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 Skin conditions affect millions of people globally, with symptoms appearing in different body 
areas. Technological advancements have brought diverse data types, including situations where an 
image depicting a skin condition can be assigned multiple labels. The Classification Transformer 
(C-Tran) method, which utilizes transfer learning and transformers, was developed for multi-label 
classification. Recently, Google introduced a new dataset called SCIN (Skin Condition Image 
Network), which aims to provide diverse data on skin conditions. This research aimed to use the 
C-Tran method for the multi-label classification of skin conditions with the SCIN dataset while 
incorporating additional metadata inputs to improve the metric results. The results show that the 
multi-label classification process using metadata is far superior to the model without metadata. For 
example, In the mAP metric, models that utilized metadata scored 82.37, whereas models without 
metadata only scored 47.02. Similarly, models with metadata achieved 70.83% in the accuracy 
metric, while models without metadata achieved only 34.72%. Out of the 10,379 data points 
available with metadata in the SCIN dataset, only 718 were actually utilized for the classification 
task. It is thought that the inaccurate prediction outcomes are due to unreliable data, even with a 
confidence level of 4. In this analysis, two metadata categories stood out the most in terms of 
different measurements: the body part and symptoms metadata categories from the SCIN dataset. 
With just the body part and symptoms metadata groups, the mAP results achieved a 74.23%, 
accuracy at 63.89%, CF1 at 68.79%, and OF1 at 73.13%. 
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1. Introduction 
 

Skin conditions impact millions globally, displaying symptoms in various body areas (Hay et al., 2014; Lim et al., 2017; 
Richard et al., 2022). Sometimes, a solitary patient could simultaneously suffer from multiple skin conditions (Creadore et 
al., 2022; Cohen et al., 2023). Hence, creating classification models that can accurately recognize and categorize various skin 
conditions is crucial. Due to technological advancements, there is now a growing variety of data types, including the scenario 
where an image, such as one depicting a skin condition, may be assigned multiple labels (Omeroglu et al., 2023). This trend 
has led to an increased focus on multi-label classification, requiring models to identify and categorize multiple labels from 
one input (Bi et al., 2020; Tang et al., 2022; Han et al., 2023). Medical data is becoming more varied with helpful metadata 
like body location, visible symptoms, and patient demographics (Ward et al., 2024). This additional data can help the model 
comprehend the skin condition being examined within the scope of dermatology. Transfer learning methods have been 
extensively employed to enhance the effectiveness of classification models (Hosna et al., 2022; Asif et al., 2023; Zhu et al., 
2023). Transfer learning involves taking models trained for one task and adjusting them for other related tasks, accelerating 
training time and improving precision. Transfer learning is very beneficial in the medical field, as extensive training data is 
often unavailable. We can use well-trained models like ResNet (He et al., 2016), trained on extensive datasets like ImageNet 
(Deng et al., 2009), ISIC (Rotemberg et al., 2021) or Fitzpatrick 17k (Groh et al., 2021) to improve feature representations 
for skin disease classification. However, transformer techniques have gained significant popularity recently, not least in image 
data processing (Chen et al., 2021; Li et al., 2023; Kameswari et al., 2023; He et al., 2023). Transformers utilize an attention 
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mechanism that enables the model to dynamically concentrate on specific input sections, enhancing its capacity to comprehend 
intricate contexts (Vaswani et al., 2017). These techniques are also starting to be used in computer vision, with models like 
the Vision Transformer (ViT) demonstrating strong performance in different image recognition assignments (Khan et al., 
2022). The Classification Transformer (C-Tran) method, which utilizes transfer learning and transformers, has been developed 
for multi-label classification (Lanchantin et al., 2021). C-Tran employs a transformer design for analyzing image data, 
incorporating transfer learning benefits for enhanced efficiency and precision. This model excels in managing the intricacy of 
multi-label classification more effectively than conventional methods due to its capacity to comprehend the context and 
connections among labels. Additionally, Google recently introduced a new dataset named the SCIN (Skin Condition Image 
Network), aiming to offer a broader range of data on skin conditions (Ward et al., 2024). It encompasses various skin types 
and medical conditions, enhancing its representativeness for creating impartial and precise classification models. Additionally, 
the SCIN dataset incorporates beneficial metadata to aid in the classification procedure. We intend to utilize the C-Tran method 
for the multi-label classification of skin conditions with the SCIN dataset while incorporating additional input metadata to 
enhance the metric outcomes. Furthermore, we analyze the impact of the metadata categories. 
 
