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 This paper presents RIFD-DLT, an advanced near-lossless image compression algorithm that com-
bines Delta Encoding with the original rounding the intensity followed by division (RIFD) method. 
The RIFD method first minimizes the image intensities, which makes the next compression stages 
more efficient. Subsequently, Delta Encoding subtracts neighboring rows in each of the image's 
three-color matrices, using the proximity of pixel values in adjacent rows to further reduce the image 
intensity. Extensive investigations show that RIFD-DLT outperforms the state-of-the-art algorithms 
and benchmarks with respect to compression ratio and processing time. More specifically, RIFD-
DLT compresses data from 11520 KBs to 2131 KBs with an 81.93% reduction and a 43.7% im-
provement over original RIFD-Huffman when compressing Kodak Image set. When comparing the 
RIFD-DLT with LICA algorithm, the total file size is reduced by 71.2%, representing a 10.73% 
improvement for RIFD-DLT. Also, RIFD-DLT shows notable speed gains over RIFD-Huffman, 
requiring only 34.62 seconds to compress and decompress all images from three datasets (Waterloo, 
Kodak and EPFL), as compared to 50.99 seconds for RIFD-Huffman. As for the image quality, the 
proposed algorithm achieved an average PSNR values of 58.51 dB, 51.3 dB, and 52.22 dB for the 
EPFL, Kodak, and Waterloo image sets, respectively, demonstrate the excellent image quality that 
persists after decompression, with a minimal distortion that is imperceptible to the human visual 
system and identically to the RIFD-Huffman PSNR. These findings show that, while preserving 
excellent image quality, RIFD-DLT provides an incredibly efficient and fast method of image com-
pression. 
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1. Introduction 
 
 

The production and use of digital images has increased at an unprecedented rate due to the rapid growth of digital technology. 
Because of this rise, there is an urgent need for effective image compression algorithms since the massive volumes of data gener-
ated demand for efficient means of transmission and storage. Digital images that have been compressed into smaller files can be 
stored and shared more easily without sacrificing quality significantly. This is especially important in domains where maintaining 
high accuracy and precision is required, like scientific research, medical imaging, precision engineering, and remote sensing (Hu 
et al., 2021; Furong et al., 2022; Cao et al., 2020).  

As a result, research on image compression has become essential to meet the competing demands of image quality and compres-
sion ratio (Strümpler et al., 2022). 
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1. Background and Motivation 

The necessity for effective information handling systems, particularly in fields requiring high fidelity and precision, has been 
highlighted by the exponential growth in data generation, which has also highlighted the significance of image compression (Hu 
et al., 2021; Bai et al., 2024). As we move through a time characterized by enormous and constantly expanding amounts of digital 
imagery, efficient image compression methods are becoming more and more important (Strümpler et al., 2022). This is especially 
important in areas including medicine, precision engineering, and remote sensing, where maintaining image quality is crucial 
(Lungisani et al., 2023; Dua et al., 2020). 

Two types of traditional image compression techniques exist: lossy and lossless. For applications like scientific and medical im-
aging where the original data quality must be maintained, lossless image compression is essential to ensure that every detail can 
be properly recreated (Dua et al., 2020; Ungureanu et al., 2024). Nevertheless, in comparison to lossy approaches, this leads to 
poorer compression ratios. Conversely, lossy image compression significantly reduces file size by removing less important infor-
mation, which makes it perfect for online and mobile applications with constrained bandwidth and storage. Higher compression 
ratios are obtained, but certain visual features are permanently lost. Consequently, the development of advanced image compres-
sion techniques is motivated by the need to balance the demands for high compression ratios and high image quality in these 
essential fields (Dumka et al., 2020; Alqerom, 2020; Cavallaro et al., 2022). 

2. The Role of Near-Lossless Image Compression 

Therefore, when it's essential to preserve image quality while attaining larger compression rates, near-lossless image compression 
becomes necessary. While some slight data loss may occur during near-lossless compression, the image quality is guaranteed to 
stay almost identical to the original, unlike lossy compression, which sacrifices more data to minimize file size. This is essential 
in applications where high fidelity is still needed but small changes are allowed. For example, in professional photography, an 
image's visual is preserved only if its integrity is maintained. Near-lossless techniques provide effective transmission and storage 
while guaranteeing high image quality (Otair et al., 2022; Rahman et al., 2021; Sharma et al., 2020; Liu et al., 2022). 

3. Existing Techniques and Their Limitations 

Several image compression methods currently in use, including Joint Photographic Experts Group (JPEG), Delta Encoding, and 
rounding the intensity followed by division (RIFD), they demonstrated varied degrees of effectiveness in finding a balance be-
tween compression ratio and image quality. Nevertheless, these approaches frequently fail to achieve the ideal balance. Although 
RIFD can reduce file sizes by simplifying an image intensities value, it may also introduce some distortion that degrades the 
quality of the image. While it can efficiently eliminate redundancy, delta encoding, which compresses data by recording the 
difference between successive data points may not always achieve the appropriate compression ratios without sacrificing some 
detail. Although JPEG can greatly reduce file sizes, it frequently causes artifacts that deteriorate image quality and leads in the 
loss of fine details (Zhang et al., 2020; Abrardo et al., 2011). 

