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 Collecting poverty data through the National Socio-Economic Survey (SUSENAS) demands signif-
icant time, costs, and human resources. To enable more efficient policy-making, predicting the pov-
erty rate before the release of Statistics Indonesia (BPS) data is essential. This research compares 
day and night satellite images to predict per capita expenditure in East Java, Indonesia, which has 
the highest number of poor people. The satellite images are processed using a transfer learning ap-
proach that employs a pretrained Convolutional Neural Network (CNN) model with VGG-16 archi-
tecture as a feature extractor. These extracted features are then used as independent variables to 
predict East Java's per capita expenditure using Support Vector Regression (SVR) with RBF and 
polynomial kernels. The findings indicate that night images are more reliable than day images, with 
the best model being a combination of transfer learning and the SVR polynomial kernel using night 
images. The prediction mapping aligns well with the unmodeled night image, demonstrating the 
effectiveness of this approach in predicting per capita expenditure. 

© 2025 by the authors; licensee Growing Science, Canada. 

Keywords: 
Poverty 
Remote Sensing 
Satellite 
SVR 
Transfer Learning 

 

 
 
 
 
 
 
 
 

1. Introduction 
 
Eradicating poverty is the first of the 17 Sustainable Development Goals (SDGs) to be achieved by 2030. As the primary goal, 
poverty eradication should be the central theme and sustainable agenda underpinning various development objectives, including 
infrastructure, tourism, food, energy, and more (Noor et al., 2008; Bappenas, 2022). According to BPS, poverty is defined using 
a basic needs approach, where individuals are considered poor if their average per capita expenditure falls below the poverty line. 
This data is derived from the National Socio-Economic Survey (SUSENAS). While survey-based data collection is accurate, it 
faces challenges such as high costs, the need for extensive human resources, and lengthy processing times, with estimates only 
available at the district/city level. To address these issues, BPS is integrating technology and utilizing big data sources, including 
day and night satellite imagery, to obtain faster and more accessible data. Predicting per capita expenditure using big data supports 
official statistics, allowing for estimations at smaller levels, which can facilitate quicker, data-driven government policies (Badan 
Pusat Statistik, 2022a).  

Satellite imagery, including Nighttime Light (NTL) and daytime digital imagery, offers a novel data source for poverty mapping. 
Poverty identification can be enhanced through nighttime and daytime light analysis, which maps building characteristics, physical 
parameters such as road networks (access), and the shape and material of buildings. Daytime image analysis can also estimate 
slum levels (density and shape) and slum neighborhoods (location and environmental characteristics) (Badan Pusat Statistik, 
2022b). Previous research using night imagery from the Defense Meteorological Satellite Program-Operational Linescan System 
(DMSP-OLS) sensor (Bhandari & Roychowdhury, 2011; Chen & Nordhaus, 2011) has shown a high correlation between night 
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imagery and population wealth, despite containing noise in low-economic areas. Research using daytime images has also been 
conducted with a transfer learning approach, producing high-dimensional features (Jean et al., 2016; Head, Manguin, Tran, & 
Blumenstock, 2017; Ngestrini, 2019; Rouhan, 2020). These features are then used as independent variables in regression model-
ing, including the Support Vector Regression (SVR) model. Night imagery is advancing with the Visible Infrared Imaging Radi-
ometer Suite (VIIRS) sensor, which captures light more effectively. Previous studies (Aprianto, Wijayanto, & Pramana, 2022; 
Khairunnisah, Wijayanto, & Pramana, 2021) have utilized a combination of daytime and nighttime imagery from the VIIRS sen-
sor, applying transfer learning and RBF kernel Support Vector Regression (SVR) in regression modeling. The type of kernel used 
in SVR significantly impacts model performance. Prior research (Moorthi et al., 2011; Ustuner, Sanli, & Dixon, 2017) indicates 
that polynomial kernels outperform RBF kernels for satellite image processing. 

This study aims to predict per capita expenditure by comparing daytime and nighttime images (VIIRS NTL type) using the transfer 
learning approach with the VGG-16 architecture. Regression modeling is conducted with SVR, comparing the performance of 
RBF and polynomial kernels. The research focuses on East Java Province, which, as of March 2022, has the highest number of 
poor people in Indonesia. Accurate predictions in areas with high poverty can enhance government planning and efforts to reduce 
poverty. 

