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 The main objective of spatiotemporal analysis is to offer precise predictions of outcomes. The 
objective of this study is to assess the accuracy of the Bayesian Latent Gaussian Model in predict-
ing outcomes by utilizing both time-varying and fixed spatial weight matrices. The results of the 
Monte Carlo simulation suggest that when there is moderate spatial autocorrelation (between 0.3 
and 0.7), it is strongly advised to use a time-varying spatial weight matrix. This approach yields 
the most precise predictions and minimizes any distortion in parameter estimates. Furthermore, 
we provide an illustrative case study where we simulate the effects of exposure to multiple pollu-
tants on tuberculosis. The analysis revealed that particulate matter 10 (PM10), nitrogen oxides 
(NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3), have a positive influence 
on the risk of TB, with spatial effects that change over time. The model demonstrates that a rise 
of 1 mg/m³ in the levels of PM10, NO2, SO2, CO, and O3 is linked to corresponding increases in 
TB cases by 2.1%, 21.17%, 13.20%, 6.72%, and 6.59%, respectively. NO2 and SO2 have the 
most significant influence on the risk of tuberculosis (TB). These findings enhance our compre-
hension of the spatial correlation of TB over time and promote further investigation to determine 
the most efficacious strategies for mitigating the dissemination of TB. 
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1. Introduction 
 
Spatiotemporal analysis is an appropriate method for describing the spatial and temporal relationship between TB risk factors 
(Carrasco-Escobar, Schwalb, Tello-Lizarraga, Vega-Guerovich, & Ugarte-Gil, 2020) (Li, Ge, & Zhang, 2022). The main goal 
of spatiotemporal modeling is to attain accurate predictions and identify relevant risk factors associated with the relative risk 
of diseases such as tuberculosis (TB). The utilization of data-driven modeling is crucial for achieving this objective. Defining 
spatial dependence is a crucial element of spatiotemporal data analysis. Temporal dependence progresses solely in a linear 
fashion, while spatial dependencies can expand in various directions. The precision of forecasts greatly depends on accurately 
identifying these spatial interdependencies. Usually, it is assumed that spatial dependence remains consistent over time. Nev-
ertheless, this assumption is excessively inflexible, as spatial dependence is constantly changing and influenced by a multitude 
of factors (Dubé & Legros, 2013).  Lately, there has been significant attention given to the modeling of temporal variations 
in spatial dependencies. The main topics under discussion are time-varying parameters and time-varying weight matrices 
related to spatial factors. This research specifically focuses on the latter. The study conducted by (Ou, Zhao, & Wang, 2015) 
demonstrated, through a Monte Carlo simulation, that spatiotemporal models with spatial weight matrices that vary over time 
have higher statistical power than models with fixed spatial weight matrices. The Moran's I statistic is employed to assess the 
spatial interdependence of variables of interest among adjacent regions, where a higher value of Moran's I signifies a more 
pronounced spatial dependence (Moran, 1950). Nevertheless, the scarcity of spatiotemporal research incorporating time-
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varying spatial dependence hampers the attainment of precise prediction outcomes. The objective of this study is to establish 
that the precision with which we determine evolving dependency structures has a substantial impact on the accuracy of spati-
otemporal predictions.  

The Bayesian Latent Gaussian Model (LGM) is a frequently employed approach for modeling spatiotemporal data (Blangi-
ardo & Cameletti, 2015). The LGM is extensively utilized in diverse disciplines such as biostatistics, econometrics, epidemi-
ology, Earth sciences, genetics, social sciences, engineering, economics, and regional science. The main objective of utilizing 
LGM is to simulate and analyze spatial or temporal interdependencies and their interactions. The LGM postulates that a 
collection of unobserved parameters, referred to as latent variables, conform to a Gaussian distribution (Hrafnkelsson & 
Bakka, 2023). Latent Gaussian models are a type of Bayesian additive models that have a structured additive predictor. These 
models have a hierarchical structure, where Gaussian prior distributions are applied to the latent parameters within the Bayes-
ian framework (Rue, Martino, & Chopin, 2009; Hrafnkelsson & Bakka, 2023).   