These limitations highlight the ongoing challenge in developing compression algorithms that can provide high compression ratios 
while preserving high reconstructed image quality. 

4. Introduction to RIFD-DLT: A Novel Approach 

This paper presents RIFD-DLT, a unique near-lossless image compression algorithm that combines RIFD with Delta Encoding, 
to overcome the limitations of existing techniques. To enable more effective compression, the RIFD-DLT method reduces image 
intensities first by using the RIFD technique. After that, the values of adjacent rows in each of the image's three-color matrices 
are subtracted in order to apply Delta Encoding to take advantage of the proximity of pixel values in adjacent rows. This hybrid 
technique enhances the speed of the compression and decompression processes while maintaining a higher compression ratio with 
acceptable distortion that can’t be detected by the human visual system. 

5. Contributions and Outline of the Paper 

The main contributions of this paper are as follows: 

 Development of RIFD-DLT: a new image compression algorithm that combines the best features of Delta Encoding and 
RIFD is provided to achieve high compression ratios with nearly lossless image quality. 

 Performance Evaluation: By means of comprehensive evaluations, the work demonstrates that RIFD-DLT performs bet-
ter in terms of processing time and compression ratio than other algorithms, including RIFD, LICA-CS, and Huffman. 

 Analysis of Image Quality:  An in-depth investigation presented of the decompressed image quality, demonstrating that 
RIFD-DLT preserves a high degree of quality with minimal distortion that is undetectable to the human eye. 

The structure of the paper is as follows: In Section 2, relevant research and current image compressing methods are reviewed. 
Section 3 describes the elements of the RIFD-DLT algorithm. In Section 4, the experimental setup and results are presented along 
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with a comparison of RIFD-DLT with other cutting-edge techniques. Section 5 brings the paper to a close and explores possible 
directions for future research in this field. 

RIFD-DLT is an effective solution for applications that require high-quality images along with high compression ratio, and it 
offers a significant advancement in image compression by meeting the growing need for efficient near-lossless image compression. 

2. Relevant research and current image compressing methods  

 
The ongoing growing in image generation coupled with the need for effective storage and transmission solutions have encouraged 
research into the development of efficient lossless and Near-Lossless image compression algorithms (Rahman et al., 2021; Patidar 
et al., 2020; Xue et al., 2023). 

An overview of recent developments is given in this section, with particular attention dedicated to the integration of advanced 
methods with more traditional approaches and recent advances.  

Traditional lossless image compression algorithms have laid the groundwork for more advanced algorithms by addressing basic 
redundancies in image data. Among these methods, Huffman Coding, Run-Length Encoding (RLE), Lempel-Ziv-Welch (LZW) 
and Bi-Level Burrows-Wheeler Compression Algorithm (BBWCA) compression are notable. Each of these techniques has made 
a substantial contribution to the advancement of image compression technology (Baidoo, 2023; Klen, 2023; Jabeen et al., 2022). 

Huffman coding is a basic lossless compression method that gives characters variable-length codes according to how frequently 
they appear. Shorter codes are given to characters that appear more frequently, whereas longer codes are given to characters that 
appear less frequently. Although it may be less effective for data with less frequent distributions, this approach works well for 
images with more repeated intensities. Huffman coding frequently requires integration with other methods to enhance image 
compression performance. This constraint leaves a gap since Huffman coding is unable to completely utilize the spatial properties 
of images on its own (Karim et al., 2021; Ahmadu et al., 2021; Rahman et al., 2019).       

RLE compresses Images by detecting and storing sequences of repeated values. RLE is easy to use and efficient for data with long 
runs of repeated values, but it is poor at handling high variability or noisy data (Shnain et al., 2020). 

LZW is a dictionary-based compression dynamically creates a dictionary of patterns found in the input data. LZW has been 
effectively utilized in formats such as Graphics Interchange Forma (GIF) and Tagged Image File Format (TIFF) due to its effi-
ciency in compressing repeating sequences. However, for non-repetitive or highly complex data, its performance may deteriorate 
(Hossain et al., 2023; Amoah et al., 2023).       

The Burrows-Wheeler Transform (BWT) is creatively combined with a two-level compression strategy designed specifically for 
bi-level (binary) images in the BBWCA (Ali et al., 2010). Two BWT applications are used in BBWCA's process: first, the image 
is segmented into blocks, and then each block is transformed to improve locality and suitability for conventional entropy coders 
such as Huffman or arithmetic coding. A second BWT transformation then clusters similar values more successfully by capturing 
higher-order redundancy patterns. By extensively leveraging local and global redundancies, BBWCA can achieve large data size 
reduction while maintaining image quality, outperforming competing algorithms such as RLE and Huffman coding, as well as 
classic BWT-based approaches. This is made possible by the dual transformation strategy. The improved compression ratios of 
BBWCA are validated by experimental results, which show that it is effective in obtaining high compression efficiency for bi-
level images (Uthayakumar et al., 2020; Shalayiding et al., 2020). The BBWCA's very high time complexity for the compression 
and decompression processes is one of its most noticeable drawbacks. The algorithm's block-based processing, which requires 
significant CPU resources to handle each block separately, is the source of this inefficiency. As a result, BBWCA may perform 
slower in terms of processing time than algorithms that do not rely on block-based approaches. 