2. Literature Review 
 
This section examines the different studies carried out by researchers on image data processing for multi-label classification. 
Different journal experts have identified several effective methods to enhance accuracy and efficiency in classification. In a 
recent journal article by Gour and Khanna (2021), scientists studied the detection of multi-class, multi-label ophthalmology 
diseases using a convolutional neural network with transfer learning. They suggested two methods for categorizing fundus 
images using this technique. The outcomes demonstrated that when utilizing the SGD optimizer, VGG16 achieved AUC and 
F1 scores of 84.93 and 85.57, respectively, in the two-input approach. Referring to Model-2, the input-concatenated method 
using the VGG16 architecture demonstrated superior AUC and F1 score figures of 68.88 and 85.57 when compared to 
alternative architectures. Mahbod et al. (2020) investigated the impact of different input image sizes on skin lesion 
classification performance using pre-trained CNNs and transfer learning. Datasets from the ISIC challenges in 2016 (Gutman 
et al., 2016), 2017 (Codella et al., 2017), and 2018 (Codella et al., 2019) were utilized to analyze six different image sizes 
(224×224, 240×240, 260×260, 300×300, 380×380, and 450×450 pixels) using cropping and resizing techniques. The study 
selected three models from the SeNet (Hu et al., 2018) and EfficientNet (Tan & Le, 2019) families, known for their strong 
classification capabilities in both natural and medical image domains. Their research indicated that cropping was more 
effective than resizing, with consistent performance regardless of image size for cropping and better performance with higher 
resolution for resizing. Additionally, they proposed a multi-scale multi-CNN (MSM-CNN) fusion approach, which showed 
superior classification performance on the ISIC 2018 dataset compared to state-of-the-art algorithms. Moreover, Tabbakh and 
Barpanda (2023) have also published a journal on using Transfer Learning and Vision Transformer (TLMViT) in the deep 
feature extraction model for plant disease classification. This article suggests a fresh method for extracting deep features and 
categorizing diseased plant leaves. This blended approach involves a Transfer Learning model paired with a Vision 
Transformer (ViT). TLMViT was evaluated using five pre-trained models, with each one being followed by ViT. TLMViT 
demonstrated excellent performance in plant disease categorization, obtaining validation accuracies of 98.81% and 99.86% 
using the VGG19 model and ViT on the PlantVillage and wheat datasets, respectively. The results of the comparison indicated 
that TLMViT enhanced the validation accuracy by 1.11% and 1.1% while also decreasing the validation loss by 2.576% and 
2.92% in contrast to the Transfer Learning-based model for the PlantVillage and wheat datasets. The article also points out 
that using data augmentation helps to address image shortcomings that lead to overfitting and minimizes the impact of uneven 
datasets. The pre-trained model is utilized for initial leaf feature extraction and dimension reduction of the original image 
before being fed into the inner layers for deep feature extraction. Furthermore, the ViT model demonstrates the capability to 
derive in-depth features from the features extracted by the CNN model. The paper authored by Lanchantin et al. (2021) 
explores multi-label image classification, where the goal is to predict a group of labels that match objects in an image. Their 
method involves training a Transformer encoder to forecast a group of target labels using masked input labels and visual 
characteristics from a convolutional neural network. The label mask training objective, using ternary coding, is a crucial part 
of the method, representing label states as positive, negative, or unknown during training. Because this model explicitly 
captures the label state when training, it is more versatile and leads to improved outcomes when dealing with images that have 
incomplete or extra-label annotations during inference. This function was examined on the COCO, Visual Genome, News-
500, and CUB datasets. The findings demonstrate that this method is effective in both standard multi-label classification and 
multi-label classification with partially or additionally observed labels. C-Tran surpassed cutting-edge methods in several 
situations. In the paper written by Cai et al. (2023), they describe the use of multimodal transformers to combine images and 
metadata in skin disease classification. They proposed a novel multimodal transformer with two encoders for images and 
metadata, along with a single decoder for merging the multimodal information. This model was created to classify skin 
diseases using both images and metadata. One decoder is utilized to integrate multimodal features, with two encoders 
extracting features from images and metadata separately. Studies demonstrate that the suggested framework attains 
noteworthy results in categorizing skin diseases. The model performs better than other popular networks, with an accuracy of 
0.816 on a private dataset. The method obtained a 0.9381 accuracy and a 0.99 AUC on the ISIC 2018 dataset. This model 
demonstrates efficient performance and advancement in skin disease diagnosis when compared to cutting-edge methods. 
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2. Material and methods 
 
