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 In recent years, opinions and communication can be easily expressed through social media networks 
that have allowed users to communicate and share their opinions and views, resulting in massive 
user-generated content.  This content may contain text that is hateful to large groups or specific 
individuals. Therefore, in most website policies, automatic hate speech detection is required, and 
early automatic detection or filtering of such content is critical and necessary in online social net-
works, especially with large and increasingly user-generated content. This paper presents a sug-
gested model to enhance the detection performance of hate speech using deep learning models with 
two types of word embedding models, the first model is Arabic models based on Wor2Vec including 
AraVec and Mazajak. The second is word embedding techniques models based on BERT including 
three pre-trained models namely ARABERT, MARBERT and CAMeLBERT.  Common metrics in 
text classification are used including precision, recall, accuracy, and F1 score for model assessment. 
The experimental results show fine-tuned Arabic BERT models outperform Word2Vec based mod-
els, and that MARBERT outperforms both ARABERT and CAMeLBERT across all deep learning 
architectures, highlighting its superior ability to classify Arabic text. Additionally, BLSTM models 
show the highest performance on ARABERT, MARBERT, and CAMeLBERT, achieving an accu-
racy of 0.9945 with MARBERT.   

© 2025 by the authors; licensee Growing Science, Canada. 
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1. Introduction 
 
In the last few years, the Arabic content generated on social media has increased significantly, which has encouraged scientists in 
the natural language processing (NLP) domain to increase their efforts in processing this content and discovering models that may 
help in various tasks in NLP, such as text classification.  The field is rapidly evolving with various methodologies and algorithms, 
finding application in diverse language-related tasks that involve content created by a large number of individuals. Deep learning 
and transfer learning models' adaptability makes them powerful tools for different NLP tasks, as they can autonomously learn 
complex features, capture intricate relationships, and effectively categorize text based on its content. Recently, social media net-
works have facilitated easy communication and the expression of opinions, resulting in a substantial amount of user-generated 
content. However, this content may include hate speech that targets large groups or specific individuals (Bird et al., 2009). Con-
sequently, the majority of website policies mandate the identification of hate speech. Early automatic detection or filtering of such 
content is crucial and necessary in online social networks, especially with the large and growing volume of user-generated content. 
This preventive measure helps avoid future negative reactions to harmful content. Hate speech is a severe problem that affects 
online content and negatively impacts social communities. Hate speech involves using derogatory and offensive language directed 
at individuals or groups because of their religion, race, gender, or ethnicity is an issue that carries significant implications 
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(MacAvaney, 2019; Elzayady et al., 2023a,b). The understanding and legal implications associated with hate speech can vary 
greatly across different nations. Dealing with this complex matter necessitates striking an equilibrium between the safeguarding 
freedom of speech and the responsibility to guarantee the safety and welfare of individuals and communities. This includes the 
responsibility of upholding the rights of individuals and groups while preventing any potential harm that may arise from hate 
speech. 
 
Many online platforms and social media networks have established policies and guidelines to combat hate speech and create more 
inclusive and respectful online environments. Twitter(X), in particular, prohibits the use of hate speech in any form, including 
profile photos, titles, biographies, usernames, and display names. Additionally, Twitter(X) prohibits accounts that have the main 
intention of encouraging harm towards others according to the categories outlined in its Hateful Conduct Policy. This includes, 
“A user may not directly attack other people based on their race, ethnicity, national origin, class, sexual orientation, gender, gender 
identity, religious affiliation, age, disability, or serious illness”  (Hateful conduct policy, 2024). Table 1 presents examples of hate 
speech content in Arabic from YouTube, Facebook, and Twitter. These examples are real and may contain inappropriate words. 
Recently, there has been a significant rise in user-generated content in Arabic across social media platforms. Twitter(X), YouTube, 
and Facebook, are notably popular among Arab users, allowing them to share their thoughts and opinions freely through their 
posts. Arabic, the official language in over twenty countries and spoken by over a billion people worldwide. It ranks sixth in the 
world (Complete list of Arabic, 2024). However, identifying hate speech in Arabic presents significant challenges due to its com-
plex structure, morphology, and spelling. Various dialects and informal content with incorrect grammar and spelling further com-
plicate this task, requiring additional processing efforts to determine the relevance of such irregularities in detecting hate speech. 
Despite emerging research efforts, significant improvements in Arabic hate speech detection methods are still needed. Expanding 
current research is crucial, with considerable potential for enhancement through pretrained models and deep learning techniques 
(Alhazmi, 2024; Gambäck & Sikdar, 2017). 
 
To the extent of our knowledge, no research has comprehensively used various deep learning models with different embedding 
approaches on a large, balanced Arabic dataset. Our approach utilizes word embedding, mapping words into vector representations 
that capture syntactic and semantic information, combined with transfer learning from various pretrained models like ARABERT, 
MARBERT, and CAMeLBERT, leveraging context-dependent information. We applied different deep learning techniques to 
advance Arabic hate speech detection. The key contributions of this study are the investigation of hate speech identification 
through the application of deep learning and transfer learning methodologies. Moreover, the study includes a comparative exam-
ination of multiple word embedding approaches, including models based on Word2Vec and BERT pretrained models designed 
for Arabic, to determine their influence on the efficacy of detecting hate speech. The study also evaluated a range of deep learning 
models for identifying hate speech, including CNN, LSTM, Bi-LSTM, and GRU. 
 