Joint Photographic Experts Group (JPEG) lossless compression version combines entropy and predictive coding, which improves 
upon fundamental methods like Huffman coding. With this approach, image data performs better, and the compression results are 
acceptable. But there are several drawbacks to JPEG's lossless mode, especially when it comes to utilizing spatial redundancies to 
their maximum. The JPEG lossless mode's performance may not be ideal for complex images. Although it works well in many 
circumstances, it might not always attain the maximum compression ratios. JPEG's near-lossless compression version uses quan-
tization and other techniques to reduce data size while maintaining acceptable image quality, providing a balance between high 
compression ratios and minimum perceptual loss. Compared to traditional lossless techniques, this mode performs better, espe-
cially in situations when a small degradation is acceptable in exchange for much smaller file sizes. But just like its lossless equiv-
alent, JPEG's near-lossless mode might have trouble resolving spatial redundancy in highly detailed or complex images, which 
could limit its ability to achieve the ideal balance between image quality and compression ratio (Xiao et al., 2020; Otair et al., 
2022). 

The JPEG-LS technique for lossless image compression combines Golomb-Rice coding with predictive coding to produce effec-
tive compression at a low computational cost. It is excellent at preserving high image quality and providing many image forms 
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with efficient compression. JPEG-LS, however, does not always offer the best compression ratios, especially for images with 
complex patterns. JPEG-LS can be modified for near-lossless applications, allowing for minor image fidelity compromises that 
result in better compression ratios and generally acceptable quality. Even with these advancements, its effectiveness is still de-
pendent on the complexity of the image, indicating a gap where more sophisticated methods could provide better outcomes 
(Descampe et al., 2021; Cao et al., 2021). 

JPEG 2000, Advanced features for near-lossless and lossless image compression are available with JPEG 2000. Wavelet trans-
forms and arithmetic coding are two techniques used by JPEG 2000 in its lossless mode to achieve high compression efficiency 
while maintaining the original image data. Although this approach guarantees perfect data recovery, its usage in real-time or 
resource-constrained contexts may be restricted due to its high computational cost. The near-lossless mode, on the other hand, 
uses comparable wavelet transformations but allows controlled quantization, resulting in a small amount of data loss in order to 
obtain larger compression ratios. Because it finds a balance between compression efficiency and image quality, it requires less 
computing power and is therefore more appropriate for applications where a small amount of quality loss is acceptable in exchange 
for improved compression (Otair et al., 2022; Koc et al., 2020). 

Delta Encoding is a lossless method that compresses data by recording differences between values rather than the actual values. 
This technique uses similarities between neighboring pixel values to significantly decrease the size of the data. But when applied 
alone, Delta Encoding performs poorly, especially in complex images where pixel differences are less regular. Therefore, to get 
the best results, Delta Encoding frequently needs to be integrated with other techniques (Zhou et al., 2022; Tan et al., 2020). 

Efficient Lossless Image Compression Algorithm via Column Subtraction Model (LICA-CS) is used to address data redundancy. 
This technique can deal with different image types and effectively reduce repetition. Nevertheless, LICA-CS compression ratio is 
poor when dealing with low resolution images such as raster map images. This variability point to a weakness in the overall 
efficiency of LICA-CS (Alqerom et al., 2024);  

Graphics Interchange Format (GIF) is being replaced by the widely used Portable Network Graphics (PNG) format, which uses 
lossless image compression. To improve compression performance, PNG uses adaptive filtering in conjunction with Deflate com-
pression, which combines Huffman and LZ77 coding. By predicting pixel values based on nearby pixels, the filtering procedure 
maximizes the efficiency of Deflate. PNG may be less effective for images that are extremely detailed or complicated, even while 
it works well for images with huge uniform areas or simple patterns. Furthermore, in situations when resources are limited or real-
time processing is required, the computational costs of PNG's compression techniques may affect performance. Despite these 
drawbacks, PNG is still a well-liked option for lossless compression because of its cross-platform compatibility and capacity to 
maintain picture quality. Although PNG compression is basically lossless, it can be adjusted for nearly lossless compression by 
changing certain parameters (Thakur, 2022; Prasantha et al., 2020). 

Rounding the Intensity Followed by Dividing (RIFD) near lossless image compression algorithm begins by rounding pixel values. 
Next, a division phase is applied to further compress the data. By prepping image data for more efficient encoding, this method 
increases compression ratios. Rounding and division may result in some quality loss. RIFD is frequently used in conjunction with 
other methods, such as enhanced entropy coding, to address this problem. With this integration, performance is improved and 
improved image quality is maintained across a variety of image formats (Thakur & Shehadeh, 2016). 

An enhanced merging of the RIFD and Delta Encoding methods is represented by the RIFD-DLT algorithm. This hybrid strategy 
improves overall compression efficiency while addressing the shortcomings of each separate method: 
 
 RIFD: By dividing and rounding pixel intensities, this technique compresses image data and gets images ready for more ef-

fective compression by lowering pixel variability. 
 Delta Encoding: This technique, which comes after RIFD, significantly reduces the size of the image by encoding the variations 

in pixel values between neighboring rows. This simplifies the data and cuts down on redundancy for better compression. 
 
