2025)

7

(c)

Fig. 3. (a, b, and c) Exterior Edges per Partition

(a) (b)

(c)

Fig. 4. (a, b, and c) Total Edges Lost

For all three of the graphs listed in Table 1, in the majority of the tests, the partitions produced by 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 had a higher number
of interior edges in each partition than the partitions produced by 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. It can be seen in Figure 2 that more edges from the
original graph were retained within the partitions produced by 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. As shown in Figure 3, the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 partitioning resulted
in fewer exterior edges (between partitions) than what occurred in the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 partitioning. Additionally, as shown in Figure
4, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 outperformed 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 in terms of reducing the total number of edges lost from the original graph. It should be noted
that as the desired number of partitions grew, the difference in partition quality (in terms of the three metrics) obtained from
both methods became less distinct.

Because of the use of two methods (depth-first/breadth-first search) in 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 for the extension process that include vertices
in/out of partition boundaries, we also evaluated different variations of our method. We ran 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 on the three test graphs
using four different orders of processing:

1. Depth-first search extension for vertices inside the partition boundaries followed by breadth-first search extension for

vertices outside the partition boundaries.
2. Breadth-first search extension for vertices inside the partition boundaries followed by depth-first search extension for

vertices outside the partition boundaries.
3. Depth-first search extension for vertices inside the partition boundaries followed by depth-first search extension for

vertices outside the partition boundaries.
4. Breadth-first search extension for vertices inside the partition boundaries followed by breadth-first search extension for

vertices outside the partition boundaries.

 8

We found that more consistent partitions were obtained (in terms of more interior edges and fewer external edges per partition)
when we utilized the depth-first search extension process for vertices inside the boundaries followed by breadth-first search
extension processing for vertices outside the boundaries. We also tested random assignment of hotspots. This was found to
be unreliable in generating high-quality partitions. Interestingly, although the number of internal edges was not balanced
across partitions utilizing randomization, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 still outperformed 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 in terms of producing partitions with more
internal edges and fewer external edges.

5. Conclusion and Future Work

With the proliferation of data in our technological world and the usefulness of modeling some problems using graphs, it is
becoming increasingly difficult to process an entire graph dataset in memory. It is more efficient to partition a single large
graph, and process multiple smaller subgraphs. However, in doing so, the partitioning of what may be highly interconnected
data must be done in such a way as to balance the workload amongst the individual processes, minimize inter-process
communication, and minimize loss of information from the original dataset. The latter problems can occur if, in the original
graph, there is an edge that exists between vertices assigned to different partitions.

Herein we have presented an algorithm, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, for partitioning a single, undirected graph. Our algorithm strives to produce
quality partitions in terms of uniformity of the size of each partition, maximization of the number of edges from the original
graph that are included in each partition, and minimization of the number of edges from the original graph that effectively
exist between partitions. Our approach is novel; we first utilize vocabulary-based summarization (𝑉𝑉𝑉𝑉𝑉𝑉) to find the most highly
connected structures and then find the vertices of highest degree (known as hotspots) within those structures. A benchmark
comparison of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 with another well-known, high-quality partitioning algorithm (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) demonstrated the benefits of
our strategy.

In the future, we plan to explore ways to distribute or parallelize the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 algorithms so that we can process even larger
graphs than those tested for this study. To that end, we also may explore the use of some approximation (e.g., sampling)
methods that may increase the efficiency of the assignment of vertices to partitions after identification of structures and
hotspots.

Acknowledgement

This work was inspired by discussions with Dr. Danai Koutra, whose insights were instrumental in shaping the
research direction.

References

Bonnet, E., Escoffier, B., Paschos, V. T., & Tourniaire, E. (2015). Multi-parameter analysis for local graph partitioning
problems: Using greediness for parameterization. Algorithmica, 71(3), 566-580.

Bourse, F., Lelarge, M., & Vojnovic, M. (2014, August). Balanced graph edge partition. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining (pp. 1456-1465).

Chen, R., Shi, J., Chen, Y., Zang, B., Guan, H., & Chen, H. (2019). Powerlyra: Differentiated graph computation and
partitioning on skewed graphs. ACM Transactions on Parallel Computing (TOPC), 5(3), 1-39.