2. Methods 
 

2.1 Transfer Learning 
 

Transfer learning involves using a pre-trained model by copying its parameters to solve similar tasks. These pre-trained models, 
such as ImageNet, VGGNet, and ResNet, are typically trained on large-scale datasets (Sewak, Karim, & Pujari, 2018). They serve 
as starting points in computer vision and programming to address computational challenges that require significant time and 
resources (Iriawan et al., 2020). In transfer learning, pre-trained models can be used as feature extractors or for fine-tuning existing 
models. As feature extractors, they provide row vector data. When fine-tuning, the pre-trained model is retrained with new data 
(Bunrit, Kerdprasop, & Kerdprasop, 2019; Smola & Scholkopf, 2004). 

 

Fig. 1. Architecture of VGG-16 (Kamilaris & Prenafeta-Boldu', 2018) 

VGG-16 is a CNN model architecture created by K. Simonyan and A. Zisserman from the University of Oxford in 2014 whose 
architectural arrangement is shown in Figure 1. This model was trained on 14 million images and 1000 classes. The VGG-16 
architecture has 5 blocks consisting of 13 convolution layers and 3 fully connected layers. The input image in VGG-16 is 
224×224×3 pixels for RGB images. The result obtained from the fully connected layer of this architecture is a 1×4096 vector 
which becomes the feature of the feature extraction process (Simonyan & Zisserman, 2015). 

2.2 Support Vector Regression (SVR) 
 

Support Vector Regression (SVR) is an application of Support Vector Machine (SVM) for regression cases. SVR aims to find f(X) 
as a hyperplane in the form of a regression function that fits the input data and produces the smallest possible error. SVR is good 
for high-dimensional datasets and non-linear cases using kernel functions. The regression function as the optimal hyperplane is 
written in Eq. (1) below, 

𝑓(𝑋) = 𝑤்𝜑(𝑋) + 𝑏 (1) 
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where, 

𝑤: weighting parameter that has dimension   

𝜑(𝑋): a function that maps to the feature space 

𝑏: bias 

𝑋: input vector 

𝑓(𝑋) : regression function 

coefficient 𝑤 and 𝑏 serve to minimize the risk function in Eq. (2) below.  

𝑅 = 𝑚𝑖𝑛 ቊ
1

2
‖𝑤‖ଶ + 𝐶
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with the constraint function, 

𝑌 − 𝑤்𝜑(𝑋) − 𝑏 ≤ 𝜀,   𝑤்𝜑(𝑋) − 𝑌 + 𝑏 ≤ 𝜀,   𝑖 = 1,2, . . . , 𝑙 (3) 

where, 

𝐿ఌ(,() = ൜
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ൠ 

(4) 

𝐿ఌ : loss function with type   

𝑅 : risk function 

‖𝑤‖: normalization   

𝜀: deviation or degree of tolerance to error 

𝐶: penalty value if deviation exceeds   

All points within the range 𝑓(𝑋) ± 𝜀, are assumed to be feasible and vice versa. The optimization problem for feasible constraints 
is shown in Eq. (5) 

𝐹 = 𝑚𝑖𝑛
1
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(5) 

with the following constraint function, 

𝑌 − 𝑤்𝜑(𝑋) − 𝑏 ≤ 𝜀,   𝑤்𝜑(𝑋) − 𝑌 + 𝑏 ≤ 𝜀,   𝑖 = 1,2, . . . , 𝑙 (6) 

Solving the infeasible condition problem is done by adding slack variables and the following Eq. (7). 
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So that the complete form of the dual SVR optimization problem in Eq. (9) is obtained as follows, 

𝑚𝑎𝑥 ቐ
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(9) 

with constraints (Hsu, Chang, & Lin, 2003), 

∑ (𝛼 − 𝛼
∗

,ୀଵ ) = 0;  0 ≤ 𝛼 , 𝛼
∗ ≤ C; i= 1,2,...,l (10) 

The application of kernel function in SVR is done to overcome the non-linear cases that often occur. The kernel function will 
transform the data in the non-linear input space into a high dimensional feature space. In this research, the kernel functions used 
are polynomial kernel and Radial Basis Function (RBF) kernel. The RBF Kernel formula can be written in Eq. (11), 

k൫𝑋 , 𝑋൯ = 𝑒𝑥𝑝(−𝛾‖𝑋−𝑋‖ଶ)  =  𝑒𝑥𝑝 ൭
−ฮ𝑋 − 𝑋ฮ

ଶ

2𝜎ଶ
൱. 