2.1 Data Description 
 
This research uses the (Skin Condition Image Network: SCIN) Dataset, published by Google, containing images of various 
skin diseases (Ward et al., 2024). Google obtained this dataset through crowdsourcing using its advertising system. Compared 
to other datasets, this dataset is unique because most existing dermatology datasets tend to overrepresent malignant skin 
diseases and underrepresent darker skin colors. This may cause bias in the deep learning model developed. Examples of some 
images from the SCIN dataset can be seen in Fig. 1. 
 

 

   
Fig. 1. Example Images from SCIN Dataset (Ward et al., 2024) 

 

This SCIN dataset includes 5033 patient data, including disease images and metadata. Each data has 1 to 3 images. Adults 
from the United States contributed to the images in this dataset. The size of the images in this dataset also varies. In the 
original dataset, the metadata consists of various variables, which were then grouped into 9 categories. The nine categories of 
metadata are General metadata, Skin type metadata, Ethnicity metadata, Texture metadata, Body parts metadata, Symptoms 
metadata, Other metadata, Shot type metadata, and Label metadata. Details of each metadata category can be found in 
Appendix 1. These metadata groups assist the neural network's training process, except for the label metadata group, which 
acts as a label. 
 

2.2 Data Preparation 
 

Data preparation from the SCIN dataset involves various complex steps, starting with aligning the images with their respective 
metadata. Out of 5033 data, there may be 1-3 images for each data, bringing the total to 10379. Next, since this is a 
classification, it is essential to determine which columns act as labels. In this case, the group label metadata becomes the target 
of the classification, where the group metadata contains the disease label and the dermatologist's confidence level. The 
processing of this variable is crucial because the target variable is the determining variable in the classification process. The 
variable dermatologist_skin_condition_on_label_name contains a list of labels of several diseases simultaneously because 
this dataset is multi-label. Therefore, the contents of the variable dermatologist_skin_condition_confidence, a list of each 
disease mentioned in the label, must be aligned. Data was removed if one of the two variables was misaligned or missing. In 
addition, redundancy is found in labeling diseases in the same image, which requires cleaning. Data that had no values in both 
variables or had missing values in both variables were removed immediately. The process of eliminating duplicate data was 
also performed. All these steps are done to sort and use the data with images. If the data does not have images, then the data 
is immediately deleted. Furthermore, categorical data is converted into numbers in processing the other 8 metadata groups. 
Data that has a missing value is replaced with -1. For example, if in one variable, there are 8 types of categories, including 
the unknown category, and there are missing values, then the data contains values 1-7 and -1. Data with boolean type is 
converted to 0 and 1. Numeric variables are left alone. After preprocessing, 6503 image data and their metadata are obtained. 
From all 6503 data, several versions of data were formed according to the dermatologist's confidence level in labeling the 
disease from the image. Since the confidence level of the dermatologist is in the range of 1-5, 5 versions of data were formed. 
Version 1 is only for data with a confidence level of 5, version 2 for confidence levels 4-5, version 3 for confidence levels 3-
5, version 4 for confidence levels 2-5, and version 5 for confidence levels 1-5. In addition, each label used must have a 
minimum of 50 data. Otherwise, the data will be deleted. In the process of dividing data for neural network training, this data 
is divided into two parts, namely 80% for training data and 20% for testing data. Details of the number and distribution of 
data can be seen in Table 1. 
 
