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 This paper introduces a new algorithm in Steganography for concealing secret messages or images 
within digital images. The algorithm is designed to produce stego images that can be transmitted 
to recipients without detection by potential attackers, thereby ensuring secure communication 
channels. The proposed algorithm employs a multi-level randomization technique to embed data 
within randomly selected cover images, with each byte of the secret image distributed across 
multiple cover images. This approach contrasts with conventional methods that hide data within a 
single cover image. Moreover, the algorithm incorporates a load-balancing priority system, a 
critical feature that ensures uniform stego image quality across the dataset. This strategic approach 
minimizes variations in Peak-Signal-to-Noise-Ratio (PSNR) values, contributing to consistent 
performance during data hiding and extraction processes and enhancing communication security. 
The security and recoverability of the secret image are further improved by a simplified Cipher key 
system based on SHA-256, which facilitates pseudo-random number generation. This system 
ensures that the hidden image can be recovered at the receiver's end, even in the face of potential 
attacks. Experimental results demonstrate comparable PSNR quality to existing methods, 
particularly when utilizing equal total resolution to deep hiding algorithms. Notably, the proposed 
algorithm offers an alternative to encryption by leveraging randomization, thereby complicating 
data extraction for potential attackers by distributing data across multiple images with a randomly 
generated cipher key. 
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1. Introduction 

Steganography conceals secret information within ordinary objects or messages, contrasting with cryptography, which focuses 
on data encryption (Ansari et al., 2020). Steganographic algorithms typically involve encryption or encapsulation for added 
security. Security and statistical analysis pose significant challenges in steganography, causing multiple encryption and 
compression phases to secure data before concealment (Płachta et al., 2022). LSB-based algorithms in single-cover images 
are vulnerable to statistical attacks. The Least Significant Bit LSB, commonly used for its simplicity, embeds hidden messages 
within image pixels' least significant bit without perceptibly altering the image (Al-Shaaby & AlKharobi, 2017). This study 
endeavors to pioneer advancements in steganalysis by addressing critical vulnerabilities in existing data-hiding algorithms. 
Specifically, the objectives are to fortify defenses against adjacent pixel calculations, known attacker exploits, and payload-
based statistical attacks, elevating the levels of security inherent in the data-hiding process. Notably, this work proposes 
replacing conventional encryption layers with a randomized obfuscation step during data hiding, simplifying algorithmic 
complexity while bolstering data security. This research presents a novel data-hiding algorithm that vertically conceals data, 
utilizing multiple cover images simultaneously with randomization to disrupt predictable patterns. Achieving comparable 
PSNR quality with approximately 75% of the resolution of a single cover image and superior PSNR quality with multiple 
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cover images of identical total resolution demonstrates high-quality data hiding feasibility. Each byte of the secret image is 
distributed across various independent stego images, preventing partial reconstruction without access to all stego images.  
 
The paper is structured into sections covering a literature review, theoretical foundations, algorithm architecture, empirical 
results, and conclusions with recommendations. The subsequent sections of this paper are structured as follows: Section two 
delves into relevant literature, while section three elucidates the theoretical underpinnings of Steganography and associated 
testing standards. Section four comprehensively details the architecture and operational intricacies of the proposed algorithm, 
augmented by pseudo-code illustrations. Section 4 presents empirical results and algorithmic analyses, culminating in Chapter 
5's conclusion and actionable recommendations. 
 
2. Related works  

In this section, we will review various research works in Steganography and compare them with the proposed data hiding and 
extraction algorithms.  
 

2.1 Data hiding  

Al-Shaaby and AlKharobi (2017) introduced a new method of hiding secret information in images, audio, or video by 
combining cryptography and steganography. In this approach, the message is encrypted using the AES algorithm, and the key 
is hashed using SHA-2 to prevent attacks. The approach is fundamentally strong but could be improved by detailing key 
management, specifying the steganographic technique, and evaluating performance and robustness. Elshare and El-Emam 
(2020) strengthened the Deep Hiding Extraction Algorithm (DHEA) to improve the quality and security of stego images by 
incorporating advanced encryption techniques and adaptive data embedding strategies. The approach could be improved by 
specifying the encryption techniques and adaptive strategies used, quantifying image quality improvements, conducting a 
detailed security evaluation, and including performance metrics. Alabaichi et al. (2020) explored the utilization of 3D 
Chebyshev polynomial mapping to enhance the efficiency and security of data-hiding algorithms, achieving robustness against 
various steganalysis techniques. The approach here mapped and enhanced the hiding algorithms but still lacked 
comprehensive security and robustness evaluations. Elharrouss et al. (2020) proposed a novel data-hiding scheme based on 
K-LSB embedding and replication techniques, aiming to maximize the data-hiding capacity while minimizing the perceptual 
impact on stego images. The paper listed an improvement of the efficiency and security of data hiding while it lacks a thorough 
robustness evaluation. Haider et al. (2024) introduced a novel pseudo-random number generator (PRNG) technique for 
discrete data hiding, providing enhanced randomness and unpredictability in the embedding process. The study does not 
include performance metrics such as computational efficiency, which are crucial for real-world applications where processing 
time and resources are limited. Nie et al. (2019) employed the knight tour algorithm to facilitate pixel selection in data-hiding 
processes, enhancing the randomness and unpredictability of data embedding. Zhu et al. (2022) used Residual Convolutional 
Neural Networks to increase the number of layers used for data hiding and extraction. Liu et al. (2022) utilized an encoder to 
analyze the reference image, aiming to improve the quality of the resulting generated images and generate the cover image 
based on the structure and texture of a reference image. Their mapping technique could be improved by providing detailed 
implementation and performance metrics. Abuali et al. (2024) presented an innovative approach to multi-level security 
enhancement using steganography. Their method combines Dynamic Least Significant Bit (DLSB) steganography with 
Wavelet Obtained Weights (WOW) steganographic algorithms, creating a sophisticated system for concealing information 
within non-obvious data. The paper did not cover exploring the integration of advanced encryption algorithms, and evaluating 
the approach's performance across different types of multimedia. 
 
2.2 Extraction Algorithms 
 
Wei et al. (2022) trained a generator to create synthetic images from authentic images and incorporated several discriminators 
to generate statistically indistinguishable step images. Ahmad et al. (2021) presented an improved variant of the DHEA 
algorithm, focusing on enhancing stego image quality and security through advanced encryption mechanisms and dynamic 
data embedding strategies. Pei et al. (2020) optimized the capacity and quality of stego images through payload-based 
calculations, resulting in improved payload capacity and visual quality of stego images. The authors could explore optimizing 
the capacity and quality of images. In the field of steganalysis attack detection, various methodologies were reviewed. Wang 
et al. (2020) presented an algorithm to predict the locations of the payload in a stego image to retrieve the original data. Yang 
et al. (2019) conducted steganalysis attacks to evaluate the weaknesses in utilizing multiple stego images alongside LSB to 
hide an SM from attackers. Sun et al. (2019) developed advanced algorithms employing statistical analysis and machine 
learning techniques to detect subtle alterations caused by data-hiding processes, thereby enhancing the effectiveness of 
steganalysis attack detection.  
 