(11) 

The polynomial kernel is a widely used kernel in image processing, especially image classification which can be shown in Eq. 
(12) below. 

k൫𝑋 , 𝑋൯ = ൫𝑋
்𝑋 + 𝑐൯

ௗ
,   (12) 

where i, j = 1, 2, ..., l with l is the number of support vectors (SV) and 𝑑 > 0  is a constant (Karatzoglon, Smola, & Hornik, 2003). 

2.3 Per Capita Expenditure 
 

Per capita expenditure is the cost incurred for household consumption during the month divided by the number of household 
members and has been adjusted to purchasing power parity. The calculation of adjusted per capita expenditure is carried out using 
the formula in Eq. (13) which contains a constant price per capita expenditure component in Eq. (14). 

𝑌 =
𝑌

∗

𝑃𝑃𝑃

 
(13) 

 𝑌
∗ =

𝑌
∗∗

𝐼𝐻𝐾
× 100 

(14) 

where 

Yi: i-th region adjusted per capita expenditure 

Yi
* : per capita expenditure at constant price of the i-th region 

PPPi : i-th district purchasing power parity 

Yi
**: annual per capita expenditure of the i-th region  

IHK: consumer price index base year 2012. 

2.4 Data and Data Sources 
 

This research uses three types of data, namely adjusted per capita expenditure data for districts/cities in East Java in 2021 from 
BPS, daytime imagery from Google Maps, and nighttime imagery in the form of NTL VIIRS in 2021 from the Earth Observation 
Group (EOG) website.  
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Source: https://eogdata.mines.edu/ 

 

 

 

Source: Google Maps 

Fig. 2. Night Image of East Java 2021 Fig. 3. Cropped Daylight Image of East Java 2022 

The daytime imagery dataset comprises 94,539 image files captured at zoom level 16, each covering an area of approximately 1 
km². Each image measures 400×400 pixels and was last taken on August 22, 2022. For this study, it is assumed that there are no 
significant changes in the imagery between 2021 and 2022. Retrieving the daytime imagery from Google Maps requires longitude 
and latitude data for each district/city and shapefiles (SHP) to delineate the boundaries of the 38 districts/cities in East Java. 

 
Table 1  
Research Data Structure 

Regional Y X1 X2 X3 X... X4096 

1 Y1 X1,1 X2,1 X3,1   X4096,1 

2 Y2 X1,2 X2,2 X3,2   X4096,2 

              
38 Y38 X1,38 X2,38 X3,38   X4096,38 

Per capita expenditure is the dependent variable, while the results of feature extraction serve as the independent variables. Feature 
extraction is conducted on each image within a folder designated for each district/city. Using the VGG-16 model, each image is 
processed to produce 4096 features. Since each region has multiple images, the average value of each feature is calculated, result-
ing in a 1×4096 dimensional data set for each district/city. East Java has 38 districts/cities, so the complete extraction results in a 
38×4096 dimensional data set. Table 1 presents this data structure, which is used for SVR modeling 

2.5 Analysis Step 

The analysis involved comparing the use of nighttime and daytime images and evaluating the performance of RBF and polynomial 
kernels in SVR. Per capita expenditure data was explored statistically using boxplots and geographically using thematic maps, 
with the same methods applied to the prediction or estimation results. Night image cropping was conducted using a 1×1 km² grid. 
The best model was selected based on the highest R-value and the lowest MAPE value. 