The Bayesian LGM framework operates under the assumption that the data adheres to a particular parametric distribution, 
such as the number of cases conforming to a Poisson distribution (Rustand, Niekerk, Krainski, Rue, & Proust-Lima, 2024). 
The unidentified variables are converted using a particular link function and subsequently represented at the hidden level, 
encompassing both predetermined and random influences that collectively conform to a Gaussian distribution. The Bayesian 
estimation method's hierarchical structure makes spatiotemporal modeling with fixed and random effects more manageable. 
The hierarchical Bayesian method is highly efficient in solving intricate models that have a larger number of parameters 
compared to the sample size (Lin, et al., 2022). This approach is in line with the Bayesian concept, as it considers all param-
eters as random variables, making it easier to deal with random elements. Recently, the use of Integrated Nested Laplace 
Approximation (INLA) in the R software platform has become popular for Bayesian LGM modeling (Rue, Martino, & 
Chopin, 2009; Jaya & Folmer, 2021). The Bayesian Integrated Nested Laplace Approximation (INLA) method is more 
straightforward to apply and offers significantly faster computational efficiency compared to the Markov Chain Monte Carlo 
(MCMC) approach.  

In order to assess the predictive capability of the spatiotemporal model, we will compare models that utilize a time-varying 
spatial weight matrix with those that use a fixed spatial weight matrix. The comparison will be carried out using a Monte 
Carlo simulation, with a specific focus on evaluating the performance differences between the models based on mean square 
error prediction. Furthermore, we will demonstrate a practical use of the model by evaluating the influence of exposure to 
multiple pollutants on tuberculosis.  

The structure of this paper is as follows: Section 2 presents the detailed Bayesian latent Gaussian model that incorporates 
spatial weight matrices that change over time. Section 3 of our study focuses on the Monte Carlo simulation, where we com-
pare the predictive performance of the spatiotemporal model using time-varying spatial weight matrices to that using fixed 
spatial weight matrices. Section 4 utilizes the model to evaluate the influence of exposure to multiple pollutants on tubercu-
losis. Section 5 presents a detailed analysis, while Section 6 serves as the final section of the paper.  

2. Bayesian Latent Gaussian Model with Time-Varying Spatial Weight Matrices 

2.1 Bayesian Latent Gaussian Modeling 

The Latent Gaussian Model (LGM) is a flexible and extensively utilized structured additive regression model in diverse ap-
plication domains. The response variable in LGM is assumed to have an exponential family distribution, such as normal, 
Poisson, binomial, or others. The mean 𝜇௜௧ of the response variable is linked to the additive predictor structure  𝜂௜௧ through a 
link function 𝑔(. ), where 𝑔(𝜇௜௧) = 𝜂௜௧. The structure of the additive predictor 𝜂௜௧ can include various effects from covariates, 
as well as structured and unstructured spatial and temporal random effects and their interactions (Rue, Martino, & Chopin, 
2009): 

𝜂௜௧ =  β଴ + ෍𝛽௞𝑥௜௧௞௄
௞ୀଵ + ෍𝑓௟(𝑢௜௧௟)௅

௟ୀଵ +  ∈௜௧; 𝑖 = 1, …𝑛, and 𝑡 = 1, … , T (1) 

where  β଴ represents the intercept or overall mean of the response variable. The terms  ሼ𝛽௞ሽ  represent the linear fixed effects 
of the covariate 𝐱, while ሼ𝑓௟(. )ሽ  represent the unknown smoothing functions of the covariate 𝐮. The symbol ∈ represents the 
unstructured component. The LGM, or Latent Gaussian Model, is a specific type of Bayesian additive model. It has an additive 
predictor structure, meaning that it combines multiple predictors in a linear fashion. In this model, the variables  β଴, ሼ𝛽௞ሽ, ሼ𝑓௟(. )ሽ, and ሼ∈௜௧ሽ  are assumed to be random variables that follow a Gaussian prior distribution. 

In order to provide a clear explanation of Bayesian latent models with time-varying spatial weight matrices, we will analyze 
a straightforward spatiotemporal model that includes K covariates, as well as spatially and temporally structured random 
effects. 
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𝜂௜௧ =  β଴ + ෍𝛽௞𝑥௜௧௞௄
௞ୀଵ + 𝜔௜|௧ + ν௧. (2) 

The function 𝑓ଵ(. ) = 𝜔௜௧  represents the spatially structured effects that change over time, while the function 𝑓ଶ(. ) = 𝑣௧  rep-
resents the temporally structured effects. The Conditional Autoregressive (CAR) model is frequently employed to represent 
the spatially structured effects ω. An appropriate model within this framework is the CAR Leroux model (Leroux, Lei, & 
Breslow, 1999):. 