The paper is structured as the following: Section 2, surveyed relevant studies in the field of hate speech detection in English and 
Arabic. Section 3 outlines the research methodology which encompasses deep learning and word embeddings. The results and a 
discussion are detailed in section 4, and Section 5 concludes the study. 
 
Table 1  
Examples of hateful text on social media in Arabic (Chowdhury, 2020) 

Website Text Translation in English 

YouTube 
 They have nothing left to eat but filth. They are disgusting, dirty, and عني ماضل عندهم أكل غير القذارة .مقرفين قذرين متخلفين

backward. 
 You are all liars, it's not a spy game, you dogs كلوكم كاذابين لعبة مي تجاسوس ياكلاب

Facebook 
 Idea in the middle of the garbage that Egypt has unfortunately reached هي الفكره بس في الوسط الزباله الي مصر للاسف وصلت له 

 If there is terrorism, it is you, you dirty bastards, who have ruined the  اذا في ارهاب هم انتم يا ولاد الحرام خربتو البلد بالارهاب تبعكون
country with your terrorism. 

Twitter(X) 

 You ignorant, you stupid! There is no middle ground with the dirty يا جاهل يا جاهل يا غبيي مفيش حل وسط مع ولاد الوسخه اتحاد الكوره المشبوه 
sons of the suspicious Football Association. 

لعنة الفنانين المجرمين والله إنهم سفله بمعني الكلمة كبار سن مفسدين الأرض  
 ثعالب يجب ضربهم 

Damn the criminal artists, by God they are mean in every sense of the 
word, old corruptors of the earth, foxes who must be beaten 

 
2. Related Work 

2.1. Related Studies in English Hate Speech Detection 
 
Over the past few years, Deep learning architectures have been the most popular text classification choice. The research results 
revealed that these methods showed high performance levels in NLP tasks. Deep learning is powerful and has a promising future 
in detecting hate speech. Moreover, word embeddings have become one of the most common methods that are recently applied. 
It can capture the semantics of the words, unlike the other representation that may hide the semantic relationships between the 
words, such as a bag of words (Bows), where the words on their representation lose the order. Many researchers used word 



S. Al-Saqqa et al.  / International Journal of Data and Network Science 9 (2025) 3

embedding to get word vector representations and used the embedding for training several deep learning models.   
 
Founta et al. (2019) proposed an integrated deep learning approach focused on RNN that used the user data properties with the 
textual content of tweets to detect abusive behavior. Their experiments showed that their model is portable and could work with 
various forms of abusive behavior of content. In (Zhang, Z., 2017) CNN was combined with LSTM. Zhang and Lie (2019) pro-
posed deep learning models first one CCN with skipped CNN that simulates skip-gram like feature extraction using modified 
CNN, and the second one applied GRU to capture ordered information among features. Badjatiya et al. (2017) performed experi-
ments for hate speech detection using different classifiers such as SVM, Logistic regression, Decision Trees, Gradient Boosted, , 
and three deep learning models, FastText, CNN, and LSTM. They applied the classification to a set of features such as char n-
gram, TF/IDF, and a bag of words. The results revealed positive results for deep learning models compared to other methods. 
Numerous studies have introduced novel transfer learning methods submitted to SemEval-2019 Task 5 and 6. (Gertner et al., 
2019) proposed an innovative approach to adapting pretrained BERT models for Twitter data in their research. Their contributions 
involved using name embeddings, substituting the next sentence prediction in BERT pretraining with Twitter author profile pre-
diction, and modifying the loss function for BERT fine-tuning to create an ensemble. Pelicon et al. (2019) refined BERT for 
Subtask A with the aim of differentiating between offensive and non-offensive content. The NULI team (Liu et al., 2019) which 
secured first place in Subtask A of Task 6 at SemEval-2019, preprocessed the dataset to align with social media language behaviors 
and then adapted and finetuned BERT. They conducted experiments with various classifiers, including linear models, word uni-
grams, Word2Vec, and LSTM, but found that fine-tuned BERT delivered the best performance. Sun et al. (2019) investigated 
BERT fine-tuning models for text classification, finetuning BERT for a specific target task, training BERT in a general domain, 
and multi-task fine-tuning. They discovered that for text classification, the top layer of BERT is particularly valuable, and prior 
multi-task fine-tuning can enhance the efficiency of fine-tuning for a single task. Additionally, BERT was shown to improve 
performance even with small-sized datasets. 
 
2.2 Related Studies in Arabic Hate Speech Detection 

 
Husain (2022) conducted an investigation into the identification of offensive language in Arabic by comparing the efficacy of 
distinct machine learning algorithms through ensemble models. The results indicated that the ensemble methods outperformed the 
individual classifiers. Bagging, in particular, demonstrated the highest performance in identifying offensive language, achieving 
an F1 score of 88%, surpassing the best single learner, SVM, by 6%. Aljarah et al. (2021) assessed different machine learning 
methods, utilizing basic text features such as term frequency and bag-of-words as well as profile-related characteristics like the 
number of retweets and favorites. They collected and annotated 3,696 tweets from Twitter, creating a new dataset containing 790 
negative and 843 positive tweets. Their investigation, which utilized a random forest classifier, discovered that integrating TF-
IDF with profile-based features produced the most effective results in identifying hate speech. Words linked to racism and immi-
gration emerged as the most significant predictors for the target category. Furthermore, Al-Saqqa et al. (2022) evaluated two 
Word2Vec models, exploiting a dataset from Facebook, Twitter, YouTube, and Instagram. They found that the CBoW algorithm 
outperformed skip-gram, and higher embedding dimensions consistently performed better. Alshaalan and Al-Khalifa (2020) eval-
uated and compared different neural network models for hate detection, with their CNN architecture outperforming GRU and 
hybrid CNN-GRU models. The BERT model did not show improvement in classification performance. Faris et al. (2020) also 
presented a novel method for identifying hate speech. They used word embeddings and deep learning models and discovered that 
their hybrid deep learning approach, combined with the AraVec word embedding, produced outstanding results. Moreover, Mo-
haouchane et al. (2019) evaluated four deep learning models for their ability to identify offensive language on Arabic content on 
social networks. The CNN model surpassed the rest in terms of all evaluation measures.  
 