3. Result and Discussion 

 

3.1 Characteristic of East Java Per Capita Expenditure 
 

The average per capita expenditure in East Java is Rp 11,568,530 per year, which is higher than Indonesia’s national average of 
Rp 11,013,000. Among East Java's 38 regions, 22 have below-average per capita expenditure. Bangkalan has the lowest per capita 
expenditure at Rp 8,673,000 per person per year, while Surabaya has the highest at Rp 17,862,000. Fig. 7 presents the geographical 
distribution of per capita expenditure across East Java's districts/municipalities. Different colors on the map represent quintiles, 
dividing the per capita expenditure into five categories. The darkest color represents the lowest quintile, comprising 8 regions. 
The second quintile includes 7 regions, the third quintile 8 regions, the fourth quintile 7 regions, and the brightest color indicates 
the highest quintile, consisting of 8 regions. Surabaya has the highest per capita expenditure due to its status as the provincial 
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capital and a hub for economy, education, government, and industry. Neighboring regions like Gresik and Sidoarjo also have high 
per capita expenditure, benefiting from their proximity to Surabaya and their roles in supporting its activities. 
 

3.2 Estimation of Per Capita Expenditure using Daylight Satellite Imagery 

Table 2  
Parameters of SVR Model on Daylight Image 

RBF kernel Polynomial kernel 
Parameters Minimum Maximum Minimum Maximum 

Sigma 3.8 10-5 6.7 10-4 1.1 10-5 1.95 
C 0.032 1004.28 0.03 1021.06 
R2 38.78% 64.55% 35.75% 69.39% 

Degree - - 1 3 
MAPE 1.74% 13.59% 1.74% 13.97% 

 

Feature extraction using VGG-16 yields a 38×4096-dimensional dataset, which serves as the independent variables, with per capita 
expenditure data as the dependent variable. Before modeling with SVR, it was observed that some of the 4096 extracted features 
were zero for all observations. Following the approach of prior research (Rouhan, 2020), these constant features were eliminated, 
as they are unsuitable predictors. In an equation Y = f(X),  X  is constant or zero for all observations, Y would be the same for all 
observations. In the daytime image dataset, 26 variables were found to be constant or zero. Retaining these would negatively affect 
model performance. After eliminating these 26 features, SVR modeling was conducted with 4070 independent variables and one 
dependent variable. The dataset was divided into training and test sets using 10-fold cross-validation, and 400 hyperparameters 
were generated through random search for both the RBF and polynomial kernel SVR models, as shown in Table 2. The polynomial 
kernel outperformed the RBF kernel, achieving a maximum R2 value of 69.39% with a MAPE of 1.91%. The smallest MAPE, 
1.74%, corresponded to an R2 value of 66.77%. 

3.3 Estimating Per Capita Expenditure Using Nighttime Satellite Imagery 

The estimation of per capita expenditure using night imagery follows similar steps to those used with daytime imagery but includes 
an additional step. This step involves cutting the night image according to a 1×1 km² SHP grid. To ensure that the grid edges align 
with the shape of each region's SHP, clipping is performed using ArcGIS software. The night imagery pieces are then created 
based on each region's SHP grid, resulting in TIF format images that match the grid cells for each region. To input these images 
into VGG-16, the TIF images are converted to JPG format and resized to 224×224 pixels. This process is repeated iteratively for 
each of the 38 district/city folders in East Java. 

Table 3  
Parameters of SVR Model on Night Image 

RBF kernel Polynomial kernel 
Parameters Minimum Maximum Minimum Maximum 

Sigma 5.3 10-6 6.8 10-2 1 10-5 1.87 
C 0.03 967.06 0.03 1016.61 

Degree - - 1 3 
R2 53.25% 69.98%, 55.9% 87.05% 

MAPE 1.67% 14% 1.85% 13.93% 

 

3.4 Best Model Selection 
 

A combination of modeling approaches was used, involving RBF kernel SVR and polynomial kernel SVR for both day and night 
images. All models utilized VGG-16 for feature extraction without altering its architecture or parameters. Parameter optimization 
was conducted by generating 400 hyperparameters through random search. The best parameters for each model are presented in 
Table 4.  