3. Data Hiding using PRNG and Load Balancing 
 
Random Number Generation will generate a sequence of numbers that other parts of the algorithm will use to alter the data-
hiding algorithm flow. To ensure the random number generator does not cause issues with data recovery, we will construct 
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the random number generator in a simplified way inspired by the SHA-256 encryption algorithm. A cipher key will be used 
to generate the numbers the random number generator uses. This way, a pseudo-random number generator (PRNG) is created, 
as it will always produce the same sequence of output when the same Cipher Key is provided. An incorrect Cipher Key will 
produce a completely different sequence of numbers. Randomization with a Cipher Key can hide sequence data, making it 
difficult to guess the start sequence of the least significant bits. Hiding data across all three-pixel channels can also allow more 
bits to be hidden per pixel than a technique that only uses one channel. However, using only one channel per pixel can reduce 
the impact on stego images, leading to lower differences from a cover image. 

Unlike some other methods, such as Ahmad et al. (2021), Elshare and El-Emam (2020), and Baluja (2017) are based on deep 
data hiding, the new algorithm randomizes the application of LSB across multiple images to split the data stream in an 
untraceable manner. This approach also allows various cover images, increasing data storage capacity and reducing the need 
to compress and hide multiple bits within a single image. However, the new algorithm does not currently implement a similar 
phase, as the focus was on enhancing any LSB-based algorithm with access to multiple images and increased security using 
a Cipher Key. We will use various cover images instead of one cover image to improve the random number generators' further' 
and Cipher Keys' impact on the data hiding. By distributing the data randomly across multiple images where each bit of a 
pixel from the original image could end up in an entirely different cover image, we introduce a new layer of complexity to 
the recovery of the image. The order of the hidden bits will be scrambled across multiple images. A pseudo-random Number 
Generator (PRNG) will determine the positions to hide data in the images and when to swap the current cover images during 
data hiding. Therefore, changing the current image randomly at random periods will make it impossible to brute force a 
sequence of images to recover the data even if the attacker knows the presence of Steganography. Another security feature 
introduced by randomization using the Cipher Key over an LSB technique is that the data will follow no pattern that can be 
brute-forced to recover it. This is because, without the cipher key, the attacker will not build up the random number generator 
sequence to retrieve the correct bits in the same order necessary to replicate the bytes of the original image. For example, the 
following figure demonstrates data hiding randomly across multiple photos. 

 

Fig. 1. Byte distribution into multiple cover images 
 
In Fig.1, the first three parts of the current BYTE will be hidden in cover image 1, the next 3 bits will be hidden in cover 
image number 2 instead, and the last 2 bits will be hidden in cover image number 3. When the random number generator is 
added at the top, it will not follow the same order of cover images. For example, with a different Cipher key, the sequence of 
bits might change to 2 bits in cover image 2, followed by 3 pixels in Cover image 1, and finally, the last 3 bits in cover image 
3. Assuming the same order of images is used from the previous example to recover the data, the byte will be 0111001 instead 
of 10011001. Due to the random number generation, the sequence of the cover images that hide data will not be static. Each 
time data is hidden, we will hide the next 3 bits into the three channels of the next byte from a random cover image. This is 
more secure than hiding data across multiple images, but each image is independent of the other, hiding the data into 
independent segments of different images. By design, the new algorithm will hide data across multiple cover images. 
However, the data follow a strict order of those cover images, which forms dependency between them and makes it impossible 
to recover segments of the original image without following the correct sequence data hidden. 
 
One problem introduced by randomization must balance the secret image into the cover images. We introduce a 
weight/priority component to the cover images. The more times the random number generator selects a cover image, the less 
likely it will be chosen again. This gives other images a higher priority when selecting the randomizer next. Without this load 
balancing, the process hides too many bits in some photos while hiding little to no data in others. This is important as the 
more modified an image, the more vulnerable it will be to steganalysis. With load balancing, the algorithm minimizes the 
changes to each cover image. It adds an extra layer of randomization, as the algorithm will seemingly stop following a pattern 
at random intervals. It has an obfuscated hiding pattern because of missing information without a cipher key to determine 
when to drop the current random number due to the weight system. To prevent an infinite loop due to the priority system, the 
algorithm will have to deactivate cover images once they cannot be used to hide more data as the payload capacity limit is 
reached. When an image is deactivated, the algorithm will not skip cover images as often by providing an increased chance 
to pass priority tests. The more cover images are deactivated, the less likely the remaining cover images are to fail the priority 
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load balancing checks. The algorithm supports randomizing the distance between selected pixels to avoid sequential LSB 
hiding in the cover images; this will reduce the max capacity of each image but makes it impossible to retrieve all data by 
brute-forcing the first pixel in a sequence. Replication means rebuilding the original secret image using the data within the 
cover images. Because of randomization and encryption, we use the random number generator to gather information on 
rebuilding the original image instead of simply hiding data in a single image. Note that we avoided working on the alpha 
channel as it is less commonly used than the standard color channels. It would be straightforward for steganalysis tools to 
know if an image was modified if the alpha channel is randomly changing even by 1 bit to color bytes. Colors in photos are 
subject to shadows and gradients, which might explain the changes in the bits, which is not the same for the alpha channel, as 
the alpha in most images is 0 or 255. It will be possible to hide more data in images with an alpha channel, but the opaque 
parts will show something wrong with the channel in the image.  
 
4. Hiding and Extraction Algorithms 
 
4.1 Data Hiding Algorithm 
 
The following sections detail the definitions and classes used in this algorithm. A Custom image class is used to 
increase control on cover images and keep track of important information between different functions and 
functions. 

 

Fig. 2. Data Hiding Architecture 

Fig. 2 demonstrates the algorithm's data hiding and replication stages. The test application uses standard LSB, but 
more complex steganography algorithms and noise reductions can be implemented to improve data hiding further. 
The goal is to implement randomization at multiple cover images while hiding the input randomly across numerous 
images. There is no way to independently retrieve the secret image hidden in each image. Algorithm 1 sets the 
information needed to start data hiding in each cover image. The Cipher key (CK) generates the initial 
randomization matrix. This cipher key is only used to generate the initial values; the randomizer will loop to the 
start of the generated matrix when it reaches the End, and a bigger CK will create more random numbers to reduce 
looping in the function. A smaller CK requires less memory and runs faster but might lead to a visible pattern 
without randomization applied at the pixel selection level. This way of handling enables PRNG, where the same 
CK will consistently reproduce the same random input for the application to do the same actions in the same way 
between data hiding and data extraction algorithms. 
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When CK is not provided, a default value that was hardcoded in the algorithm can be used instead to avoid the need for 
communication about the CK and keep it implicit, with no way to find it besides having the correct algorithm to extract the 
CK. This is similar to encryption but without modifying the content of the cover images; this distinction is for minimizing the 
changes on any single image when unnecessary. Furthermore, because of the randomization in the algorithm, it is not 
necessary to encrypt the data as functionally; the two approaches achieve the same goal: blocking attackers from retrieving 
any data without the correct sequence to retrieve the bits. 

Definition 1: CipherList: 

 The list of integers that are generated from the CK is defined in the CipherList Eq(1),  

CipherList = ൛i is the i୲୦ digit  in the CipherListൟ (1) 

When a list of integers is generated from the CipherKey, the next digit of the current integer determines the randomization 
outcome whenever a random number generator-dependent action is triggered. This forms a random number matrix as the 
outer list contains integers, and the process treats the integers themselves as an array. 

Definition 2: Let i_current_cover be a variable that tracks the current cover image index used for data hiding. 

Definition 3: Let i_inactive_covers be the number of deactivated cover images used to keep track of the current number of 
deactivated cover images; an image is deactivated when it has no more space for data hiding if all cover images are inactive. 
The user can load more cover images to increase total capacity or stop execution and start over with more cover images. 