Chowdhury et al. (2019) created ARHNet, a system designed to examine and classify Arabic hate content from twitter, content 
with religious terms. They used many Arabic word embeddings and a social network graph to improve the model's efficacy. 
Meanwhile, Aref et al. (2020) applied a dataset of tweets related to Sunni and Shia religious hate speech, tested different classical 
machine learning and deep learning models, and discovered that the CNN model equipped with FastText embeddings surpassed 
alternative models in performance. Keleg et al. (2020) compared several deep learning models, including CNN and BiLSTM, 
using word embeddings from AraVec, Multilingual BERT, and ARABERT for the shared task to detect offensive content. Their 
baseline was a logistic regression with TF/IDF. The results revealed that the ARABERT model performed best, followed by the 
BiLSTM model. Farha and Walid (2020) presented OSACT4's hate speech and offensive language detection task conducted by 
the SMASH team. They experimented with deep learning, transfer learning, and multitask learning approaches, using sentiment 
analysis to detect offensive and hate speech. They finetuned a pretrained BERT model using a dataset of 10,000 classified tweets. 
Their superior results were achieved with a multitasking learning model based on a CNN-BiLSTM architecture, while the BERT-
based model performed relatively lower. Al-Zayadi et al. (2023) assessed the enhancement of the Marbert model in recognizing 
hate speech in Arabic. They suggested a new approach that combines fixed word embeddings from AraVec 2.0 with contextual 
MARBERT embeddings and incorporates personality trait features to improve accuracy. The findings showed that the hybrid trait 
method significantly enhances the performance of the MARBERT model, providing a more effective technique for hate detection 
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in Arabic. In the same direction, Husain and Uzuner (2022) introduced a transfer learning model to detect hate speech of Egyptian 
dialect content. They used the ARABERT model and achieved an accuracy of 86%. 
 
3. Materials and Methods 
 
This section contains detailed information about the proposed research methodology, with a specific emphasis on utilizing dif-
ferent word embedding models in detecting hateful text in Arabic content through deep learning and comparing their effective-
ness. The study is based on the use of Word2Vec and BERT models for this task. Fig. 1 presents a flowchart illustrating the pro-
posed research method. 
 
3.1 Word Embedding 
 
Considerable advancements have been achieved through the utilization of word embedding. This promising development has the 
capacity to be applied in various practical NLP applications, notably text classification. Word embedding addresses limitations of 
count based in particular Bag of Words (BoW) and term frequency. These Models have shortcomings, including losing word order 
and disregarding word semantics. In contrast, word embedding is a predictive method that represents each word as a dense vector 
in a space with many dimensions. This allows words with related meanings to be near each other while separating those with 
distinct meanings. The vector representation includes semantic and syntactic data about words, centered on how they are used in 
context. Mainly rooted in neural networks, word embedding starts with random word vector initialization and progresses to refin-
ing the vectors through context prediction. The outcome is the creation of word vectors that often appear together and share 
semantic similarity (Al-Saqqa & Awajan, 2019). 
 

 
Fig. 1. Proposed research method. 

 
3.1.1 Word2Vec 
  
Developed by Mikolov et al. (2013), the Word2Vec model is a straightforward neural network that is instrumental in producing 
the word embeddings, which are vital for the training of word representations. It employs distributed word representation and uses 
a simple neural network to forecast the vector for a given target word based on its context word, suggesting a relationship between 
words sharing similar contexts and functions as a predictive model. It includes triple layers architecture, input, hidden, and output 
layers. The hidden layer's neurons match the dimensions of the word embeddings vector. Word2Vec offers two training architec-
tures, as illustrated in Fig. 2, for word embeddings: Continuous Bag of Words (CBOW) and Skipgram. In the CBOW model, the 
neighboring context words are used as input to forecast the target word. The context window size determines the number of 
surrounding words considered, with the objective of maximizing the log-linear probability of predicting the target word given its 
context. Taking a context window size of 5 as an example, the focal word is positioned in the middle as the third word, with the 
two words before and after it serving as the context words. Alternatively, the Skipgram model uses a central word as the input to 
forecast the words that surround it in the context. With the same window size of 5, the central word (input) is again the third word, 
and the model aims to predict the two words before and the two words after it as the output context words. The main advantage 
of the Skipgram model is to optimize the log likelihood of the context words based on the central word. To accurately reflect the 
syntactic and semantic characteristics of words, Word2Vec requires training on a substantial text corpus. The structure for CBOW 
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and Skipgram models is the same in having the same neural network and hyperparameters, including context window size and 
vocabulary size. Context window size denotes the quantity of words analyzed in text, and vocabulary size reflects the number of 
most common words. 
 

 
Fig. 2. Word2vec model algorithms (Mikolov et al., 2013). 