Table 4  
Parameters for Each Model 

Model C Sigma Scale Degree 
SVR RBF Daylight Image 9.1 8.9 10-5   

Polynomial SVR Daylight Image 176.4  1 10-3 2 
SVR RBF Night Image 502.44 5.9 10-4   

Night Image Polynomial SVR 253.82  8.3 10-1 2 
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Fig. 4 shows that the overall MAPE for all models is less than 10%, indicating that all models exhibit high accuracy in predicting 
(Lewis, 1982). Among the models, the night image (in the figure denoted by Citra Malam) model with a polynomial kernel 
demonstrates the highest performance, while the RBF kernel model for the daytime image (in the figure denoted by Citra Siang) 
shows the lowest performance. This discrepancy is likely due to the greater color and object variations present in daytime images, 
making them more complex for the model to learn and recognize. In contrast, night images primarily consist of black, white, and 
gradients between these colors, offering fewer variations for the model to process, thus enhancing performance when applied to 
night images. 

 

Fig. 4. Comparison of SVR Performance of All Models 
 

The different kernels applied in SVR modeling significantly impact model performance. As shown in Fig. 4, the polynomial kernel 
outperforms the RBF kernel for both day and night images. This superiority is likely due to the polynomial kernel's more complex 
parameters, including the degree parameter, which optimizes values for each dataset, whether for day or night images. Table 4 
reveals that for the polynomial kernel, the optimal degree for both day and night images is 2. Increasing the degree does not 
necessarily enhance model performance and requires longer running times (Diani, Wisesty, & Aditsania, 2017). VGG-16, origi-
nally trained using ImageNet data, has been applied to health data from X-ray or MRI and to road sign recognition for moving 
vehicles (Simonyan & Zisserman, 2015). These data characteristics are similar to the pattern of remote sensing data, such as 
satellite imagery that captures small objects. The feature extraction results from satellite images using VGG-16, which produce 
38×4096 dimensional data, fall into the category of microarray data. For this type of data, SVR modeling with a polynomial kernel 
is more effective than with an RBF kernel. These findings are consistent with previous research (Diani, Wisesty, & Aditsania, 
2017; Moorthi, Misra, Kaur, Darji, & Ramakrishnan, 2011; Ustuner, Sanli, & Dixon, 2017). The best performance among the four 
models is achieved by the SVR model with a polynomial kernel applied to night images. Although this model produces a larger 
MAPE compared to the RBF kernel SVR model on night images, it yields the highest R value, which is significantly higher than 
those of the other three models. The optimal polynomial kernel SVR model has an ϵ value of 0.1 and uses 32 support vectors 
(SVs). The relevant hyperparameters are detailed in Table 4, and the optimization problem for the best dual SVR model is ex-
pressed in Eq. (15). 

𝑚𝑎𝑥 ቐ
1

2
 (𝛼 − 𝛼

∗

ଷଶ

,ୀଵ

)(𝛼 − 𝛼
∗)k(𝑋 , 𝑋) − 0,1  (𝛼 − 𝛼

∗

ଷଶ

,ୀଵ

) +  𝑌(𝛼 − 𝛼
∗

ଷଶ

,ୀଵ

)ቑ 
 

(15) 

with restrictions, 

∑ (𝛼 − 𝛼
∗ଷଶ

,ୀଵ ) = 0;  0 ≤ 𝛼 , 𝛼
∗ ≤ 253,82; i= 1,2,...,32 (16) 

The optimal regression function from Eq. (15) is shown in Eq. (17). 

𝑓(𝑥)  =   (𝛼 − 𝛼∗

ଷଶ

,ୀଵ

)k(𝑋 , 𝑋) 
(17) 

 k൫𝑋 , 𝑋൯ = ൫𝑋
்𝑋 + 0,83൯

ଶ
 (18) 

where i, j = 1,2,...,32 which is the number of SVs. 

Based on the model performance for both day and night imagery, night imagery is more reliable than daytime imagery. Addition-
ally, night imagery offers the advantage of easier data acquisition. Night imagery captured by the VIIRS sensor is freely available 
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on the EOG website, with a single file covering all regions of the earth in TIF format, available as annual or monthly data. In 
contrast, obtaining daytime imagery requires the use of the Google Map Application Programming Interface (API). Free usage of 
this API is limited by the number of images that can be downloaded. However, a significant advantage of daytime imagery is that 
it can be retrieved in real-time via Google Maps, allowing for more frequent updates and alignment with the latest conditions. 