Table 1  
Data Distribution Each Version 

 Dataset Version 

 
Version 1 
(Conf. 5-5) 

Version 2 
(Conf. 4-5) 

Version 3 
(Conf. 3-5) 

Version 4 
(Conf. 2-5) 

Version 5 
(Conf. 1-5) 

Total Data 718 2253 3655 5501 6232 
Num of Label 7 16 27 44 54 
Data Training 574 1802 2924 4400 4985 
Data Testing 144 451 731 1101 1247 
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2.3  Architecture Model 
 

Baseline Model 
 
The baseline model used in this research is the Classification Transformer (C-Tran) (Lanchantin et al., 2021). C-Tran is a 
general framework for multi-label image classification that utilizes Transformers to identify and exploit possible relationships 
between image features and the data labels. This model approach uses a Transformer encoder trained to predict target labels 
based on input-masked labels and visual features from a convolutional neural network. In addition, within the Transformer 
structure is a backbone model that uses transfer learning, explicitly ResNet-101, as part of the feature extraction process from 
images. The general architecture of C-Tran can be seen in Fig. 2. 
 

 
Fig. 2. The general architecture of C-Tran (Lanchantin et al., 2021) 

 

In the original C-Tran, 3 embeddings were used. First, feature embeddings are vectors extracted by transfer learning, such as 
ResNet-101, that represent the visual features of the image. Second, label embeddings describe vector representations that 
show the relationship between labels used in multi-label classification. Finally, state embeddings refer to vector 
representations that use a ternary coding system. State embeddings help users avoid relying on prior information by 
incorporating unknown embeddings, leveraging both negative and positive embeddings to incorporate partially labeled or 
additional information, and experimenting with interventions in the model by observing the impact of label changes on 
predictions. 
 
2.4 Proposed Model 
 
The modification applied to C-Tran in this study involves adding input in the form of metadata embedding. This vectorized 
metadata is inserted into the linear layer so that it can be easily adapted to various possible concepts. We carried out multiple 
experiments to find the optimal method for incorporating metadata embedding within the current framework. There are 
multiple options available during this insertion procedure. First, the metadata embedding is summed with the sum of the label 
embedding and state embedding. Second, the metadata embedding is incorporated as a transformer input. Third, the metadata 
embedding is summed into the label embedding that has passed through the transformer architecture. A more in-depth 
clarification of these three options can be observed in Fig. 3. 
 

 

 
Concept 1 

 
Concept 2 Concept 3 

Fig. 3. Three Concepts of Potential Metadata Input Insertion in C-Tran Architecture 
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For this study, the parameters used in Modified C-Tran followed the model's defaults. The training system uses label-mask 
training, with optimization using Adam's algorithm and a learning rate of 0.00001. In addition, a freeze backbone was used, 
where the parameters of the transfer learning were not retrained. The length of the vectors in the embedding metadata varies, 
with the maximum vector length reaching 51. The model training process is carried out for 25 epochs. A batch size of 16 was 
used, with gradient accumulation steps set to 2. The model used 3 transformer layers, each with 4 attention heads, and sine 
positional embeddings were applied. This research uses computing resources in the form of a 12th-generation Intel(R) 
Core(TM) i9-12900K processor with 24 CPUs at 3.2 GHz. In addition, this research is supported by 64 GB of RAM and RTX 
3060 Ti GPU. The software includes Python version 3.12 and TensorFlow version 2.14.0, with Windows 11 operating system. 
 
2.5 Evaluation Metrics 
 
The modified C-Tran model for multi-label classification is evaluated using various metrics. These metrics include Mean 
Average Precision (mAP), Accuracy, Example-Based F1 Score, average per-class precision (CP), average per-class recall 
(CR), average per-class F1 Score (CF1), average overall precision (OP), average overall recall (OR), average overall F1 Score 
(OF1), Top-1 F1 Score, and Top-3 F1 Score. These metrics match previous journal studies’ references (Lanchantin et al., 
2021). Furthermore, the researchers included another measure known as the Jaccard Index. This measurement evaluates the 
similarity between two sets of data. The Jaccard Index is calculated by dividing the intersection of two sets by their union 
(Hamers et al., 1989). A higher value indicates improved performance of the classification model. Each metric provides a 
unique view of a particular aspect of model performance. In addition, according to Chen et al. (2019), among the various 
metrics, OF1, CF1, and mAP are generally considered more important for performance evaluation. 
 