RIFD-Delta outperforms traditional and other advanced algorithms in terms of performance and compression ratios. Its efficiency 
in achieving superior outcomes in reducing data size while providing high image quality is illustrated by its higher compression 
ratios on benchmark image datasets from Kodak, Waterloo, and EPFL. For applications requiring high-quality image reconstruc-
tion, RIFD-DLT provides a reliable solution by efficiently decreasing data size with undetectable distortion by the human visual 
system. 
 

Experiments comparing RIFD-DLT to well-known algorithms like JPEG-LS, JPEG 2000, and JPEG-XR show significant gains 
in compression effectiveness. The RIFD-DLT framework's combination of RIFD and Delta Encoding provides a sensible trade-
off between computational complexity and compression efficiency. Because of this combination, RIFD-DLT performs more ef-
fectively and practically than previous approaches, which makes it an excellent option for real-world applications where we need 
to optimize the processing needs and the compression performance. 
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3. The proposed RIFD-DLT algorithm  

We first go over the general idea behind the RIFD-DLT algorithm in this section, along with the reversible encoding and decoding 
stages. 

3.1 Overview of the proposed Algorithm 

A near lossless image compression algorithm adopting Rounding the Intensity Followed by Dividing RIFD and Delta Encoding 
RIFD-DLT is being proposed for compressing colored and grayscale images. The RIFD-DLT algorithm is a highly adaptable and 
efficient technique for compressing images with minimal distortion that is imperceptible to the human visual system. It can be 
applied to various applications with great effectiveness. The algorithm is universally compatible with most image formats and has 
the capability to process images of varying resolutions, ranging from low-quality to high- quality images. RIFD-DLT can function 
autonomously as a compression algorithm or as a pre-processing phase for any other lossless compression methods.    

3.2 RIFD-DLT Encoding & Decoding 

Fig. 1 depicts the RIFD-DLT image compression algorithm, which has two primary phases: RIFD and Delta Encoding. The ob-
jective of this strategy is to achieve near-lossless compression by rounding and dividing image intensity values, ensuring high 
visual fidelity with minimal distortion and decreasing the correlation between different parts of the image, effectively. By inte-
grating delta encoding with RIFD, the algorithm improves the RIFD compression efficiency while maintaining image quality, 
making it suitable for both colored and grayscale images. The objective of the RIFD-DLT algorithm is to provide a flexible and 
adaptable compression technique that preserves image details, ensuring that any distortion remains imperceptible to the human 
visual system. 

 

 

 

 

 

 

 

 
Fig. 1. RIFD-DLT image compression scheme 

 
Phase 1- Rounding the Intensity Followed by Dividing RIFD: An essential part of the proposed near-lossless image compression 
methodology is the RIFD technique. By taking advantage of features of the human visual system, this method seeks to reduce the 
quantity of image data while preserving excellent visual quality. Rounding the intensity values and dividing the rounded values 
are the two main processes in RIFD. 
 
The first process is rounding the image pixel intensity values to the closest predetermined levels. By decreasing the granularity of 
intensity values, this rounding technique aids in lowering the entropy of the image data. The alterations are undetectable to the 
human eye since the rounding levels are carefully selected to guarantee that the resulting distortion stays below the threshold of 
human visual perception.  
 
The RIFD second process is to divide each of the intensities by a fixed factor. This division narrows the intensity value range, 
which further compresses the data. Selecting the appropriate division factor is essential as it must strike a balance between the 
trade-offs of compression effectiveness and image quality. While a smaller division factor keeps more detail but accomplishes 
less compression, a larger factor results in better compression but may produce more obvious distortions. After completing the 
two RIFD phases the image is ready to compress using any compression algorithm such as Huffman Coding. 
 
In digital imaging, an RGB image is composed of three-color channels: Red, Green, and Blue. Each pixel in an RGB image is 
represented by a triplet of intensity values corresponding to these three primary colors. These values typically range from 0 to 255 

RIFD-DLT Decompression RIFD-DLT Compression 

RIFD Encoding 

Delta Encoding 
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in an 8-bit image, where 0 represents the minimum intensity of color and 255 represents the maximum intensity. The combination 
of different intensity levels of the red, green, and blue channels creates the full spectrum of colors perceived in the image. 
To apply the RIFD equation to an RGB image, we process each of the three-color channels separately using the same RIFD 
transformation. The process for each Red, Green, and Blue involves rounding the intensity values to the nearest predefined level 
and then dividing the rounded values by a constant factor. Eq. (1) expresses the transformation on each channel as: 
 

𝐷𝑐(𝑖, 𝑗) =
𝑅𝑜𝑢𝑛𝑑(𝐼𝑐(𝑖, 𝑗))𝑥𝑘 

𝑑
                                                            1 ≤  𝑖 ≤ 𝑚  & 1 ≤  𝑗 ≤ 𝑛 

(1) 

Let m and n be the matrix row size and column size respectively. DC(i,j) is the final transformed intensity value of the channel 
Red, Green, or Blue at position (i,j). IC(i,j) is the original intensity value of the channel Red, Green, or Blue at position (i,j). k is 
the rounding factor. d is the division factor. 
 