𝜔௜|௧|(𝝎ି௜|௧,𝑾௧)~𝑁ቆ 𝜌௧ ∑ 𝑤௜௝|௧𝜔௝|௧௡௝ୀଵ𝜌௧ ∑ 𝑤௜௝|௧௡௝ୀଵ + 1 − 𝜌௧ , 𝜎ఠ೟ଶ൫𝜌௧ ∑ 𝑤௜௝|௧௡௝ୀଵ + 1 − 𝜌௧൯ቇ 
(3) 

where 𝑾௧ represents a binary spatial weights matrix of size 𝑛 × 𝑛 at time 𝑡. This matrix defines the neighborhood structure 
of the areas at that specific time. It is commonly constructed as either an inverse distance matrix or a contiguity matrix 𝝎𝒕. In 
addition, 𝜌௧ represents the spatial autoregressive coefficient for the spatially structured random effects. One frequently used 
spatial weight matrix combines the queen and rook spatial weight matrix.  The joint prior density function of for time 𝑡 is: 

𝑝൫𝝎௧ห𝜎ఠ೟ଶ ൯ ∝ ൫𝜎ఠ೟ଶ ൯ି೙షభమ 𝑒𝑥𝑝 ൬−12𝝎௧ᇱ𝑸ఠ೟𝝎௧൰ for t = 1, … , T (4) 

with 𝐐ఠ೟ = ൬ ଵఙഘ೟మ ൰𝑹ఠ೟ as the precision matrix with and 𝑹ఠ೟ denotes the 𝑛 ×  𝑛 spatial structure matrix at time t defined as:  

𝑹ఠ೟ = ൝  𝜌௧𝑛୧ + (1 − 𝜌௧), if 𝑖 = 𝑗  −1,                        if 𝑖~𝑗    0,               otherwise ,  

(5) 

where 𝑛୧ represents the number of neighbors in region 𝑖, and the notation 𝑖~𝑗 indicates that region 𝑖 and 𝑗 are adjacent to each 
other. The Leroux model is used to produce the spatially structured effect 𝝎௧. The 𝐐ఠ೟ matrix can alternatively be defined as: 

𝐐ఠ೟ = 1𝜎ఠ೟ଶ ሾ𝜌௧(𝐃௧ −𝐖௧) + (1 − 𝜌௧)𝐈௡ሿ; 𝑡 = 1, … ,𝑇 

 

(6) 

where 𝐃௧ = 𝑑𝑖𝑎𝑔ൣ∑ 𝑤௜௝௝ ൧   represents a diagonal matrix with elements equal to the sum of the weights 𝑤௜௝|௧ for time t. The 
symbol 𝐈௡ represents an identity matrix with dimensions 𝑛 × 𝑛. The spatial weight matrices 𝐖௧ can be created by considering 
customized neighboring dependencies that can change over time. The selection of the appropriate neighborhood structure is 
typically based on evaluating the highest level of spatial autocorrelation of the observed response variable using Moran's I 
(Ou, Zhao, & Wang, 2015). The temporal effects are represented by an autoregressive model.   ν௧ = 𝜆ν௧ିଵ + 𝜖௧, 𝜖௧~𝑁(0,𝜎஝ଶ) for every 𝑖 and 𝑡 = 2, . . ,𝑇, (7) 

with |𝜆| < 1 the autoregressive parameter and ν~𝑁 ቀ0, ఙಕమଵିఒమቁ.  The joint prior distribution of 𝛎 = (νଵ, . . , ν்)′ is defined as: 

𝑝(𝛎|𝜎஝ଶ) ∝ (𝜎஝ଶ)ି(೅షభ)మ 𝑒𝑥𝑝 ൬−12 𝛎ᇱ𝑸𝛎(்×்)(஺ோଵ) 𝛎൰ ,∀ 𝑖 (8) 

with 𝑸𝛎(்×்)(஺ோଵ) = ቀ ଵఙಕమቁ𝑹஝(்×்)(஺ோଵ)  as the precision matrix and  𝑹஝(்×்)(஺ோଵ)  as the 𝑇 × 𝑇 temporal trend structure matrix for the 𝐴𝑅1 
prior: 

 

𝑹஝(்×்)(஺ோଵ) = ⎣⎢⎢
⎢⎡ 1 −𝜆 ⬚ ⬚−𝜆 (1 + 𝜆ଶ) −𝜆 ⬚⋱ ⋱ ⋱ ⬚⬚ −𝜆 (1 + 𝜆ଶ) −𝜆⬚ ⬚ −𝜆 1 ⎦⎥⎥