 
3.1.2 AraVec 
 
AraVec, developed by Soliman et al. (2017), consists of a range of pre-trained word embedding models specifically designed for 
Arabic text. The AraVec platform offers three different versions, each of which provides specialized word embedding models 
targeted at three distinct domains of Arabic content: Twitter, the World Wide Web (WWW), and articles from the Arabic Wik-
ipedia. The principal AraVec options include AraVec-Wikipedia, which was trained using all Arabic Wikipedia content, and 
AraVec-Twitter, which was trained using a large collection of Arabic tweets. AraVec uses the most widely used word embedding 
model as a predictive model, Word2Vec. AraVe provides embeddings of different dimensions (e.g., 100, 300) for flexibility. 
AraVec is optimized to accommodate the distinct Arabic language's morphological and syntactic traits, and can be applied across 
multiple domains, thus improving performance in both formal and informal text analysis. 
 
3.1.3 MAZAJAK 
 
MAZAJAK, developed by Farha and Magdy (2019) offers Arabic word embeddings created from a huge collection of 250 million 
tweets. The original dataset is large, approximately 10 GB, so a more manageable version was produced using 100 million tweets, 
which resulted in a dataset of about 5 GB. The necessary preprocessing steps, such as eliminating Internet links, diacritics, emoji 
characters, and punctuation, were performed to improve data quality. MAZAJAK provides Skipgram CBOW for the 100M and 
250M tweet datasets. 
 
3.2 Transformers 
 
Transformers were initially introduced in (Vaswani et al., 2017), and have since become essential components across a range of 
advanced models in NLP and other domains. It relies on self-attention that allows the model to evaluate the significance of various 
words contained in a sentence in relation to each other. This capability enables the model to capture word relationships without 
being constrained by their position in the text. The original transformer design featured both an encoder and a decoder, while some 
transformer-based models, such as BERT, exclusively use the encoder. Transformers utilize multi-head attention to capture dif-
ferent aspects of word relationships concurrently. They incorporate positional encoding to include information about word posi-
tions in the sequence, thereby facilitating the maintenance of correct word order. In every single layer of the transformer, there is 
a feed-forward neural network that independently processes the outputs of the attention mechanisms for each position. Addition-
ally, transformers utilize layer normalization and residual connections to enhance stability, expedite training, and improve perfor-
mance. BERT and GPT are Popular transformer-based models, which have significantly advanced NLP, demonstrating excep-
tional results in various tasks. The flexibility of transformers has driven major developments in NLP, paving the way for new 
possibilities in language understanding and generation. Transformers differ from Recurrent Neural Networks (RNNs) in their 
approach to processing sequences. Unlike RNNs, transformers do not operate sequentially. While RNNs generate subsequent 
words depending on the preceding words, transformers process entire sentences in a single pass, enabling parallel processing of 
the entire sequence. This eliminates the need for time steps during training, as seen in RNNs, as there is no sequential processing 
of the sequence. Furthermore, attention in transformers is self-generated from the model's input and is performed simultaneously, 
a concept known as multi-head attention. In contrast, RNN encoder-decoder architecture relies on the decoder output and encoder 
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output for attention generation. Overall, transformers have revolutionized NLP and are expected to continue shaping the future of 
language processing and understanding. They have transformed the way sequences are processed and have laid the groundwork 
for future advancements in the field (Kalyan et al., 2021) 
3.2.1. Bidirectional Encoder Representations from Transformers (BERT) 
 
It is the most thoroughly studied transformer model for transfer learning of tasks in NLP domain. It was created by Google (Devlin 
et al., 2018). This model deep bidirectional transformer encoder pretrained on a combined dataset of the Books Corpus and Wik-
ipedia. It features 12 layers, each containing 12 attention heads and 768 hidden units. BERT's design allows it to be effectively 
used to a variety of tasks without the need for modifications to its fundamental architecture, enabling cost-effective fine-tuning 
specific to each task. The model's versatility and adaptability have established BERT as a powerful tool in NLP research and 
applications. A distinctive feature of BERT is its ability to simultaneously integrate context from both sides of a word—left and 
right. This bidirectional technique allows BERT to grasp context with greater depth and breadth than earlier models. By embracing 
this comprehensive awareness of context, BERT achieves a more nuanced understanding of text and its intricate connections. 
BERT is built upon the transformer framework, which utilizes self-attention mechanisms alongside feed-forward neural networks. 
Specifically, BERT uses the encoder component of the transformer. This encoder comprises multiple layers that process the input 
text, extracting salient details and producing contextualized representations for each individual token. Prior to the fine-tuning 
process, BERT is pretrained through two separate processes: masked language modeling (MLM) and next sentence prediction 
(NSP). In masked language modeling, certain words within a sentence are intentionally obscured, and BERT is trained to infer the 
hidden words using surrounding context as clues. In the case of next sentence prediction, BERT is trained to ascertain the proba-
bility that one sentence is the logical successor of another within a text. Engaging in these pretraining exercises equips BERT with 
the ability to more effectively discern long-range dependencies and comprehend the contextual framework in which words and 
sentences are presented. 
 
3.2.2 ARABERT 
 
It is an advanced and sophisticated language model, tailored for the complexities of the Arabic language (Antoun et al., 2020) it 
has undergone extensive training on a large dataset of over 70 GB, covering various text genres from news articles to social media 
content. With transformer layers, each featuring a hidden size of 768 and twelve attention heads, the model boasts 110 million 
parameters. These parameters have been carefully fine-tuned to capture even the subtlest nuances of Arabic. In addition, ARA-
BERT uses specialized preprocessing techniques, such as Arabic letter normalization and diacritic removal, to optimize its per-
formance. Its exceptional capabilities have been demonstrated by excelling in its performance in tasks related to processing natural 
language, surpassing previous models in efficacy and accuracy. The development of ARABERT has led to the release of different 
versions with expanded vocabularies and training on more data, such as ARABERT v0.1/v1 and the original ARABERT v0.2. 
The latest version, ARABERT v2 (bert-base-ARABERTv02), includes improved preprocessing methods and an expanded training 
dataset, encompassing 543 MB and 136 million parameters, with 77 GB of training data and 200 million sentences. This enhanced 
version has been employed in this study to achieve heightened efficacy in Arabic language processing. 
 