Rounding and dividing together result in a substantial reduction in the quantity of data needed to represent the image, all the while 
maintaining a high level of visual quality. Due to its ability to reduce noticeable compression artifacts, this approach works espe-
cially well for images that have regions of uniform intensity and smooth gradients. The proposed technique, which uses the RIFD 
method as preprocessing phase, produces a high compression efficiency with minimal loss of image quality, which makes it 
appropriate for a variety of uses such as multimedia storage, remote sensing, and some medical imaging (Rossinelli et al., 2020). 
Further encoding using lossless compression algorithms such as Huffman Coding can be done as a post processing phase for RIFD 
to achieve a higher compression ratio. In this paper the author adopted the delta encoding to improve the total compression per-
formance, but it all starts with the RIFD approach. 

Phase 2- Delta Encoding: Delta Encoding is an essential phase in the proposed near-lossless image compression algorithm. This 
technique focuses on encoding the differences between consecutive pixel values rather than the pixel values themselves. By ex-
ploiting the spatial redundancy present in images, delta encoding significantly reduces the amount of data required for image 
representation. 
 
Delta starts by implementing the initial phase of delta encoding on each of the transformed matrices Dc(i,j) to calculate differences. 
The algorithm iterates over each pixel in the transformed matrices and computes the delta by subtracting the current pixel value 
from the value of the pixel immediately next to it. For a given pixel Dc(i,j) in a matrix, the delta value DLT(i,j) is computed as 
defined in Eqs.2 for each of the three matrices separately. The resultant delta is placed in the identical position as the original pixel 
value in the new matrix D(i,j) as specified in Eqs.3. This successfully captures the difference between consecutive pixel values, 
commencing with the first row. It is crucial to acknowledge that the final value does not have a subsequent value and should be 
directly saved without any subtraction. This calculation is performed row-wise, and similar operations are done column-wise to 
further enhance the compression efficiency. 
 

𝐷𝐿𝑇(𝑖, 𝑗) = 𝐷𝑐(𝑖, 𝑗) −  𝐷𝑐(𝑖 − 1, 𝑗)                                            1 ≤  𝑖 ≤ 𝑚  & 1 ≤  𝑗 ≤ 𝑛 (2) 

𝐷(𝑖, 1) =  Dc(𝑖, 1)                                                                         1 ≤  𝑖 ≤ 𝑚 & 1 ≤  𝑗 ≤ 𝑛 − 1 (3) 

Delta encoding produces a more compressed representation by concentrating on the differences rather than the absolute values. It 
enhances the compression ratios due to the decreased entropy and variability of the delta values. Delta encoding helps to retain 
high visual fidelity by preserving the important image information by mainly utilizing the redundancy within the image. By sig-
nificantly reducing the visual data without causing noticeable distortion, delta encoding improves the RIFD technique.  
 
A highly effective and versatile near-lossless image compression system is produced when RIFD and delta encoding are combined. 
This approach can be used for a variety of purposes, such as multimedia storage and remote sensing. The combination between 
RIFD and Delta encoding achieved a compromise between compression effectiveness and image quality, guaranteeing that the 
compressed images are both less in size and high quality. 
 
4. Numerical results  
 
Extensive experiments were carried out to evaluate the effectiveness of the proposed RIFD-DLT algorithm. This section describes 
the methodologies utilized as baselines for comparison, the datasets that were used, and the conclusions drawn from the datasets. 

4.1 About the Datasets 

The evaluation utilized the following datasets of 8-bit RGB images: 
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Kodak: This benchmark dataset, which comes from the Kodak corporation, is utilized in studies on image processing and com-
pression. It has twenty-four images that span a range of subjects and scenes (KaggLE, 2024). 
 
Waterloo: This well-known dataset, made available by the University of Waterloo's Fractal Coding and Analysis Group, is widely 
utilized in studies to assess different imaging methods since it offers a thorough examination for various compression situations. 
It comes in three sets: the Color Set, the Greyscale Set 1, and the Greyscale Set 2, each set contains twelve small, twelve medium, 
and eight large images respectively (Gregory, 2009). 
  
EPFL: This well-known collection of images, from the École Polytechnique Fédérale de Lausanne, is frequently used in computer 
vision and image processing research. It includes ten color, high-resolution images that could be used for assessing compression 
performance on detailed visuals (EPFL, 2009). 
 
4.2 Experiments setup 
 
A computer system with an Intel(R) Core (TM) i7-10510U CPU (1.80–2.30 GHz), 8 GB of RAM, and 1 GB of virtual memory 
was used for the research. The MATLAB programming environment was used to implement the algorithms. 

4.2 Experimental Results 

Compression ratios compared with standard algorithms: Initially the compression ratios of the compressed images expressed in 
Bits Per Pixel (BPP) and examined using Eqs.4 to determine these ratios (Alqerom et al., 2024). 
 