3.5 Mapping of Per Capita Expenditure Estimation Results 

The mapping of per capita expenditure using the best model achieves an R2 of 87.05% and a MAPE of 1.88%. According to 
research by Badan Pusat Statistik (2022a), prediction accuracy can also be indicated by the correlation value between actual data 
and prediction results; a higher correlation value signifies greater accuracy (Mukaka, 2012). The correlation between the prediction 
results and the actual data is 99.63%, as illustrated in Fig. 5. The percentage error, calculated as the difference between the actual 
and predicted values divided by the actual value, ranges from 0.52% to 2.56% for each region. 

  

Fig. 5. Correlation between Actual Data and Predicted 
Results 

Fig. 6. Percentage of Prediction Error in 
Each District/City 

The percentage error in terms of quintiles for each region reveals that quintile one has a larger percentage error compared to the 
other quintiles. Fig. 6 illustrates the average percentage error for each quintile, showing that quintiles one and two have the highest 
average percentage errors. In contrast, quintile five, representing the most prosperous regions, has the lowest average percentage 
error at 1.5%. 

 

 

Actuals 
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Fig. 7. Geographical Comparison of Predictions and Actuals 

Per capita expenditure is less accurately predicted in areas with low light and economic intensity, particularly in quintile one. This 
aligns with findings from Badan Pusat Statistik (2022a) and Chen & Nordhaus (2011), which indicate that night imagery contains 
noise in low-economic areas. For example, the provinces of Papua and West Papua have the lowest poverty prediction performance 
due to their comparatively lower economic status. Geographically, the comparison of prediction results with actual data for East 
Java in 2021 is presented in Figure 7 according to the quintiles of per capita expenditure. The predictions achieve an accuracy rate 
of 92.11%, with the estimated per capita expenditure of 35 out of 38 districts/cities falling into the same quintile as the actual data. 
However, three districts show less precise estimates: Gresik, which is actually in quintile 5, is predicted to be in quintile 4; 
Magetan, which is actually in quintile 4, is predicted to be in quintile 3; and Ponorogo, which should be in quintile 2, is predicted 
to be in quintile 1. These areas are underestimated, although they still have a percentage error of less than 2%. The predicted per 
capita expenditure for each district/city correlates well with the unmodeled night imagery. The night image slice for East Java in 
Fig. 2, which includes red borders to show district/city boundaries, indicates that brighter areas correspond to higher light intensity 
and, thus, higher economic activity. Surabaya and its surrounding areas, predicted to have a high average per capita expenditure, 
exhibit high night light intensity, appearing bright white in Figure 2. This pattern holds true for other urban areas, such as Malang 
city and Batu city, which are also indicated by bright white circles within their respective smaller SHP boundaries. Extraction of 
night light intensity values from Fig. 2 can also be performed using ArcGIS software. The extracted value represents the average 
light intensity per region from a 1×1 km² grid, clipped to the shape of the East Java SHP. Surabaya city, Mojokerto city, and 
Malang city exhibit higher average night light intensities compared to other areas, significantly exceeding the average night light 
intensity of East Java, which is 3.85 radiance. This high intensity leads the model to predict these three regions to be in the highest 
per capita expenditure quintile, quintile 5. Conversely, Pacitan has the lowest night light intensity, with an average value of 0.35 
radiance, which is below the East Java average. This condition results in both the actual and predicted classification of Pacitan 
falling into quintile 1 for per capita expenditure. 

4. Conclusions 
 

Based on the discussion, it is concluded that East Java has a higher average per capita expenditure than Indonesia, with a value of 
Rp 11,568,530 per person per year. Surabaya boasts the highest per capita expenditure in East Java at Rp 17,862,000, while 
Bangkalan Regency has the lowest at Rp 8,673,000. Predictions of per capita expenditure using night imagery are more reliable 
than those using daytime imagery. Additionally, the polynomial kernel in SVR proves to be more effective for satellite image 
processing than the RBF kernel. The best model, which combines a transfer learning model with polynomial kernel SVR using 
night imagery, achieves an R2 of 87.05% and a MAPE of 1.88%. This model's predictions align well with actual quintile data, 
reaching an estimation accuracy of 92.11%. Furthermore, the prediction mapping is consistent with the unmodeled night image, 
where areas with higher brightness levels correspond to higher per capita expenditure prediction. 
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