3.2.3. MARBERT 
 
MARBERT is a pre-existing language model tailored exclusively for Arabic (Abdul-Mageed et al., 2020), with a focus on the 
handling of Modern Standard Arabic (MSA) and various dialects of Arab countries. It follows the BERT architecture and includes 
specialized preprocessing techniques such as normalization and diacritic removal to effectively manage the unique characteristics 
of Arabic text. MARBERT has exhibited strong performance across various Arabic NLP tasks, establishing itself as a robust and 
adaptable tool for advancing the comprehension and processing of the Arabic language (Al-Zayadi et al., 2023). Our research 
utilized MARBERTv2, which is leveraging a bigger and more diverse collection of Arabic texts, consisting of 29 billion tokens. 
The model's advantage lies in being trained on a substantial Twitter dataset, which aligns with our specific task, as opposed to 
other models like ARABERT, which are predominantly trained on MSA data. These alternative models may not be as well-
adapted for downstream tasks engaging Arabic dialects. 
 
3.2.4 CAMeLBERT 
 
CAMeLBERT is a pre-existing model developed for the Arabic language with the intent of enhancing the performance of various 
NLP tasks in Arabic. It was first introduced by Inoue et al. (2021). Training was applied to the model using a diverse range of 
sources, encompassing both Modern Standard Arabic (MSA) and dialectal texts. Multiple versions of the model are accessible, 
each tailored for specific applications and datasets. The CAMeLBERT-MSA version is specifically trained on Modern Standard 
Arabic (MSA) and is well-suited for formal Arabic texts, such as news articles and official documents. Conversely, the CAMeL-
BERT-DA version is optimized for dialectal Arabic, addressing informal Arabic commonly found in social media and conversa-
tional texts. Moreover, the CAMeLBERT-Mix version amalgamates both Modern Standard Arabic data alongside dialectal Arabic 
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data. In the context of this study, we employed the CAMeLBERT-Mix variety due to its training on MSA) and dialectal data, 
aligning with the dataset that was utilized, encompassing both MSA and Arabic dialects. Additionally, CAMeLBERT-Mix is 
trained on one of the largest datasets available, comprising 167 GB in size and containing 17.3 billion words. 
3.3. Deep Learning Models  
 
3.3.1. Long short-term memory (LSTM) 
 
It is presented by Hochreiter and Schmidhuber (1997).  It addresses some drawbacks of standard recurrent neural networks, in-
cluding issues like the vanishing gradient, where small changes in the weights lead to slow learning and training. Additionally, it 
overcomes the inability of standard recurrent neural networks to process long text sequences when using certain activation func-
tions. LSTM (Long Short-Term Memory) deals with sequential data, with internal weights shared across the sequence. Its structure 
allows for remembering information in both the long and short term. In recurrent neural networks, the individual word in the text 
uses the current word embedding and its previous state to calculate the value that will be passed to the hidden state. The hidden 
state is calculated using the following formula: 
 

ℎ௧  = 𝑓(𝑊௛ . 𝑥 ௧ + 𝑈 ௛. ℎ ௧ିଵ + 𝑏 ௛)       (1) 
 
where xt is the current input (or current word embedding), 𝑊௛ 𝜖 𝑅௠௫ௗ  (m is the dimension of RNN), and 𝑈௛ 𝜖 𝑅௠௫௠ are the weight 
matrices, 𝑏௛ 𝜖𝑅௠ is the bias value, 𝑓(𝑥) is usually tanh function which is a nonlinear function; its values range between -1 and 1. 
In the LSTM architecture, the key component is the cell state, which updates information through linear calculations such as 
pointwise operations like addition and multiplication. LSTM includes input, forget, and output gates. These gates dynamically 
adjust to retain the input vector, discard prior information, and produce the output vector. The following formulas describe the 
functioning of the LSTM gates: 
 

𝑓௧=𝜎(𝑊 ௙ .  ൣℎ௧ିଵ, 𝑥௧൧ + 𝑏௙ )          (2) 

𝑖 ௧ୀ𝜎 (𝑊௜ . [ℎ௧ିଵ, 𝑥௧] +  𝑏௜)           (3) 

𝐶ሚ௧ୀ𝑡𝑎𝑛ℎ(𝑊஼ . [ℎ௧ିଵ, 𝑥௧] +  𝑏஼)       (4) 

𝐶௧ ୀ 𝑓௧ × 𝐶௧ିଵ +  𝑡௜ ∗ 𝐶ሚ௧             (5) 

𝑜௧ୀ 𝜎(𝑊௢ . [ℎ௧ିଵ, 𝑥௧] +  𝑏௢)          (6) 

ℎ௧ୀ𝑜௧ × tanh (𝐶௧)   (7) 

 
The input gate is represented by 𝑖௧ , the forget gate is denoted by 𝑓௧ , the cell state is referred to as 𝐶௧, the hidden state is designated 
as h, the output gate is indicated by 𝑜௧, and the sigmoid function is represented by σ. To explain this in simpler terms, the values 
in the memory are manipulated using the output gate. If the value after applying the sigmoid function is zero, we forget and ignore 
the information in memory, and it is not used in training. On the other hand, if the value resulting from the application of the 
sigmoid function is one, the data stored in memory will be deemed suitable for use in training. 
 