 

𝐵𝑃𝑃 =
8 ×  𝑠

𝑛
 

(4) 

The original image has n pixels, and the compressed image's size in bytes, including its three independently compressed compo-
nents, is represented by s. The compression ratio is calculated by dividing the size of the compressed image by the total number 
of pixels. Therefore, a lower compression ratio signifies more efficient compression. The saving percentage is calculated using 
Eq. (5) (Alshami et al., 2018). 
 

𝑆𝑎𝑣𝑖𝑛𝑔% =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 −  𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
× 100 

(5) 

 
Simple statistical error metrics are essential in full-reference objective quality assessment, including: 
 

Mean Squared Error (MSE): As one of the simplest and most widely used methods for full-reference image quality assessment, 
MSE is defined by Eq.6. In this equation, r and j represent pixel coordinates, x1 denotes the pixels of the compressed image, and 
x2 represents the pixels of the source image (Otair et al., 2023). Better detail preservation of the original image is shown by a 
smaller MSE between the original and reconstructed images. 

MSE =
 [𝑥1(r, j) − 𝑥2(r, j)]ଶ


 

r ×  j
 (6) 

Peak Signal to Noise Ratio (PSNR): Commonly used to quantify image quality, PSNR is defined by Eq. (7) and is particularly 
useful within optimization frameworks (Otair et al., 2023). These metrics are crucial for measuring and analyzing distortion in 
image compression processes. Better quality is indicated by higher PSNR values. 

PSNR =
10 ×  log10(Intensity )ଶ

MSE
 

(7) 

Various tests were conducted to evaluate the performance of the proposed algorithm, aiming to demonstrate its effectiveness and 
improvements in terms of compression ratio, image quality, and running time. The following subsections discuss these aspects 
in detail.  
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5. A comparison of compression size between RIFD-DLT and standard approaches 
 
Several lossless and near lossless standard techniques are used to assess and contrast the performance of the proposed method, 
including RCT with JPEG2000, JPEG-LS, JPEG XR, Huffman algorithms from (Alqerom et al., 2024), and RIFD-Huffman. Eq. 
(4) was employed to compute the compression ratios (BPP) that resulted from applying these techniques to three colored datasets 
(Waterloo, Kodak and EPFL). Table 1 presents a summary of the findings, with the best values indicated in bold. The popular and 
well-established standard methods are outperformed by the proposed algorithm. The best results are obtained with RIFD-DLT 
compression (method #F), which is followed by RIFD-Huffman (method #E) and RCT-JPEG-LS (method #B). 
 
Table 1 
Average compression ratios (BPP) for the proposed RFID-DLT compared with standard algorithms  

Standard Methods Datasets 
Average 

No Type Method Waterloo Kodak EPFL 
A Lossless RCT-JPEG2000 11.21 9.51 10.84 10.52 
B Lossless RCT-JPEG LS 8.96 9.57 10.47 9.67 
C Lossless RCT-JPEG XR 13.32 10.92 11.76 12.00 
D Lossless RCT-Huffman 16.55 15.06 16.9 16.17 
E Near Lossless RIFD-Huffman 9 8.72 9.35 9.02 
F Near Lossless RIFD-DLT 4.1 4.34 4.19 4.21 

 

When Delta encoding is used after RIFD, the RIFD-DLT approach produces the best results, with an average compression ratio 
of 4.21. This combination demonstrates how RIFD and Delta encoding work well together to produce more efficient compression 
results. RIFD reduces the data's range and noise to prepare the data for Delta encoding, which effectively compresses the data by 
encoding the differences. This combination improves the compression ratio by utilizing the advantages of both approaches. In 
particular, with an average improvement in compression ratio of 4.81 and 5.46 ahead than (method #E) and in (method #B) 
respectively, RIFD-DLT surpasses both the original RIFD-Huffman strategy and the best-performing standard approach, JPEG-
LS. Fig. 2 provides a visual representation of the data in Table 1, which facilitates understanding. It shows a comparison between 
standard methods and the average compression ratios (BPP) of the Proposed RIFD-DLT algorithm.  

 

 

Fig. 2. Average compression ratios (BPP) for the proposed RFID-DLT algorithm compared with standard algorithms  

Running time compared with RIFD-HUFFMAN schemes: The same settings as in Section (ii) were used for the evaluation. The 
three colored datasets (Waterloo, Kodak and EPFL) were subjected to testing of both proposed methods and the RIFD-Huffman 
method. Table 2 lists the total running time for compression and decompression in seconds for each algorithm. The RIFD-Huffman 
algorithm takes 50.99 seconds to compress and decompress all the images from the three datasets, compared to 34.62 seconds for 
the RIFD-DLT technique. Consequently, the RIFD-DLT outperforms the RIFD-Huffman by 16.37 seconds and is considered as 
one of the fastest algorithms. 