Definition 4: Let i_bonus_priority be the bonus priority added to cover images when deactivated. Bonus priority is added to 
make it easier for cover images to pass the PRNG checks when selecting the following cover image for data hiding. 

Definition 5: Image progress variables: 
 

The pixel selection optional variables can be used to add randomization during pixel selection in the cover images. Let Istepsize 
be the step size used in addition to the random number generator to determine the space to the next pixel in the cover image 
used for data hiding. Let Istepmultiplier be a multiplier that is applied with randomization to generate higher distances between 
pixels used for data hiding; higher multiplier values increase the distance between pixels in the cover image but limit the max 
number of usable pixels for data hiding, reducing the max capacity of each image. Bigger cover images allow larger step sizes 
and multipliers than small images. Let Imain_step_size and Imain_step_multiplier do the same, but in the main hiding direction, the 
direction Idir is determined Algorithm 1.  

Definition 6: Let Cover Images be a set of CI of the size x that will be used to hide the secret image, see Eq. (2): 

CoverImages୶ = {i ∈ (0, ∞)}, (2) 

Algorithm 1. CustomImage  
Function CustomImage(Inputimage image) 
{ 
/* Let In be the nth CI  
   Let Iinitialx and Iinitialy be the coordination of the first pixel where data hiding starts on a cover image. 
   Let IHidingX and IHidingY be the coordination of the next pixel that will be used for data hiding.  

     Let Iprio be the current priority of a CI that can be selected or reselected for more data hiding when its priority is high. 
    Let idir determines the data hiding or extraction direction (horizontally or vertically).  
    Let Inactive be a testing variable to check CI it is still enabled for data hiding.  
    Let InputImageWidth  be   the width of input image 
    Let InputImageHeight  be   height of input image  
*/ 
 
    I୧୬୧୲୧ୟ୪ଡ଼ ← InputImage୛୧ୢ୲୦/(PRNG_NextNumber + 1) // Random start position X 
    I୧୬୧୲୧ୟ୪ଢ଼ ← InputImageୌୣ୧୥୦୲/(PRNG_NextNumber + 1) // Random start position Y 
    Iୌ୧ୢ୧୬୥ଡ଼ ← ൫I୧୬୧୲୧ୟ୪ଡ଼  +  1൯%  InputImage୛୧ୢ୲୦ 
    Iୌ୧ୢ୧୬୥ଢ଼ ← ൫I୧୬୧୲୧ୟ୪ଢ଼ + 1൯% InputImageୌୣ୧୥୦୲1) 
    I୔୰୧୭ ← 4     // Priority is saved on a CI custom image object level 
    I୅ୡ୲୧୴ୣ ← true // CI start actively to allow storing data in them 
    Iୢ୧୰ ← (൫PRNG୒ୣ୶୲୒୳୫ୠୣ୰(.) + 1൯% 2 == 0)   // Assign a random direction to the Image 
} // end of CustomImage 
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where the index (i) of the cover images starts from 0 to infinity, the index i=0 indicates the first cover image loaded by the 
process. Each loaded cover image will result in a stego image SI when modified directly from this set.  

Definition 7: Initilaize_Cipher 

Let initialize_Cipher be the function that generates the cipher list from the CK, see Eq. (3): 

Initialize_Cipher: CipherKey → CipherList   (3) 

Algorithm 2 is applied to initialize Cipher, which is the function that generates the CipherList used by other functions in the 
algorithm. Depending on the length of the CipherKey, more complex number groups will be generated and stored in the 
CipherList. 

 

Definition 8: PRNGNextNumber: The random number generator function forms the pseudo-random number generator 
(PRNG), whose output is used by the rest of the algorithm. It returns the following number stored in the cipher list generated 
during the CK initialization function. The function starts from the first randomly generated number when no numbers are in 
the cipher list. 

Let PRNG_NextNumber be the function that returns the following random number stored in CipherList. Variables 
i_current_cipher and current_cipher_char are the index of the subsequent number the function will return from the CipherList; 
see Eq. (4). 

PRNG_NextNumber: i_current_cipher ×  current_cipher_char → CipherList     (4) 

Algorithm 3 returns the next digit in the current integer group in CipherList. This function is called to produce a randomized 
outcome. When no more digits exist in the CipherList, the function starts over from the first generated digit. 

 

Definition 9: The Next_Pixel Function is applied when working on cover and stego images. Two functions handle updates 
on the cover image when producing a stego image; see Eq. (5). 

NextPixel: CI୧,୨
୮

× PRNG_Next_Number → CI
୧ᇲ,୨ᇱ

୮ᇱ  (5) 

where i and j are the image's HidingX and HidingY data hiding positions, respectively, p is the cover image's priority (prior). 

This NextPixel function is implemented at the custom image class level. Therefore, all objects of type customImage will have 
access to it. This way, it is possible to use the internal values of the custom image variable Iprio during execution without 
impacting other images or limiting the number of CI the algorithm can use. In the next step, size is used to randomize the 
distance between pixels during data hiding to stop the process from using a specific length between data in the cover image, 
adding complexity to the data recovery but reducing the concentration of data hidden in a single area within the cover image. 

Algorithm 2. Initilaize_Cipher 
 Function initialize_Cipher(String CK) // CipherList initialization used for PRNG 
{  
// Assign groups of 12 digits in each index of the cipherlist, larger numbers higher memory 
    Let integer Group_size ← Minimum(CK୐ୣ୬୥୲୦/3,   12 ); 
    Let String CipherCopy ← Concat(CipherKey, CipherKey); // Increase size of CK 
    for each character index 𝑐𝑘_𝑝𝑜𝑠 | 𝑐𝑘_𝑝𝑜𝑠 ∈ (0, 𝐶𝑖𝑝ℎ𝑒𝑟𝐾𝑒𝑦௅௘௡௚ ) 
            CipherList௅௘௡௚௧௛ାଵ ← Square Value ( Substring(CipherCopy(ck_pos, group_size)); 
} 

RNG_NextNumberPAlgorithm 3.  
Function PRNG_NextNumber() returns Integer {    
          /* Pseduo Random Number Generator CipherList,  i_current_cipher / and current_cipher_char are global algorithm variables 
      */ 
           Let integer current_digit ← CipherList௜_௖௨௥௥௘௡௧_௖௜௣௛௘௥೎ೠೝೝ೐೙೟_೎೔೛೓ _೎೓ೌೝ

 // Store current digit 

           Let integer current_cipher_char ← current_cipher_char + 1 // increment index 
           if (current_cipher_char >=  CipherList୧_ୡ୳୰୰ୣ୬୲_ୡ୧୮୦ୣ୰

େ୭୳୬୲ ) {    
          /* reset index when out of group length progress to next group of digits in CipherList */ 
                    i_current_cipher ← (i_current_cipher + 1) mod CipherListେ୭୳୬୲ 
                    current_cipher_char ← 0; // Reset digit index in each group to starting position 
            } 
            Return current_digit; // current digit contains the next random number from cipherList 
        } 
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Algorithm 4 is applied to get the Next_Pixel to determine the next pixel when hiding data in the current cover image. At the 
start, a priority test is done by comparing the result of the function PRNG_Next_Number with the cover image's priority, 
which must be passed, or the cover image cannot be used, and another cover image must be selected randomly. If the cover 
image is used, the priority is changed to make it less likely to reuse the same cover image in the following data hiding; this 
reduces the chances of sequentially hiding data over and over in the same image and improves data distribution across multiple 
images. 