3.3.2 Bi-directional LSTM (BLSTM) 
 
Schuster and Paliwal (1997) presented the Bidirectional LSTM, a modified version of LSTM aimed at enhancing performance. 
This model links hidden layers in two directions to the same output, enabling the output layer to receive data from both preceding 
and succeeding states. This method amplifies the accuracy and efficiency of learning. The Bidirectional LSTM encompasses two 
LSTMs working in opposite directions: the first operates the input sequence in a left to right order through the feed-forward 
network, while the second operates the sequence in a right to left order through the backward network. This configuration allows 
the model to obtain context in both directions and enhances comprehension of text semantics. 
 
3.3.3 Gated Recurrent Units (GRU) 
 
Suggested by (Cho et.al. 2014), the GRU, which stands for Gated Recurrent Unit, is a simplified variation of the LSTM. In contrast 
to the LSTM, the GRU utilizes two gates - the reset gate and the update gate - instead of three. These gates control the information 
flow in a manner similar to the LSTM, but without a separate memory unit. The gates decide which input characteristics to keep 
or discard. When all components of the reset gate reach close to zero, the previously hidden state information is forgotten, enabling 
the input vector to have an impact on the candidate's hidden state by itself. In this scenario, the update gate functions as the forget 
gate. The following equations provide the mathematical representation of these gates: 
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𝑟௧  =  𝜎 (𝑊௫௥𝑥௧  + 𝑊௛௥ℎ௧ିଵ  + 𝑏௥) (8) 

𝑍௧  =  𝜎 (𝑊௫௭𝑥௧  + 𝑊௛௭ℎ௧ିଵ  + 𝑏௭)              (9) 

ℎ˜௧  =  𝑡𝑎𝑛ℎ(𝑊௫௛𝑥௧  + 𝑊௛௛(𝑟௧  ⊙ ℎ௧ିଵ)  + 𝑏௛)    (10) 

ℎ ௧ =  𝑧௧  ⊙ ℎ௧ିଵ  +  (1 − 𝑧𝑡௧) ⊙ ℎ˜௧    (11) 

 
The reset gate is denoted by 𝑟௧ , while the update gate is represented by 𝑍𝑡. The input is denoted by 𝑥௧, the output vector is identified 
as ℎ௧, the weight matrices are referred to as 𝑊, and the biases are represented by b. The sigmoid activation is denoted as σ, and 
the hyperbolic tangent activation function is tanh. 
 
3.3.4 Convolutional Neural Networks (CNN) 
 
It is a sophisticated architecture that includes input, output, and multiple hidden layers. It is primarily utilized for the purpose of 
computer vision and image analysis, and has demonstrated a high level of effectiveness in the classification of images. Many 
research papers have recently explored using CNNs for NLP tasks, such as text classification. In most NLP tasks, word embedding 
is used to create a two-dimensional matrix array of text words or sentences, which then serves as input for the CNN. The CNN 
comprises various layers, consisting of convolutional, hidden, pooling, and fully connected layers. Initially, convolutional filters 
of various sizes are performed on a window of words to generate and identify new representations. These new features then 
undergo pooling, and the pooled features from different filters are combined to form the hidden representation. Finally, one or 
more fully connected layers are used to make output which is the prediction. CNNs use one-dimensional convolution for text that 
is different from its use for images. This approach entails moving a sliding window of a predetermined size across a sentence, 
using the same convolutional filter on each window within the sequence. The vectors obtained from the different convolutional 
windows are aggregated into a single l-dimensional vector through a pooling process. This is typically achieved by selecting the 
greatest or average value from each vector that results from the convolutional operations. This pooled vector encapsulates the 
most significant features of the sentence (Kim, 2014) 
 
3.4. Dataset 
 
The study made use of a dataset compiled by Omar et al. (2020), comprising Arabic content from different social media platforms 
consists of 20,000 instances. The dataset received manual annotations from three native Arabic speakers, categorizing each sample 
as “hate” or “not hate”. 10,044 samples in the “hate” class and 10,002 in the “not hate” class, as shown in Table 2. This private 
dataset was obtained by requesting access from the authors (Omar et al., 2020). 
  
Table 2 
The Dataset statistics 

Platforms Facebook, Twitter(X), Instagram, YouTube 
instances 20,046  
hate  10,044 
not-hate 10,002 
Tokens 432,318 

 
3.5. Preprocessing  
 
Text preprocessing converts raw text data into a more suitable format for further processing and classification. This stage is im-
portant, as it can significantly affect the final results. It involves five main steps:  
 
1- Stop words removal: stop words are the words that do not contribute to analysis (such as in في, above فوق, to الى).  
2- Noise removal: Cleans the text from various forms of noise, such as non-Arabic text, URLs, digits, and punctuation marks. 
3-Tokenization: Splits a sentence into tokens based on spaces and punctuation marks such as commas, tabs, periods, etc.  
4-Normalization: Transforms the text to be consistent, thus putting it in a standard form. In this step: 
 

Step 1. Letters " إ," "أ " and "آ" are replaced with "ا" 

Step 2. "ة" is replaced with "ه" 

Step 3. The letter "ى" is replaced with "ي" 

Step 4. Letters " ئ," "ؤ " is replaced with "ء" 
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5- Stemming: Removes all affixes (such as prefixes, infixes, and suffixes) from words and reduces the words to their stem. 