Table 2 
Total compression and decompression time (In Secs) for the propsoed method compared with RFID-HUFFMAN method using 
the three image datasets 

 RIFD-Huffman RIFD-DLT 

Image Compression Time (s) Decompression Time (s) Compression Time (s) Decompression Time (s) 

Waterloo 11.6 9.72 1.57 2.23 
Kodak 3.72 4.63 3.61 4.71 
EPFL 11.6 9.72 10.2 12.3 
Total 50.99 34.62 

 

0
5

10
15
20

A B C D E F

Av
er

ag
e 

BP
P 

Method
Waterloo Kodak EPFL



M. A. Qerom / International Journal of Data and Network Science 9 (2025) 9

Image quality compared with RFID-HUFFMAN schemes: The proposed method's image quality performance was assessed and 
compared with RIFD-Huffman. Three color datasets (Waterloo, Kodak, and EPFL) were used to evaluate the image quality ob-
tained from applying these approaches using MSE Eq.6 and PSNR Eq. (7). The results as illustrated in Table 3 show that the 
proposed near-lossless technique produced excellent image quality following decompression. The RIFD phase is the reason for 
the slight distortion that has been noticed. Interestingly, both the proposed RIFD-DLT algorithm and the RIFD-Huffman algorithm 
show the same degrees of distortion that are unnoticeable to the human visual system with an average PSNR of 52.22 dB, 51.3dB 
and 58.51dB for the Waterloo, Kodak and EPFL image sets respectively. Because of this, they are very efficient at compressing 
images while maintaining a high compression ratio and good image quality. 
 
Table 3 
Average MSE and PSNR for the proposed method compared with RIFD-HUFFMAN method 

 RIFD-Huffman RIFD-DLT 

Image MSE PSNR MSE PSNR 

Waterloo 2.78 52.22 dB 2.78 52.22 dB 
Kodak 2.93 51.30 dB 2.93 51.30 dB 
EPFL 2.88 58.51 dB 2.88 58.51 dB 

 
Fig. 3 provides a visual representation of the data in Table 3, which facilitates understanding. It shows a comparison between 
RIFD-Huffman algorithm and the Proposed RIFD-DLT algorithm in terms of MSE.  
 

 
 

Fig. 3. Average MSW for the proposed RFID-DLT algorithm compared with RIFD-HUFFMAN 
 
Comparison with benchmark schemes: The proposed RIFD-DLT algorithm was assessed using benchmark software and several 
popular image compression algorithms (Alqerom et al., 2024); (Khan et al., 2017); (Shalayiding et al., 2020); (Waleed et al., 
2020). in addition to the findings that were previously published. We evaluated compression efficiency using the Kodak dataset. 
Table 4 provides a summary of each technique's compressed file sizes in kilobytes (KB). The RIFD-DLT method outperforms all 
other benchmark software and approaches stated, exhibiting notable gains in compression efficiency. In particular, RIFD-DLT 
(method #S) achieves a remarkable 81.5% size reduction by compressing 11,520 KB of data down to 2,131 KB. The file size was 
reduced to 3,039 KB with the YCoCg-CSC (method #V) approach, demonstrating competitive results as well. This letter is a 
73.15% reduction. LICA-CS (method #M) and LZ4X (method #N), on the other hand, exhibit noteworthy performance, achieving 
average reductions of 71.2% and 62.6% respectively. 
 
The data from Table 4 are displayed in Fig. 4 as a chart that displays the size of compressed images in (KB) for the proposed 
RIFD-DLT method in addition to various compression techniques. 
 

 
 
Fig. 4. Total compressed image size in (KB) for the proposed RIFD-DLT algorithm along with several benchmark software and 
compression algorithms  
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Table 4 
Compressed image sizes (KB) for the proposed RIFD-DLT along with several benchmark software and compression algorithms  

 KODAK TEST IMAGE 
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A ADVANCE COMP 608 422 495 493 477 666 460 468 614 451 5154 
B ALLUME 386 576 487 503 699 407 788 370 410 372 4998 
C BBWCA 381 463 352 480 308 346 350 332 244 297 3553 
D BCM 457 785 628 490 532 737 375 381 507 390 5282 
E BULK ZIP 450 710 372 441 753 613 469 751 482 603 5644 
F CAESIUM 475 422 496 518 797 500 706 407 736 411 5468 
G C-MIX 453 510 457 497 625 520 761 666 657 456 5602 
H COMPRESSOR.IO 413 765 425 597 380 415 392 391 603 668 5049 
I CRUSH 409 692 556 536 544 795 646 612 583 376 5749 
J FILE MINIMIZER 560 758 471 521 740 681 691 596 573 495 6086 
K FILE OPTIMIZER 409 432 721 665 559 502 401 447 618 518 5272 
L HEVC (x265) 403 493 343 487 397 538 326 418 462 353 4220 
M LICA-CS 320 395 396 311 355 297 282 270 376 348 3310 
N LZ4X 370 420 412 373 402 537 465 456 444 429 4308 
O MRP 497 760 550 511 513 791 534 474 628 409 5667 
P NANOZIP 475 556 472 519 446 543 490 431 551 715 5198 
Q PAQ8PXD_V4 450 490 598 607 489 655 733 596 372 569 5559 
R RIFD-Huffman 273 488 451 388 418 438 399 383 447 369 4054 
S RIFD-DLT 186 248 279 218 199 171 194 184 240 212 2131 
T UPACK 0.25 661 710 379 675 503 529 371 572 587 568 5555 
U WINRK 3.1.2 598 515 398 783 674 457 374 611 456 593 5459 
V YCoCg-CSC 296 380 380 287 334 265 254 259 355 283 3093 
W ZCM 0.92 495 631 772 542 408 714 565 597 416 450 5590 

 
Comparison of compression ratios for grayscale images: To assess the obtained compression ratios, a comparison of twelve 
chosen images from Waterloo grayscale image sets 1 and 2 was conducted. The final results, displayed in Table 5, demonstrate 
how well each algorithm performs in terms of compression ratio. On average, the proposed approach outperformed all other 
algorithms, achieving a 43.7% better compression ratio over the RIFD-Huffman. 
 