A cover image can be reused multiple times if it passes the priority test several times. The priority of the cover image will be 
reduced every time it is used in data hiding and increased whenever it fails the random number generator test.  

 

Algorithm 4. Next_Pixel 
Function Next_Pixel () returns bool    {      

 /* Random Pixel Selection based on priority and direction I is the customImage calling this function, i_bonus_priority is bonus priority applied to  all 
images when a cover image is deactivated  */ 

    If (PRNG_Next_Number() > IPrio - i_bonus_priority) {     
             i_bonus_priority ← i_bonus_priority + 1; // Increase priority when the image fails the PRNG priority test 
             return false  }     // End of priority failure condition 
    else  { 
               prior ← Iprior - 1 } // Decrease priority when the image passes the PRNG priority test 
   /* Data hiding direction for the current cover image based on b_direction   value in the object   of  the class custom image */ 
    if (Iୢ୧୰ = true)    {    
          Iୌ୧ୢ୧୬୥ଢ଼ ← Iୌ୧ୢ୧୬୥ଢ଼ + next_step_size(); // Calculate distance to next pixel 
          if (IHidingY >= IHeight)   {   
                I ୌ୧ୢ୧୬୥ଢ଼ ←  0; 
                Iୌ୧ୢ୧୬୥ଡ଼  ←  ( I ୌ୧ୢ୧୬୥ଡ଼ +  next_step_main_size()) mod I୛୧ୢ୲୦    
          } 
/*An image is deactivated when hiding data in it risks overwriting other secret image data; this way, the algorithm achieves lossless data hiding*/ 
 
         if (Iୌ୧ୢ୧୬୥ଡ଼ ==  I୧୬୧୲୧ୟ୪ଡ଼ AND Iୌ୧ୢ୧୬୥ଢ଼ >=  I୧୬୧୲୧ୟ୪ଢ଼) {                                                                           
            Iୟୡ୲୧୴ୣ  ←  false 
            i_inactive_covers ←  i_inactive_covers +  1 
            i_bonus_priority ←  i_bonus_priority +  1 
        } 
    } // End of Idir = true 
    Else   { // Idir = false 
        I ୌ୧ୢ୧୬୥ଡ଼ ← Iୌ୧ୢ୧୬୥ଡ଼ +  next_step_size() 
        if (I ୌ୧ୢ୧୬୥ଡ଼ >=  I୛୧ୢ୲୦)  { 
                Iୌ୧ୢ୧୬୥ଡ଼ ←  0 
                Iୌ୧ୢ୧୬୥ଢ଼ ←  ( Iୌ୧ୢ୧୬୥ଢ଼ +  next_step_main_size()) mod Iୌୣ୧୥୦୲ 
        }       //End of else condition 
        if ( Iୌ୧ୢ୧୬୥ଢ଼ ==  I୧୬୧୲୧ୟ୪ଢ଼ AND Iୌ୧ୢ୧୬୥ଡ଼  >=  I୍୬୧୲୧ୟ୪ଡ଼) { // Data integrity condition to prevent overwriting existing SM data 
           Iୟୡ୲୧୴ୣ ← false // Deactivate the image to prevent overwriting of secret image data already in the stego-image 
           I୧୬ୟୡ୲୧୴ୣౙ౥౬౛౨౩

←  i୧୬ୟୡ୲୧୴ୣౙ౥౬౛౨౩
+  1;    

             i_bonus_priority ←  i_bonus_priority +  1  
      } // End of data integrity condition 
} // End of Idir = false conditions 
} // End of Next_Pixel 

Definition 10:  
 

Let NextStepSize and next_main_step_size be the functions that calculate the distance between pixels in the cover image; see 
Eqs. (6-7). 

NextStepSize: PRNG_NextNumber → (PRNG_NextNumber) mod stepsize × stepMultiplier)        (6) 

next୫ୟ୧୬౩౪౛౦౩౟౰౛
: PRNG୒ୣ୶୲୒୳୫ୠୣ୰ → (PRNG_NextNumber) mod main_step_size ×  main_step_multiplier) (7) 

Let the image function NextStepSize be a function that returns a random digit to determine the minimum number of pixels 
between the last data-hiding pixel and the next position. For example, if NextStepSize is two, the process must skip at least 
the next two pixels plus a random number in the cover image before hiding data again. Stepsize determines the maximum 
distance between the current and the next pixel for data hiding. stepMultiplier increases the step size by allowing higher values 
than the range [0.9] in the function results. The process will hide data sequentially when stepsize and multiplier are one. 
Otherwise, gaps will be present between pixels because of the minimum distance limitation imposed by the function. 
Main_step_size and main_step_multiplier work similarly but use different amounts to support more complex data-hiding 
patterns than using the same random distance between pixels in both X and Y directions. 
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Definition 11: PRNG_NextCover 

Let PRNG_NextCover be a function that performs load balancing and a PRNG check when the algorithm is performing cover 
image-level randomization; see Eq. (8). 

PRNGNextCover: iୡ୳୰୰ୣ୬୲ౙ౥౬౛౨
→ PRNGTest, where PRNGTest ∈  {true, false} (8) 

Before selecting a cover image, the nextPixel function of the current cover image object is called to perform a test comparing 
the following random number generated by Definition 10 and the priority of the current cover image. If the cover image passes 
the PRNGTest, the image will be used for data hiding; the function RNGnextCover returns true in this case. On the other 
hand, when a cover image fails the PRNGTest, the algorithm starts looking for the next suitable cover image for data hiding. 
Whenever a cover image fails the PRNGTest, the function will change the current cover image to the next active one in the 
cover images list. Once an active cover image is found, the function will repeat the random number comparison with the 
current cover image priority to determine if the image can be used for data hiding. The function recursively loops until an 
active cover image passes the random number generator test. 

 
 
Algorithm 5. PRNG_NextCover is a recursive function that finds the next valid cover image for data hiding. A cover image 
is invalid if it is inactive or the next value from the random number generator fails the priority comparison. The call to the 
function NextPixel contains the implementations for random number generation and priority at a pixel level during data hiding. 
When all cover images are deactivated, the user can stop the algorithm or load more cover images to continue the data hiding 
from that step; newly loaded cover images will be initialized using the custom image constructor. 

Definition 12 
 
Let fillnextcover be a function to hide 3 bits from SM into {R, G, B} channels at ith cover image selected randomly. This 
function should modify the ith stego image for each hiding process at each channel, see Eq. (9). 
 

fillnextcover: CI୧
ୖ × CI୧

ୋ × CI୧
୆ × ൫SM୨൯୨ୀଵ,…,ଷ

→ SI୧    (9) 

 
In Algorithm 6, there is a call to the function in the definition of Algorithm 5. PRNG_NextCover is used to swap to the next 
active cover image by performing random number and priority tests on the cover images until the following cover image 
passes the random number checks. After a cover image is found, the process will update the current image with the 3 bits 
forwarded to the function. The pseudo-code displayed hides the 3 bits from the secret image into three random pixels in 3 
random cover images. PRNG_NextCover() can be called three times instead of sending each color bit to hide into one specific 
or random channel. 

The SetPixel is the function that modifies the current pixel of CI at the coordinates (X and Y) of the pixel at the channel 
(Color) of the ith cover image CIi to produce ith SI, see Eq. (10). 