⎥⎤ 
 

 
 

(9) 

The Integrated Nested Laplace Approximation (INLA) is presently the prevailing technique for making inferences in Latent 
Gaussian Models (LGMs). 𝛀 represents the vector that includes all latent Gaussian variables, while 𝚿 represents the vector 
of hyperparameters, which may or may not be Gaussian. Bayesian Latent Gaussian Models (LGMs) are structured hierarchi-
cally, comprising of three distinct stages (Blangiardo & Cameletti, 2015): 
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1. The first stage involves defining the conditionally independent likelihood function 𝑝(𝐲|𝛀,𝛙). 
2. The second stage involves specifying the prior distribution 𝑝(𝛀|𝛙) for the vector parameters 𝛀, known as the latent 

field.  
3. The final stage involves the distribution of the hyperparameters, known as the hyperprior distribution, that is 𝚿~𝑝(𝚿). Commonly used hyperprior distributions include the inverse Gamma, half-Cauchy, Penalized Complexity, 

and Uniform distributions. 
 

Following the three stages outlined above, the parameter estimation process begins by computing the posterior distribution 
using Bayes' theorem. 

 𝑝(𝛀,𝛙|𝐲) = 𝑝(𝐲|𝛀,𝛙)𝑝(𝛀|𝛙)𝑝(𝛙)𝑝(𝐲|𝛙) . (10) 

where 𝑝(𝛀,𝛙|𝐲) represents the joint posterior distribution of the parameter vector 𝛀 and the hyperparameter vector 𝛙. The 
term 𝑝(𝐲|𝛀,𝛙) denotes the likelihood function, 𝑝(𝛀|𝛙) signifies the joint prior distribution of 𝛀 conditional on the hyperpa-
rameter 𝛙, 𝑝(𝛙)represents the joint hyperprior distribution of 𝛙, and 𝑝(𝐲|𝛙) indicates the marginal distribution of the ob-
servations 𝐲 = (𝑦ଵଵ, … ,𝑦௡்)ᇱ, given 𝛙. 

Because the marginal distribution of the observations 𝑝(𝐲|𝛙) does not include the parameter vector 𝛀 to be estimated, and to 
ensure that the joint posterior distribution is a proper density function, 𝑝(𝐲|𝛙)is treated as a normalizing constant. Conse-
quently, it can be ignored in the inference process. Therefore, the posterior density can be expressed as: 𝑝(𝛀,𝛙|𝐲) ∝ 𝑝(𝐲|𝛀,𝛙)𝑝(𝛀|𝛙) × 𝑝(𝛙). (11) 

where ∝ is called as “proportional to”. Assuming y is independent, the likelihood function 𝑝(𝐲|𝛀,𝛙) is:  

𝑝(𝐲|𝛀,𝛙) = ෑෑ𝑝(y௜௧|𝛀௜௧,𝛙)்
௧ୀଵ

௡
௟ୀଵ  (12) 

where each data point y௜௧ is connected to only one element 𝛀௜௧. The vector parameter 𝛀 conditional 𝛙 is assumed to follow 
a multivariate normal distribution:  𝑝(𝛀|𝛙) ∝ |𝐐(𝛙)|భమ exp ൬−12𝛀ᇱ𝐐(𝛙)𝛀൰, (13) 

where |𝐐(𝛙)| denotes the determinant of matrix precision matrix 𝐐(𝛙). Finally, the joint posterior distribution of 𝛀 and 𝛙 
for the described hierarchical LGM model is expressed as follows (Rue, Martino, & Chopin, 2009): 

𝑝(𝛀,𝛙|𝐲)  ∝ 𝑝(𝛙)|𝐐(𝛙)|భమexp൭−12𝛀ᇱ𝐐(𝛙)𝛀 + ෍෍ log(y௜௧|𝛀௜௧,𝛙)்
௧ୀଵ

௡
௜ୀଵ ൱ (14) 

To obtain the parameter estimate of the vector parameter, we need the posterior marginal distribution of each element of the 
parameter vector. The marginal posterior distribution of 𝛀௜௧ is (Rue, Martino, & Chopin, 2009): 𝑝(𝛀୧୲|𝐲) = න𝑝(𝛀୧୲,𝛙|𝐲)d𝛙 = න𝑝(𝛀୧୲|𝛙,𝐲)𝑝(𝛙|𝐲)𝑑𝛙 (15) 