3. Results and Discussion 
 
In this section, we present the implementation results of the proposed model and the findings obtained in the multi-label 
classification process in detail. This section also demonstrates and evaluates the performance results and presents the analysis 
of all versions of the dataset and a graphical visualization of the results. To begin, we aim to determine which of the three 
potential concepts is the most optimal. The data used in this comparison process is version 1 of the dataset. The metrics used 
for this comparison are mAP, Accuracy, CF1, and OF1. The comparison results are illustrated in the graph in Fig. 4. 
 

 
Fig. 4. Model comparison results with three potential concepts 

 

 
Fig. 5. Modification of C-Tran Model Architecture 
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The results in Fig. 4 demonstrate that Concept 1 outperforms the other two concepts in several metrics. Concept 2 yields result 
that are competitive, although they are not as impressive as those of concept 1. In the meantime, concept 3 demonstrates the 
poorest outcomes and differs significantly in comparison to the other concepts. Based on these results, concept 1 was selected 
to modify the C-Tran architecture. The results of this C-Tran architecture modification can be seen in Figure 5. The next step 
is to compare whether the metadata embedding input actually affects the optimal metric results. Therefore, the model with the 
additional metadata embedding is compared with the original C-Tran architecture that does not use metadata embedding input. 
This comparison is presented in Fig. 6. 
 

Fig. 6. Comparison results model with metadata and without metadata using version 1 data 
 
Figure 6 shows that the multi-label classification process with the model using metadata is far superior to that without 
metadata. For example, on the mAP metric, there is a significant difference where the model with metadata achieves a score 
of 82.37. In contrast, the model without metadata only scores 47.02, showing a difference of 35 points between the two 
models. Similarly, models with metadata achieved 70.83% in the accuracy metric, while models without metadata achieved 
only 34.72%. After performing various steps to determine the optimal architecture model, the next step is to apply the model 
to multiple versions of the available datasets. Table 2 details the metric results of the model implementation on various 
datasets. Table 2 indicates that in version 1, the model performed well in various metrics, achieving an mAP of 82.37 and an 
accuracy of 70.83. In general, the model's performance noticeably declined with every iteration of the dataset. The decrease 
is observed in the mAP measurement, falling from 82.37 in Version 1 to 44.32 in Version 5. It is confirmed that an expert's 
level of certainty when labeling a disease is crucial in the classification process. Still, even a tiny difference in confidence 
between scores of 4 and 5 can lead to significantly different outcomes. 
 
Table 2  
Model results with various data versions 

Data 
Metrics 
      Top-3 Top-1 
mAP Acc JI ebF1 CF1 OF1 CF1 OF1 CF1 OF1 

Version 1 82.37 70.83 71.88 72.22 77.19 78.81 77.19 78.81 77.89 79.25 
Version 2 63.37 41.02 45.31 46.70 54.09 56.45 54.09 56.45 49.55 53.88 
Version 3 52.81 33.52 39.27 41.20 41.19 51.41 41.19 51.41 36.30 47.48 
Version 4 48.34 18.07 32.23 37.21 31.97 44.31 31.51 44.01 22.87 36.54 
Version 5 44.32 10.59 29.33 36.12 32.30 43.62 31.48 42.95 20.04 32.28 

 
Despite containing 10,379 data with metadata, only 718 were utilized for the classification task from the SCIN dataset. In this 
situation, the unsatisfactory prediction results are believed to be impacted by uncertain data, even with a confidence level of 
4. Moreover, cutting a significant portion of the dataset has diminished the intended goal of creating a diverse range of skin 
colors to address a societal problem. By removing this data, the strength of the identity's relevance diminishes. Furthermore, 
a majority of the remaining information has been assigned only one label despite the presence of some with multiple labels. 
However, the SCIN dataset continues to be a valuable resource for researching multi-label classification. It is also highly 
beneficial for investigating variations in skin color in neural network applications and other techniques. Additionally, we show 
the model findings using only one metadata group in each trial. This experiment identifies the metadata group with the most 
significant impact on the multi-label classification. Fig. 7 displays the outcomes of the experiment. 
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Fig. 7. Comparison results model with one group metadata using version 1 data  

 
Fig. 7 shows that two metadata groups dominate this comparison process in various metrics: the body part and symptoms 
metadata groups. While it cannot be said that these two metadata groups are the most important, it shows that metadata can 
also be essential in the classification process. Interestingly, the skin type metadata group has the most minor metrics apart 
from the shot type metadata group. This is surprising, considering that the shot type metadata group has the most minor 
continuity with skin. In general, skin type is closely related to the skin, which can be seen in the image and recognized by 
deep learning models. Still, in this study, skin type metadata did not significantly impact the classification results compared 
to others.  From the experiments using two groups of metadata only, namely the body part and symptom metadata groups, the 
mAP results were 74.23%, 63.89% accuracy, 68.79% CF1, and 73.13% OF1. 
 