SetPixel: X × Y × Color × CI୧ →  SI୧ (10) 
 
where  
 

Algorithm 5. PRNG_NextCover 
Function PRNG_NextCover (i_current_cover) returns Boolean {    
     /* PRNG Test on images    i_current_cover is available to all functions in the algorithm */ 
    Let continue_Search ← true   

    if (CoverImages୧_ୡ୳୰୰ୣ୬୲_ୡ୭୴ୣ୰
୬ୣ୶୲୔୧୶ୣ୪()  == false)  {   

        /*   Use custom image next_pixel to test PRNG priority Recursively search for the next active cover image when the current CI fails the PRNG 
priority check */ 

     if (inactive_covers = CoverImagesCount, )  
             load more cover images into CoverImages n   
    while (continue_Search) {    // Search for next active CI 
        i_current_cover ←  i_current_cover + 1 mod StegoImagesେ୭୳୬୲ 
        if CoverImages୧_ୡ୳୰୰ୣ୬୲_ୡ୭୴ୣ୰

ୟୡ୲୧୴ୣ = true then continue_search ←  false 
     } 
     return PRNG_nextcover(i_current_cover) // Recursively call function  
  } 
    Return true // stops recursive calls when a cover image and pixel are found 
} 
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Definition 13: DataHidingWrapper 

Let DataHidingWrapper(.)  be a function that sends the bits of the SM to the function that selects a random cover image and 
performs the actual data-hiding functionality. The data-hiding wrapper in Eq. (11) works with the Red (R), Green (G), and 
Blue (B) bytes of a pixel saved in the Color data type. HB is the three-channel bytes of the selected pixel from SM for hiding 
in CI. DataHidingWrapper hides all bits sent to it in random cover images by calling the function fill_next_cover, which will 
find the next cover image to use in the data-hiding process. For example, the three least significant bits from the three-color 
channels (RGB) will be sent to hide the 3 LSB bits in the subsequent cover images. It is possible to extend this function to do 
the cover image swap instead of independently for each color channel to store them in different cover images. 

DataHidingWrapper: SMୌ୆౎,ృ,ా × CIୖ,ୋ,୆  → SIୖ,ୋ,୆ (11) 

 

 
 
Algorithm 8. is the data hiding algorithm of a secret image SM on N cover images using CipherKey CK to produce N stego 
images, see Eq. (12). 
 

HideImage: SM ×  (CI)୒ × CK →  (SI)୒ (12) 
 

 
 
Algorithm 8. Shows the primary function used to make a simple loop on all SM pixels and send them to the data-hiding 
wrapper used by the algorithm. The implementation will be sent to an LSB w/Randomization function, but other data-hiding 
algorithms from the wrapper can be used instead. Note that the cover images and cipher keys are global variables and do not 
need to be sent to each function to work. Instead, CI will be modified directly by the process as they are stored in the 
CustomImages list, and the result will be the stego images of the algorithm. 

4.2 Data Extraction Algorithm  

The extraction algorithm uses the Cipher key and loads the stego images in x load order that matches the original cover images' 
load order to rebuild the PRNG details and determine the stego image pixels where the secret image data is hidden.  The 
algorithm works similarly to the data-hiding algorithm, except it will extract the least significant bits from the selected random 
pixels instead of hiding new data in them. The number of extracted bits must match the number used when hiding data. 
 

Algorithm 6. Swap next cover 
Function fillnextcover(CI,bit BitR,bit BitG,bit BitB) { 
    Let HidingColor be of type Color // CI pixel where we need to perform LSB 
    if (PRNG_NextCover() == true) // Call PRNG_NextCover to perform PRNG test and select next cover image and pixels 
    { 
          HidingColor ← CoverImages୧_ୡ୳୰୰ୣ୬୲_ୡ୭୴ୣ୰౟ౄ౟ౚ౟౤ౝ౔,౟ౄ౟ౚ౟౤ౝౕ // Retrieve Pixel to embed data in the CI 

               Apply LSB on HidingColorୖ,ୋ,୆ such that BitR,BitG and BitB are embedded in a random order  
          SI୧_ୡ୳୰୰ୣ୬୲_ୡ୭୴ୣ୰ ←  SetPixel(CIଡ଼, CIଢ଼, HidingColor, CI୧_ୡ୳୰୰ୣ୬୲_ୡ୭୴ୣ୰) 
  } 
} // End of condition and function 

 

Algorithm 7. DataHidingWrapper 
// DataHiding wrapper used to call the function that randomly picks a CI for data hiding 
Function DataHidingWrapper(SMୌ୆౎,ృ,ా , CI) // Color={R,G,B} 
{    
    Let HidingByteୖ,ୋ,୆  ← SMୌ୆౎,ృ,ా 
    For each bit in HidingByte  // 24 bits in each pixel represented by hidingbyte 
        SI ← fillnextcover(CI, HidingByteୖ,ୋ,୆) // HidingByte is the Secret image color bytes 
    Return SI 
} 

Algorithm 8. Hide Image 
// The main loop on the secret image’s pixels 
Function HideImage(CustomImage SecretImage, CustomImage(s) CI, String CipherKey) 
{ 
    Let CipherList ← initialize_Cipher(CipherKey) // initialize the random number generator 
    For each Vertical pixel Y in SecretImage 
        For each Horizontal pixel X in SecretImage 
            SI ← DataHidingWrapper(SMଡ଼,ଢ଼ୌ୆౎,ృ,ా , CI) 
    // End of loops 
    Save SI // Save the modified cover images, which are now the stego images for extraction.  
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Fig. 3. Data Extraction Architecture 

Definition 14: Let i_current_Stego be a variable used to keep track of the current stego image index used for data hiding. 

Definition 15: Let i_inactive_ Stego be the number of deactivated stego images; an image is deactivated when the related 
cover image would have been deactivated during data hiding. When all stego images are present, the user can stop execution 
or load more cover images. 

Definition 16: Let StegoImages be a set of types of Custom images defined in Eq. (13):  

StegoImagesଡ଼ →  {i ∈ (0, ∞)} (13) 

where X is the index of a stego image, depending on the order in which the images were loaded. The variable x starts as 0 for 
the first loaded cipher image and ends at StegoImagesLength. When all stego images are deactivated, the user can stop execution 
or load more stego images to utilize a more complex data-hiding pattern. 

Definition 17: PRNG_NextStegoImg 

Let PRNGNextStegoImg be the function used to select the next stego image during data extraction, see Eq. (14): 

PRNGNextStegoImg: i_current_stego → PRNGTest , where PRNGTest ∈  {true, false} (14) 

Before selecting a stego image, the nextPixel function of the current stego image object is called to perform a test comparing 
the following random number generated by function in Eq. (14) and the priority of the current stego -image. If the stego image 
passes this PRNGTest, the image will be used for data hiding; the function PRNGnextStegoImg returns true. On the other 
hand, when a stego -image fails the PRNGTest, the algorithm starts looking for the next suitable stego image for data hiding. 
Whenever a stego image fails the PRNGTest, the function will change the current stego image to the next active one in the 
stego images list. Once an active stego -image is found, the function will repeat the random number comparison with the 
current stego image priority to determine if the image should be used again to extract more data. The function recursively 
loops until an active stego image passes the random number generator test. 