Echbarthi, G., & Kheddouci, H. (2016, August). Streaming METIS partitioning. In 2016 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 17-24). IEEE.

G. Karypis (Accessed: 2019-22-01). Complexity of pmetis and kmetis Algorithms. http:
//glaros.dtc.umn.edu/gkhome/node/419

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., & Guestrin, C. (2012). {PowerGraph}: Distributed {Graph-Parallel}
computation on natural graphs. In 10th USENIX symposium on operating systems design and implementation (OSDI
12) (pp. 17-30).

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., & Stoica, I. (2014). {GraphX}: Graph processing in a
distributed dataflow framework. In 11th USENIX symposium on operating systems design and implementation (OSDI
14) (pp. 599-613).

Karypis, G., & Kumar, V. (1998a). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal
on scientific Computing, 20(1), 359-392.

Karypis, G., & Kumar, V. (1998b). A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal
of parallel and distributed computing, 48(1), 71-95.

Kiveris, R., Lattanzi, S., Mirrokni, V., Rastogi, V., & Vassilvitskii, S. (2014, November). Connected components in
mapreduce and beyond. In Proceedings of the ACM Symposium on Cloud Computing (pp. 1-13).

Koutra, D., Kang, U., Vreeken, J., & Faloutsos, C. (2015). Summarizing and understanding large graphs. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 8(3), 183-202.

Li, M., Andersen, D. G., & Smola, A. J. (2015). Graph partitioning via parallel submodular approximation to accelerate
distributed machine learning. arXiv preprint arXiv:1505.04636.

I. A. Alobaidi et al. /International Journal of Data and Network Science 9 (2025)

9

Park, H. M., Park, N., Myaeng, S. H., & Kang, U. (2016, December). Partition aware connected component computation in
distributed systems. In 2016 IEEE 16th International Conference on Data Mining (ICDM) (pp. 420-429). IEEE.

Rahimian, F., Payberah, A. H., Girdzijauskas, S., Jelasity, M., & Haridi, S. (2015). A distributed algorithm for large-scale
graph partitioning. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 10(2), 1-24.

Roy, A., Bindschaedler, L., Malicevic, J., & Zwaenepoel, W. (2015, October). Chaos: Scale-out graph processing from
secondary storage. In Proceedings of the 25th Symposium on Operating Systems Principles (pp. 410-424).

Sakouhi, C., Khaldi, A., & Ghezal, H. B. (2018). An overview of recent graph partitioning algorithms. In Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) (pp. 408-414).
The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp).

Verma, S., Leslie L., Shin Y., & Gupta I. (2017). An Experimental Comparison of Partitioning Strategies in Distributed Graph
Processing. In Proceedings of the 43rd International Conference on Very Large Data Bases (VLDB) Endowment, vol. 10,
no. 5, pp. 493–504.

Wang, L., Xiao, Y., Shao, B., & Wang, H. (2014, March). How to partition a billion-node graph. In 2014 IEEE 30th
International Conference on Data Engineering (pp. 568-579). IEEE.

Ward, K., Lin, D., & Madria, S. (2017, June). Melt: Mapreduce-based efficient large-scale trajectory anonymization.
In Proceedings of the 29th International Conference on Scientific and Statistical Database Management (pp. 1-6).

Zhang, C., Wei, F., Liu, Q., Tang, Z. G., & Li, Z. (2017, August). Graph edge partitioning via neighborhood heuristic.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 605-
614).

 10

© 2025 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY)
license (http://creativecommons.org/licenses/by/4.0/).

	3.4 Computational Complexity
	In this section we compare the results of partitioning three datasets using 𝐺𝑟𝑎𝑃𝐻 and another well-known partitioning method, 𝑀𝐸𝑇𝐼𝑆, which was discussed in Section 2. The 𝐺𝑟𝑎𝑃𝐻 algorithms presented in Section 3.2 and 3.3 were (collectiv...
	4.1 Data Description
	Three single undirected graphs were used to evaluate our approach. Table 1 lists descriptive information about the graphs. One graph was synthetically generated; the second graph represented a two-dimensional finite element mesh; the third graph repre...
	4.2 Experiment and Results
	Fig. 3. (a, b, and c) Exterior Edges per Partition
	Fig. 4. (a, b, and c) Total Edges Lost
	5. Conclusion and Future Work
	Acknowledgement