4. Conclusions 
 
This research demonstrates that utilizing modified C-Tran architecture with added metadata embedding results in significantly 
better multi-label classification compared to using the model without metadata. On the mAP metric, the model with metadata 
scores 82.37, while the model without metadata scores 47.02, showing a 35-point difference between them. Also, the accuracy 
of the model using metadata reached 70.83%, whereas the model without metadata only reached 34.72%. This research also 
validated the significance of an expert's confidence level when assigning a disease label in the classification procedure. A 
slight variance in confidence level from a score of 4 to 5 can result in widely varying outcomes. While the SCIN dataset has 
10,379 data with metadata, only 718 data were utilized for the classification task. Nevertheless, the SCIN dataset continues 
to be a valuable resource for researching multi-label classification. It is also highly beneficial for investigating variations in 
skin color in neural network applications and other techniques. The research also revealed that employing a single metadata 
group in every trial pinpointed the metadata group with the most significant impact. The body part and symptom groups were 
the main metadata groups in this comparison. Although these two metadata groups may not be the most crucial, they 
demonstrate that metadata can play a significant role in the classification process. Interestingly, the skin type metadata 
category has minimal influence on these measurements, just like the shot type metadata category. To sum up, incorporating 
metadata into the C-Tran framework demonstrates that this extra data can significantly enhance results in multi-label 
classification, considering the significance of confidence level and choosing the proper metadata categories. 
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Appendices 
 
Appendix 1 

1. General Metadata : It consists of 2 variables, namely age_group and sex_at_birth 
2. Skin Type Metadata : It consists of 3 variables, namely fitzpatrick_skin_type,  monk_skin_tone_label_india, and 

monk_skin_tone_label_us 
3. Ethnicity Metadata : Consists of 10 variables, namely race_ethnicity_american_indian_or_alaska_native, race_ethnicity_asian, 

race_ethnicity_black_or_african_american, race_ethnicity_hispanic_latino_or_spanish_origin, 
race_ethnicity_middle_eastern_or_north_african, race_ethnicity_native_hawaiian_or_pacific_islander, 
race_ethnicity_white, race_ethnicity_other_race, race_ethnicity_prefer_not_to_answer, and 
race_ethnicity_two_or_more_after_mitigation 

4. Textures Metadata : Consists of 4 variables, namely textures_raised_or_bumpy,  textures_flat, textures_rough_or_flaky, and 
textures_fluid_filled 

5. Body Parts 
Metadata 

: Consists of 12 variables, namely body_parts_head_or_neck, body_parts_arm, body_parts_palm, 
body_parts_back_of_hand, body_parts_torso_front, body_parts_torso_back, body_parts_genitalia_or_groin, 
body_parts_buttocks, body_parts_leg, body_parts_foot_top_or_side, body_parts_foot_sole, and body_parts_other 

6. Symptoms 
Metadata 

: Consists of 15 variables, namely condition_symptoms_bothersome_appearance, condition_symptoms_bleeding, 
condition_symptoms_increasing_size, condition_symptoms_darkening, condition_symptoms_itching, 
condition_symptoms_burning, condition_symptoms_pain, condition_symptoms_no_relevant_experience, 
other_symptoms_fever, other_symptoms_chills, other_symptoms_fatigue, other_symptoms_joint_pain, 
other_symptoms_mouth_sores, other_symptoms_shortness_of_breath, and other_symptoms_no_relevant_symptoms 

7. Others Metadata : It consists of 2 variables, namely related_category and condition_duration 
8. Shot Type 

Metadata 
: Consists of 3 variables, namely shot_type_AT_AN_ANGLE, shot_type_AT_DISTANCE, and 

shot_type_CLOSE_UP 
9. Labels Metadata : It consists of 2 variables, namely dermatologist_skin_condition_confidence and 

dermatologist_skin_condition_on_label_name 
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