Table 5 
Compression ratios (BPP) for the proposed RIFD-DLT algorithm compared with state-of-the-art schemes using 12 selected Wa-
terloo images 
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bird.TIF 6.8016 6.7747 3.1390 3.4712 4.2333 2.8630 2.45 2.66 1.17 
bridge.TIF 7.6937 7.6689 5.9086 5.7904 6.3164 4.9043 4.00 3.07 1.83 
circles.TIF 1.8484 1.7811 1.2627 0.1526 0.1136 1.3375 1.11 1.30 1.05 
crosses.TIF 1.0001 0.1879 1.4285 0.3855 0.1786 2.0281 1.24 1.00 1.13 
slope.TIF 7.5411 7.5177 1.0643 1.5713 1.6929 1.6449 1.77 3.37 1.11 

squares.TIF 1.3517 1.0776 0.2505 0.0771 0.0500 0.6989 1.05 1.04 1.02 
boat.TIF 7.1468 7.1238 4.1005 4.2498 5.2881 3.5184 3.13 2.46 1.35 

goldhill2.TIF 7.4970 7.4779 4.6544 4.7116 5.5985 3.8035 3.29 2.93 1.40 
lena2.TIF 7.4683 7.4456 4.0166 4.2437 5.5190 3.2545 3.12 2.96 1.27 
library.TIF 5.8704 5.8490 5.8350 5.1011 4.2544 5.1664 3.72 2.61 1.85 

mandrill.TIF 7.3804 7.3580 6.0232 6.0365 6.3869 5.0441 4.24 2.86 2.00 
peppers.TIF 7.5951 7.5716 4.4042 4.4887 5.5480 3.5105 3.16 3.04 1.32 

Average 5.7662 5.6528 3.5073 3.3566 3.7650 3.1478 2.69 2.44 1.37 

 
Using a selection of Waterloo images from Table 5, Fig. 5 shows the average Compression Ratios (BPP) for the proposed RIFD-
DLT algorithm in comparison to State-of-the-Art algorithms. 
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Fig. 5. Average compression ratios (BPP) for the proposed RIFD-DLT algorithm with state-of-the-art schemes using selected 
Waterloo images  

6. Conclusion  

In order to present a near-lossless image compression algorithm known as RIFD-DLT, the author of this study introduced a hybrid 
technique combining Original Rounding the Intensity Followed by Dividing (RIFD) with Delta Encoding. The proposed approach 
uses RIFD initially to lower image intensities, which prepares the image for further compression phases. Then, by effectively 
encoding the updated data and taking advantage of the closeness of pixel values in nearby rows, Delta Encoding is used to further 
reduce image intensity. Using this procedure, the adjacent rows in each of the three-color matrices of the image are subtracted. 
Multiple evaluations showed that RIFD-DLT performs far better than state-of-the-art algorithms and benchmarks, especially when 
it comes to compression ratio and running time. 
 
Improvement for RIFD-DLT in terms of compression ratio: As demonstrated in Table 4, the proposed approach achieves an 
81.93% reduction and a 43.7% improvement in the compression ratio over the RIFD-Huffman by compressing the data from 
11520 KBs to 2131 KBs. The RIFD-DLT approach performs more effectively than any benchmark software/algorithm combina-
tion shown in Table 4. With 3310KBs, the overall file size was reduced by 71.2% in comparison to the LICA, which displayed 
competitive compression ratios.  

Improvement for RIFD-DLT in terms of running time: Table 2 illustrates that, although the RIFD-DLT method takes 34.62 seconds 
to compress and decompress all the images from the three datasets, the RIFD-Huffman approach takes 50.99 seconds. As a result, 
the RIFD-DLT is considered as one of the fastest algorithms, surpassing the RIFD-Huffman by 16.37 seconds. 

Improvement for RIFD-DLT in terms of Image Quality: Table 3 summarizes the results, which demonstrate that the proposed near-
lossless technique generated outstanding image quality after decompression. The RIFD phase is responsible for the minor distor-
tion that was noticed. The RIFD-Huffman algorithm and the proposed RIFD-DLT algorithm, on the other hand, show the same 
distortion level that is undetectable to the human visual system, with average PSNR values of 58.51 dB, 51.3 dB, and 52.22 dB 
for the EPFL, Kodak, and Waterloo image sets, respectively. They can therefore compress images very effectively while preserv-
ing a high image quality. 

More work could be done on improving the RIFD procedures. Enhancing overall image quality could be accomplished by opti-
mizing the pre-processing stages and investigating adaptive algorithms that dynamically modify compression parameters based 
on image content.  
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