 
3.6 Development Environment  
 
The programming language used for the code was Python version 3.10.12. The experiments were executed using Google Colab 
Pro+, an online integrated development environment (IDE) that provides GPU processing. The system used in this environment 
was equipped with memory RAM of 16GB, and the processor is an Intel Core i7 @ 1.8 GHz. 
 
3.7 Evaluation Measure 
 
To evaluate the efficiency of models that detect hate speech, four main metrics are usually used as they expressed in the following 
equations. These metrics are defined using True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). 
 

Precision = TP / (TP + FP). (12) 

Recall = TP / (TP + FN). (13) 

F1-measure = (2×Precision×Recall)/ (Precision+ Recall). (14) 

Accuracy = (TP+TN)/ (TP+TN+FP+FN).            (15) 

Precision represents the fraction of instances accurately labeled as hate speech to the total number of instances tagged as such. 
Recall determines the model's capacity to accurately detect all instances of actual hate. The F1-score is an indicator of the harmonic 
mean between precision and recall, providing a measure of their equilibrium. Accuracy denotes the proportion of both hate and 
non-hate instances that are correctly identified, in relation to the overall count of instances. 
 
4. Results and Discussion 

 
4.1 AraVec Embedding Experiments Results  
 
We deployed four distinct iterations of the AraVec v2.0 model for our analysis: two Twitter-CBoW and two Twitter-skip-gram 
models, with one pair having an embedding dimension of 300 and the other pair having an embedding dimension of 100. Each of 
these models underwent training on a corpus of 66,900,000 documents and incorporated a lexicon comprising 331,679 words. The 
outcomes of this implementation are presented in Tables (3-6) and illustrated in Figs. (3-5). 
 

Table 3  
Performance evaluation of deep learning models using AraVec skip-gram, dimension=100 

Model Precision Recall F1 accuracy 
LSTM 0.9687 0.974 0.9713 0.9712 
BLSTM 0.9612 0.9785 0.9698 0.9695 
GRU 0.9758 0.9495 0.9625 0.963 
CNN 0.769 0.866 0.814 0.803 

 

 
Table 4  
Performance evaluation of DL models using AraVec skip-gram, dimension=300 

Model Precision Recall F1 Accuracy 
LSTM 0.9695 0.9705 0.97 0.97 
BLSTM 0.9797 0.965 0.9723 0.9725 
GRU 0.971 0.971 0.971 0.971 
CNN 0.966 0.883 0.922 0.926 

 

 
Table 5  
Performance evaluation of DL models using AraVec CBOW, dimension=100 

Model Precision Recall F1 Accuracy 
LSTM 0.9605 0.9715 0.9659 0.9657 
BLSTM 0.9755 0.957 0.9662 0.9665 
GRU 0.9464 0.971 0.9585 0.958 
CNN 0.93 0.818 0.87 0.878 
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Table 6  
Performance evaluation of DL models using AraVec CBOW, dimension=300            

Model Precision Recall F1 Accuracy 
LSTM 0.9189 0.974 0.9456 0.944 
BLSTM 0.951 0.981 0.9658 0.9653 
GRU 0.9792 0.964 0.9715 0.9718 
CNN 0.966 0.883 0.922 0.926 

 

As shown in Tables (3-6) and Figs. (4-6), the performance results indicate that both LSTM and BLSTM models consistently 
achieve high performance, regardless of the embedding dimensions and word embedding methods. On the other hand, CNN mod-
els typically exhibit lower performance than the other models. Models are specifically engineered to process sequential data and 
are adept at capturing dependencies over long sequences, whereas CNNs are better suited for identifying local patterns. This focus 
on local patterns makes it challenging for CNNs to effectively capture the sequential nature and context of language. Additionally, 
when comparing Skip-Gram to CBOW, it is evident that the Skip-Gram technique generally yields better results across most 
models, especially when the embedding dimension is increased. Increasing the embedding dimension from 100 to 300 improves 
performance across most deep learning models. For LSTM and BLSTM architectures, the Skip-Gram method with 300-dimen-
sional embeddings offers the best performance. Similarly, GRU models also benefit from higher-dimensional Skip-Gram embed-
dings, showing notable improvement. This improvement is credited to the rich semantic information offered by the 300-dimen-
sional Skip-Gram embeddings, which provide extensive semantic data for each word, enabling the model to more effectively 
capture relationships between words. Embeddings with higher dimensions have the ability to capture a broader scope of word 
meanings in greater depth, resulting in enhanced overall performance. This is consistent with previous research (Al-Saqqa et al., 
2022). 

   
Fig. 3. The accuracy of AraVec-Skipgram 

(dim=100, dim=300) 
Fig. 4. The accuracy of AraVec-
CBOW (dim=100, dim=300) 

Fig. 5. Performance Comparison of Ar-
aVec-Skipgram and AraVec-CBOW in 
terms of accuracy 

4.2 MAZAJAK Embedding Experiments results 

We used a compact version of the MAZAJAK model based on a dataset of 100 million tweets, totaling around 5 GB. Each 
embedding vector in this model has a dimensionality of 300. The embeddings were created using two models, Skipgram and 
Continuous Bag-of-Words, both applied to the 100 million tweets. The performance results using MAZAJAK, as shown in Table 
7 and Table 8, indicate that BLSTM models consistently achieve the highest accuracies across both configurations. In contrast, 
CNN models perform significantly worse than LSTM, BLSTM, and GRU models, particularly with Skip-Gram embeddings. The 
differences between Skip-Gram and CBOW embeddings do not drastically alter the relative performance ranking of the models, 
with BLSTM maintaining the best overall performance in both cases. When comparing MAZAJAK and AraVec embeddings for 
hate speech detection with a dimensionality of 300, MAZAJAK embeddings generally perform better or on par with AraVec 
embeddings, especially with LSTM and BLSTM models. Although the performance difference between the two models is not 
substantial, the superior performance of MAZAJAK might be ascribed to its alignment with the type of data it was trained on, 
such as sentiment analysis, which closely matches the hate speech detection task. The performance comparison between 
MAZAJAK is illustrated in Fig. 6. 