Algorithm 9 is a recursive function used to find the next valid Stego image for data extraction. A stego image is invalid if it 
is inactive or the next value from the random number generator fails the priority comparison during the PRNGTest. The call 
to the function NextPixel contains the implementations for random number generation and priority at a pixel level during data 
hiding. 
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Algorithm 10 is the function that extracts the SM bits from the next SI that passes PRNG tests and has load-balancing priority. 

Definition 18: Extract_Next_Cover function is defined in the Eq. (15). 

Extract_Next_Cover: SI୧
ୖ × SI୧

ୋ × SI୧
୆ → SI୧

ୖᇱ × SI୧
ୋᇱ × SI୧

୆ᇱ (15) 

Let Extract_Next_Cover be the function that calls PRNG_NextStegoImg defined in Definition 17 to select the next SI and 
extract the hidden SM bits. Only the LSB of each color channel is retrieved, as the SM will be in those positions. 

In addition, Algorithm 10, called the function PRNG_NextStegoImg, is used to swap to the next active stego image by 
performing random number and priority tests on the stego images until the next stego image passes the random number checks. 
After selecting a stego image, the process will  

extract the LSB of each color channel. The pseudo-code displayed hides the 3 bits from the secret image into three random 
pixels in 3 random cover images. PRNG_NextStegoImg() can be called three times instead of sending each color bit to hide 
into one specific or random channel. Moreover Algorithm 10 call the function GetPixel(. )   Define in Eq.(16) to get one pixel 
from stego image at the location (x,y). 

GetPixel: X × Y × SI → SI୶,୷
ୡ   , where c ∈ {R, G, B}   (16) 

 

Algorithm 11 sends bits to the function that selects a random cover image and performs the data-extraction functionality. The 
dataExtraction_wrapper works with the Red (R), Green (G), and Blue (B) bytes of a pixel saved in the Color data type, see 
Eq. (17): 

DataExtraction_Wrapper: SM × (SI)୒ → SM୧,୨ (17) 

where SM is the secret image, (SI)N is the stego images produced by the data hiding, and i and j represent the extracted pixel 
x and y positions, respectively. 

The function retrieves each bit of the next pixel in the secret message using the function extract_next_cover, which will find 
the next stego image used during data hiding. For example, the three least significant bits from the three-color channels (RGB) 
will be sent to hide the 3 LSB bits in the following cover images. It is possible to extend this function to do the cover image 
swap instead of independently for each color channel to store them in different cover images. Still, it increases the total number 
of calculations.  

Algorithm 9. Stego image data extraction 
Function PRNG_NextStegoImg returns Boolean {  // Random cover selection with load balancing  
    Let bool continue_Search ←  true 
    if (StegoImages୧_ୡ୳୰୰ୣ୬୲_ୱ୲ୣ୥୭

୬ୣ୶୲୔୧୶ୣ୪ ==  false) {    
       /* Call customImage nextPixel to test PRNG priority when all stegoimages are used, the algorithm needs to load the next batch of images to 

continue the extraction, similar to how data hiding was performed*/ 
        if (inactive_Stego = StegoImagescount) 
             load more stego  images into StegoImages; 
        while (continue_Search == true)  {  // Search for next active CI          
            Stegoimages୧_ୡ୳୰୰ୣ୬୲_ୱ୲ୣ୥୭ ← StegoImages୧_ୡ୳୰୰ୣ୬୲_ୱ୲ୣ୥୭ାଵ mod StegoImagesୡ୭୳୬୲ 

            If  StegoImages୧_ୡ୳୰୰ୣ୬୲_ୱ୲ୣ୥୭
୅ୡ୲୧୴ୣ ==  true  then  continue_Search ←  false 

        } // End while loop 
        return PRNG_nextStegoImg() ;     // Recursively call this function to perform nextPixel() PRNG tests 
    } 
    Return true; 
} 

 

Algorithm 10. Next cover extraction 
Function Extract_next_cover (bit Redoutput, bit greenoutput, bit blueoutput) { 
          // All parameters are passed by reference, calling function input parameters will be modified by this function 
    Color Extraction_Color // Variable used to retrieve SI pixels data 
    if (PRNG_NextStegoImg())  { 
                // Extract the pixel from the Stegoimages set at index i_current_stego using the image’s HidingX,HidingY position 

           Extraction_Color ← StegoImages୧_ୡ୳୰୰ୣ୬୲_ୱ୲ୣ୥୭
ୋୣ୲୔୧୶ୣ୪(ୗ୍ౄ౟ౚ౟౤ౝ౔,ୗ୍ౄ౟ౚ౟౤ౝౕ,ୗ୍) //Extract the SI pixel at Hiding positions 

          RedOutput ←  LSB(ExtractionColorோ௘ௗ) //   𝐸𝑥𝑡𝑟𝑎𝑐𝑡  𝑙𝑎𝑠𝑡 𝑏𝑖𝑡 𝑖𝑛 𝑟𝑒𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙        
          GreenOutput ←  LSB(ExtractionColorீ௥௘௘௡) // 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑙𝑎𝑠𝑡 𝑏𝑖𝑡 𝑖𝑛 𝐺𝑟𝑒𝑒𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 
          BlueOutput ←  LSB(ExtractionColor஻௟௨௘) // 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑙𝑎𝑠𝑡 𝑏𝑖𝑡 𝑖𝑛 𝑏𝑙𝑢𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 
  } // Send back the 3 extracted SM bits  
Return (RedOutput, GreenOutput, BlueOutput)  
} 
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Algorithm 12 is applied for data extraction at the receiver side.  

ExtractImage: H × W × CK × (SI)୒ → SM (18) 

 

In the algorithm 12, the outlines of the he primary function for iterating through all pixels of the secret message (SM) and 
passing them to the data extraction wrapper. Subsequently, the implementation proceeds to a function that retrieves the bits 
of the original cover image from stego images, maintaining the same random order used for data concealment. Notably, stego 
images and cipher keys are global variables, obviating the need for their transmission to each function; instead, CustomImages 
list is directly modified, yielding the original secret image as the result. 

4.3 Implementation of the Proposed Hiding and Extraction Algorithm 
 

Fig. 4 and Fig. 5 show the implementation of the data hiding and extraction algorithms on a sample image. During the data 
hiding algorithm, the data from the blue channel is hidden inside multiple cover images; the same data will be extracted from 
the same positions during the data extraction algorithm. 
 

  
Fig. 4. Data Hiding Implementation Fig. 5. Proposed Data Extraction Implementation 

Algorithm 11. Data Extraction Wrapper Function 
// Extraction wrapper used to call the function that randomly picks a Ci for data hiding 
Function DataExtraction_Wrapper (Image SM, StegoImages) return color { 

Let PixelData be of type Color// Color details of next SM Pixel 
Let ba_hide_char_array be a BitArray of length (8) 
Let ba_hide_char_arrayA be a BitArray of length (8) 
Let ba_hide_char_arrayG be a BitArray of length (8) 
Let ba_hide_char_arrayB be a BitArray of length (8) 
Let Bool bitRed ←  false 
Let Bool bitGreen ←  false 
Let Bool bitBlue ←  false 

  For I in 1 to 8 // Rebuild each bit of the secret image pixeland rebuild the 8 bits of each color change, 24 bits total 
{   (bitred, bitgreen, bitblue) ← extract_next_cover(bitred,bitgreen,bitblue,SM); 
     ba_hide_char_array[bit_pos] ← bitred; 
     ba_hide_char_arrayG[bit_pos] ← bitgreen; 
     ba_hide_char_arrayB[bit_pos] ← bitblue; 

  } 
   PixelDataI ← bitred ∗ bitgreen ∗ bitblue; 
} 

Algorithm 12. Data Extraction Function 
// The main loop on secret image’s pixels 
Function ExtractImage(Integer Y, Integer X, String CipherKey, CustomImage(s) SI) 
{ 
    initialize_Cipher(CipherKey) // initialize the random number generator 
    SecretImage ← new empty image 
    For I in 1..Y // loop to rebuild each vertical position in secret image 
        For j in 1..x // loop to rebuild each horizontal position in the secret image 
          SetPixel(X,Y,SecretImage,Data_Extract_Wrapper(SecretImage,SI)) // Set 𝑆𝑀௑,௒to extracted CI bits 
   //Both loops ended before the return is triggered 
    Return SecretImage // Return the secret image built from the extracted data 
} 
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5. Results Discussion 
 

The results of the proposed replication approach have been discussed based on the resolution values achieved and compared 
with the various steganography algorithms. 