Table 7  
Performance evaluation of DL models using MAZAJAK-Skipgram, dimension=300 

Model Precision Recall F1 Accuracy 
LSTM 0.9836 0.9625 0.973 0.9732 
BLSTM 0.9943 0.953 0.9732 0.9738 
GRU 0.9906 0.9525 0.9712 0.9718 
CNN 0.909 0.83 0.867 0.873 
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Table 8  
Performance evaluation of DL models using MAZAJAK-CBOW, dimension=300 

Model Precision Recall F1 Accuracy 
LSTM 0.9769 0.951 0.9638 0.9643 
BLSTM 0.9838 0.9705 0.9771 0.9772 
GRU 0.9836 0.959 0.9711 0.9715 
CNN 0.887 0.9 0.894 0.893 

 

 
Fig. 6. Performance Comparison of MAZAJAK Skipgram and CBOW in terms of accuracy 

4.3 ARABERT, MARBET, and CAMeLBERT Experiments Results 

The performance evaluation using ARABERT, MARBERT, and CAMeLBERT is presented in Tables (9-11) and illustrated in 
Figure 7. The analysis of the results indicates that MARBERT consistently achieves higher performance than ARABERT and 
CAMeLBERT across various metrics and models, suggesting that MARBERT may be more effective for hate speech detection. 
This superiority may be due to enhanced pre-training methods or more relevant training data. 

Recurrent models, especially BLSTM, exhibit the highest performance metrics among ARABERT, MARBERT, and CAMeL-
BERT. BLSTM models show the best results, with MARBERT achieving an accuracy of 0.9945. Although CNN models also 
improve with MARBERT, they still fall short compared to recurrent models in capturing the complex dependencies in text nec-
essary for precise hate speech detection. 

The experimental results in Tables (3-11) indicate that ARABERT, MARBERT, and CAMeLBERT outperform other pre-trained 
models based on Word2Vec, such as AraVec and MAZAJAK. This superiority can be attributed to ARABERT's foundation on 
the transformer BERT model which has the ability to capture complex patterns and long-range dependencies in text is more 
effective than the simpler Word2Vec architecture used by AraVec or MAZAJAK. Moreover, ARABERT's bidirectional context 
analysis allows for a more thorough understanding of each word within a sentence. On the other hand, AraVec, which is built on 
the foundations of Word2Vec, usually focuses only on a set range of neighboring words, without considering bidirectional context. 
This finding is consistent with research indicating that BERT models consistently surpass Word2Vec models (Abdelsamie, 2024). 

Table 9  
Performance comparisons of DL models using ARABERT 

 Models Precision Recall F1 Accuracy 
LSTM 0.985 0.985 0.985 0.985 
BLSTM 0.992 0.98 0.986 0.987 
GRU 0.99 0.985 0.9874 0.987 
CNN 0.975 0.95 0.9623 0.965 

 

 
Table 10  
Performance comparisons of DL models using MARBERT 

 Models Precision Recall F1 Accuracy 
LSTM 0.9925 0.9925 0.9925 0.9925 
BLSTM 0.995 0.9935 0.9942 0.9945 
GRU 0.9935 0.9915 0.9924 0.9925 
CNN 0.9825 0.9575 0.9698 0.9725 
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Table 11  
Performance comparisons of DL models using CAMeLBERT-mix 

 Models Precision Recall F1 Accuracy 
LSTM 0.9520 0.9897 0.9693 0.9675 
BLSTM 0.9637 0.9929 0.9776 0.9767 
GRU 0.9420 0.9940 0.9673 0.9663 
CNN 0.9428 0.9954 0.9668 0.9638 

 

 
Fig. 7. Performance comparison of ARABERT, MARBERT, and CAMeLBERT in terms of accuracy  

5. Conclusions 
     
With the growth of Arabic content created by users on social media platforms, the need to identify hate speech has increased to 
foster a safe and inclusive digital environment. This study used and compared different word embedding methods, including 
Word2Vec-based models such as AraVec and MAZAJAK, and BERT-based models such as ARABERT, MARBERT, and 
CAMeLBERT. These embeddings were evaluated using four deep learning models: LSTM, BLSTM, GRU, and CNN. The anal-
ysis confirms the superior performance of ARABERT, MARBERT, and CAMeLBERT compared to traditional Word2Vec-based 
models. It can also be concluded that MARABERT outperforms both ARABERT and CAMeLBERT. Furthermore, experimental 
results consistently show that recurrent models, especially BLSTM and GRU, outperform CNN when using ARABERT, MAR-
BERT, and CAMeLBERT embeddings. Future work will include a more comprehensive evaluation of hate speech detection using 
ensemble techniques. This will involve deep learning, transformer-based models, and integrating multiple embeddings within the 
ensemble to efficiently capture diverse semantic information. 
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