5.1 Experimental Settings 

The algorithm has been implemented at a software application level using Visual Studio 2022 with a C# backend image 
processing process written from scratch and the randomization and data-hiding algorithms implemented. C# was used because 
of its object-oriented, bitmap image interface and pointer capabilities. The experimental results were observed using images 
from the (UCID V2) data set. The tests were performed using the same cover images used by other research, as comparing 
the results on the same cover image is the way to generate comparable results. The resolution of the cover images used 
significantly impacts the results; therefore, the cover images must be maintained during comparisons. When comparing 
multiple smaller cover images with one bigger cover image, all the smaller cover images must match the bigger image's full 
resolution. 
 

5.2 Testing Standard 

This section presents the standards for testing the quality of data-hiding algorithms, which will be used later to compare with 
related works. The following section presents the peak-signal-to-noise ratio (PSNR) and payload capacity (Hardan et al., 
2022). The measurement of the quality of data hiding results on a stego-image compared with the cover-image used for data 
hiding. A higher PSNR means the stego image is closer to the cover image. Thus, higher data hiding quality is more 
challenging to detect as a modified image. Presents analysis on PSNR, including the following formula to calculate PSNR: 

PSNR(CI, SI) = 10 × logଵ଴ ቆ
Max(255)ଶ

MSE(CI, SI)
ቇ 

(19) 

Meanwhile, mean square error (MSE) measures the average differences between two images defined in Eq. (20). 
 

MSE(CI, SI) =  
ଵ

୦∗୵
∑ ∑ ൫CI(i, j) − SI(i, j)൯

ଶ୵ିଵ
୨ୀ଴

୦ିଵ
୧ୀ଴      (20) 

 
Because MSE works at a per-pixel level, PSNR calculates the overall similarity between the original cover image (CI) and its 
modified form in a stego-image (SI). The payload defined in Eq. (21) equals the number of bits hidden in the cover image (s) 
to create stego-images. Higher payloads increase MSE and reduce PSNR, making it easier to detect an image as a possibly 
modified cover image. 

Payload = หSM୛୧ୢ୲୦×ୌୣ୧୥୦୲×ଷ×଼ห (21) 

5.3 Effect of Replication Cover Images on the Security Level 

The PSNR metric was used to check the imperceptibility of images concerning payload capacity. Figs. (6, 7, 8, and 9) illustrate 
the effect of employing multiple cover images (256 × 256) resolution to conceal different payload capacity data by utilizing 
the three channels, which enhances PSNR by 9% on average. Moreover, maximum PSNR is found when the number of cover 
images gradually increases in any payload capacity. Hence, the maximum PSNR is (77.09 dB) when the number of cover 
images is 32 at the payload capacity is 2×104 at the red channel. In contrast, the minimum PSNR is (51.34 dB) when the two 
cover images have a payload capacity of 50×104 at the blue channel. In addition, the maximum variance of three channels is 
found when we used 32 cover images, 16 cover images, and two cover images at the payload capacity 2×104, 15×104, and 
50×104, respectively. 

  
Fig. 6. The PSNR of data hiding in cover images 
(256×256) on three channels with the load capacity (2 
×104 bits) 

Fig. 7. The PSNR of data hiding in cover images (256×256) 
on three channels with the load capacity (15×104 bits) 
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Fig. 8. The PSNR of data hiding in cover images 
(256×256) on three channels with the load capacity 
(50×104 bits) 

Fig. 9. The average PSNR of data hiding in cover images 
(256×256) on three channels using several load capacities 

 
 

5.4 Result in Comparison with previous work 

Image imperceptibility comparisons were conducted to evaluate the proposed algorithm's performance compared to existing 
methods. The focus was on assessing the imperceptibility of stego images generated by the algorithm when using single cover 
images, as this aspect is crucial for ensuring the visual integrity of the resulting images. The evaluation included comparisons 
with algorithms prioritizing achieving higher PSNR values. As these algorithms typically operate on single cover images, 
they serve as a benchmark for assessing the effectiveness of our approach. As we mentioned before, by gradually increasing 
the number of cover images used in the embedding process, the PSNR values of resulting stego images were observed to rise 
accordingly. This observation underscores the importance of finding the optimal balance between the number of cover images 
utilized and the resulting PSNR values. Identifying the threshold where employing multiple cover images yields comparable 
or superior results in terms of PSNR represents a significant milestone. This finding indicates our approach's potential to 
achieve high-quality stego images while leveraging the benefits of multiple cover images. The results of the imperceptibility 
comparisons demonstrate the effectiveness of the proposed algorithm in generating stego images with enhanced visual quality, 
even when utilizing various cover images. 
 
Table 1  
PSNR Comparison with Related Works 

Name of CI used 
Payload Capacity 
Bits × 10^4 

PSNR (dB) 
using Ou, B.,et 
al., (2015) 

PSNR (dB) using 
Li, J., (2013) 

PSNR (dB) using  
MDLSB 
Elshare, S., EL-
Emam, N. (2020) 

PSNR (dB) using 
IDHA Ahmad, 
M. et al., (2021) 

PSNR (dB) using  
the proposed data 
hiding on a single 
image 

Lena 

 

2 60.6 59.1 62.7 65.8 67.1 
6 55.3 53.8 57.3 60.1 62.3 
8 53.8 52.5 55.6 58.3 61.0 

12 51.2 50.4 54.8 57.5 59.3 

15 49.6 N/A 53.1 55.7 58.3 

Baboon 

 

2 56.8 57.1 59.2 63.3 67.0 
2.8 54.9 55.2 56.1 57.8 65.6 
3.6 53.3 53.3 54.9 56.1 64.56 
4.4 51.9 51.9 53.2 55.4 63.64 

5.6 49.8 49.9 53.4 53.6 62.61 

Barbara 

 

2 62 59.8 63.2 65.1 66.95 
5 57 55.8 59.6 59.4 63.03 
7 55.1 54.1 58.5 57.7 61.62 
10 53 52.5 55.9 56.9 60.10 

12.5 51.1 51.1 54.8 55.1 59.15 

 
Table 1 and Figs. (10-12) outline the payload capacity and PSNR of cover images with various testing algorithms, with the 
current research algorithm concealing data in a single cover image. The results indicate higher PSNR across all cases than 
previous works (Ou et al., 2015; Li, 2013; Elshare & EL.Emam, 2020; Ahmad et al., 2021). The minimum differences in 
PSNR were observed between the proposed work and Ahmad, M. et al., 2021) for all payload capacities and all images. The 
results show varying ranges from 1.3 to 2.6 in the Lena image and from 3.7 to 9.014 in the Baboon image, with differences 
ranging from 1.85 to 4.05 in the Barbara image. 
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Fig. 10. Lena Image Distortion Comparison to Related 
Works 

Fig. 11.  Baboon Image Distortion Comparison to Related 
Works 

 
Fig. 12.  Barbara Image Distortion Comparison to Related Works  

 
Table 2   
Demonstrates the impact of using fewer Lina cover images than a larger number 

Payload  
Capacity  

Bits × 10^4  

Number of  
256×256 cover- 

images used in the  
proposed work 

Lowest PSNR of Stego- 
Images in the proposed 

work  

Average PSNR of Stego- 
Images in the proposed 

work  

PSNR in one  
512×512 image Using IDHA  

(Ahmad, M. 2021)  

2  

1  61.1  61.1  65.8  
2  64.06  64.11  65.8  
3  65.84  65.85  65.8  
4  67.06  67.12  65.8  

8  

1  55.05  55.05  58.3  
2  58.03  58.03  58.3  
3  59.76  59.80  58.3  
4  61.07  61.08  58.3  

15  
 

1  52.33  52.33  55.7  
2  55.30  55.31  55.7  
3  57.06  57.07  55.7  
4  58.30  58.32  55.7  

 

Table 2 shows the impact of all of Lena's features on maintaining PSNR relevance. Four 256×256 images achieve slightly 
higher PSNR than one 512×512 image with the same total resolution. Data hiding involved 3 bits per pixel in each byte. The 
results indicate that the PSNR of three smaller 256×256 images closely match that of one larger 512×512 image. Additionally, 
the proposed algorithm outperforms a single larger image by 2.62% at a payload capacity of 15×104 bits. 
 
5.5 Euclidean norm 
 

Euclidean norm test Eq. (22) has been implemented on three-color images with the size (512 × 512) to check the distance (d) 
between cover-image and stego-image for three color components {R, G, B}. 

d = ඥ(Rେ୍ − Rୗ୍)
ଶ + (Gେ୍ − Gୗ୍)

ଶ + (Bେ୍ − Bୗ୍)
ଶ (22) 

The smallest distance will be reached when the proposed algorithm is implemented. Furthermore, the results indicate that the 
greatest variance between the distance of the proposed algorithm and previous works occurred in (El-Emam, 2013), with a 
difference of 260 for the Baboon image at a 30% payload percentage. Additionally, the greatest difference between the 
distance of the proposed algorithm and previous works is evident in (Ahmed et al., 2022), with a difference of six for the 
Peppers image at a 10% payload percentage. See Figs. 13 (A, B, C). 
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Fig. 13(A-C). The effects of Euclidean norms vs payload capacity for the proposed algorithm and other research works 

5.6 Avoiding WFLogSv attack 

The main intention of the suggested hiding algorithm is concealing a secret message Sm in the color image without making 
suspicion that the stego-image contains hidden information. In this work, the stego-image produced by the suggested algorithm 
IDHA has been examined against the WFLogSv attacker using the “Receiver Operating Characteristic” (ROC) curve (Elshare 
& EL-Emam, 2020). The ROC curve is based on two parameters: the probability of false alarms (PFA) and the probability of 
detection (1-PMD), see Eqs. (23, 24). 

P୊୅  =  
NCI(SI)

NCI
 

(23) 

P୑ୈ  =  
NSI(CI)

NSI
 

(24) 

 

where  

 1,0P,P MDFA   , NCI (SI) is several cover images recognized as stego-images, NCI is the total number of cover 

images, and NSI(CI) is the number of stego-images recognized as cover images. NSI is the total number of stego-

images. In the ROC scheme,  FAP  is presented on the horizontal axis, while (
MDP-1 ) is presented on the vertical axis. A 

steganography technique is said to be secure from an attacker if the following condition is satisfied see Eq.(25): 

0and,P1P MDFA   (25) 

It means that the area under a curve AUC=0.5, whereas the perfect detection of attackers is found when 1 ; see (Hardan, 
2022). 

5.7 ROC curve 
 
A ROC curve (receiver operating characteristic curve) is a graph that illustrates how well a classification model performs at 
various classification thresholds. This curve represents two parameters: 

- True Positive Rate (TPR), which is synonymous with recall and is defined as TP / (TP + FN) 

- False Positive Rate (FPR), which is defined as FP / (FP + TN) 
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The ROC curve plots TPR against FPR at different classification thresholds. When the classification threshold is lowered, 
more items are classified as positive, increasing both False Positives and True Positives. The figure below demonstrates a 
typical ROC curve. 

  

Fig. 14.  ROC curves of the WFLogSv steganalyser 
against the proposed hiding algorithm MDLSB and the 
traditional LSB with a payload of 40% capacity 

Fig. 15. The dissimilarity between adjacent pixels with payload 
is 40% 

In Fig. 14, the performance of this study is compared with that of other researchers in defending against the WFLogSv attack 
using 40% of payload capacity. The study observed that the WFLogSv attack shows strong detection capabilities when 
traditional LSB is applied but weak detection when our approach is used. The detection rate for identifying a secret message 
using the proposed technique does not exceed 2.9%, whereas the detection rates using the DHEA technique (Elshare & EL-
Emam, 2020) and the IDHEA technique (Ahmed et al., 2022) are approximately 16.7% and 14.0%, respectively. Moreover, 
the proposed technique has better detection rates than the previous works mentioned above, at approximately 13.8% and 
11.16%, respectively. 

5.7 Estimate the detection error (𝑃ா) 
 
The results confirm that the suggested hiding algorithm with a replication technique is highly imperceptible and works against 
attacks for different payload capacities (see Fig. 15). Furthermore, the performance of the present steganography can be 
achieved by detection error (𝑃ா) expressed in Eq. (26). 
 

P୉ = min ቆ
1

2
( P୊୅ + P୑ୈ )ቇ 

(26) 

The error 𝑃ா  lies in the range [0, 0.5], where zero corresponds to perfect detection and (0.5) to perfect security of the 
steganographic scheme Figure 15.   Detection error is estimated as a function of payload capacity based on bit per pixel (bpp) 
to find the area under the curve (AUC). The result of the suggested algorithm has been analyzed and compared with the 
previous work (Elshare, & EL-Emam, 2020; Ahmed et al., 2022; Hardan et al., 2022). The proposed replication algorithm 
results show that the mean value of PE equals 0.472. This result is better than the previous works mentioned above by about 
4.8%, 2.8%, and 0.6%, respectively. Moreover, the excellent security percentage reaches 99% when bpp = 0.05, whereas the 
worst security percentage reaches 86% when bpp = 0.4. 

6. Conclusion and future research  

This paper proposes a new steganography algorithm to enhance attack protection based on a replication technique. The PSNR 
is effectively applied to produce the new data-hiding algorithm for color images. The search used randomized LSB data hidden 
across multiple cover images to enhance security. A complex pseudo-random generation makes it easier for intended 
recipients to recover data and makes it difficult for attackers to uncover patterns within stego-images. Loading stego-images 
in multiple batches increases brute force complexity while using various images reduces distortion compared to a larger image. 
The new algorithm allows more flexible data hidden across different cover images simultaneously. The results show that the 
best PSNR, payload capacity, and Euclidean norm are better than the previous works, and the attack resistance is perfect. 
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