Following the INLA approach, the marginal posterior distribution is numerically solved through a finite weighted sum (Rue, 
Martino, & Chopin, 2009): 

𝑝෤௅஺(𝛀௜௧|𝐲) ≈෍𝑝෤௅஺൫𝛀௜௧|𝛙(𝒋), 𝐲൯௃
௝ 𝑝෤௅஺൫𝛙(𝒋)|𝐲൯∆௝ (16) 

where the index LA denotes the Laplace approximation. The set {𝛙(𝒋)} represents a collection of values of 𝛙 that are associ-
ated with the integration weights ∆௝. 
In order to obtain the outcome prediction 𝒚ෝ, the predictive distribution  𝑝(𝑦ො |𝐲) is defined as follows:  𝑝(𝒚ෝ |𝐲) = න𝑝(𝒚ෝ |𝛙,𝐲 )𝑝(𝛙|𝐲)𝑑𝛙 (17) 
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where the marginal posterior distribution for 𝑝(𝒚ෝ |𝛙, 𝐲) is obtained by integrating the posterior conditional distribution 𝑝(𝒚ෝ ,𝛀|𝛙, 𝐲) over 𝛀:  𝑝(𝒚ෝ|𝛙, 𝐲) = න𝑝(𝒚ෝ ,𝛀|𝛙,𝐲)𝑑𝛀 = න𝑝(𝒚ෝ |𝛀,𝛙)𝑝(𝛀|𝛙,𝐲)𝑑𝛀 (18) 

The numerical method outlined in Eq. (12) can be used to approximate the integrals in Eq. (17) and Eq. (18).  

The structured matrix input for the spatiotemporal model with time-varying spatial weight matrix in R-INLA is as follows: 

⎣⎢⎢
⎢⎢⎡
𝑦ଵଵ𝑦ଶଵ⋮𝑦௜௧⋮𝑦௡௧⎦⎥⎥

⎥⎥⎤
𝑦௜௧

= ⎣⎢⎢
⎢⎢⎡
1 𝑥ଵଵଵ … 𝑥ଵଵ௄1 𝑥ଵଶଵ … 𝑥ଵଵ௄⋮ ⋮ ⋮ ⋮1 𝑥௜௧ଵ 𝑥௜௧௞ 𝑥௜௧௄⋮ ⋮ ⋮ ⋮1 𝑥௡௧ଵ … 𝑥௡௧௄⎦⎥⎥

⎥⎥⎤
β଴ βଵ  …     βହ

+ ⎣⎢⎢
⎢⎢⎡ 1 … 𝑁𝐴2 … 𝑁𝐴⋮ ⋮ ⋮𝑁𝐴 ⋱ 𝑁𝐴⋮ … 1𝑁𝐴 … 2 ⎦⎥⎥

⎥⎥⎤
𝑖𝑑1 … 𝑖𝑑𝑛

+ ⎣⎢⎢
⎢⎢⎡11⋮𝑡⋮𝑇⎦⎥⎥
⎥⎥⎤

ν௧
 

 

(19) 

 3. Monte Carlo Simulation 

This section will evaluate the predictive accuracy of models using a time-varying spatial weight matrix and a fixed spatial 
weight matrix. Specifically, we aim to demonstrate that inaccuracies in determining the spatial weight matrix or treating it as 
equal across all time periods can lead to significant prediction errors, especially when the level of spatial autocorrelation is 
higher. We employed Monte Carlo simulation for this assessment. 

3.1 Experimental Design  

To evaluate the predictive accuracy of the spatiotemporal model with time-varying coefficients, we generated Poisson data 
using model (Eq. 2), deliberately omitting the temporal effect ν௧ to ensure that the model's predictive capability is solely 
determined by spatial dependencies and a single predictor variable. Let's assume 𝑦௜௧ follows a Poisson distribution with a 
linear predictor 𝜂௜௧ expressed as follows: 𝜂௜௧ =  β଴ + 𝛽ଵ𝑥௜௧ଵ + 𝜔௜|௧ (20) 

We considered nine regular grid areas. To assess spatial dependencies, we employed nine types of spatial weight matrices 
based on rook contiguity, each representing a different time period (Figure 1). 

 

Fig. 1. Nine types of rook spatial contiguity (grey color represents the rook dependencies). 

A. Data generation stages: 

1. Defining the time-varying rook spatial weight matrices according to Fig. 1 
The time-varying spatial weight matrices 𝑾௧ for 𝑡 = 1, … ,𝑇 (𝑇 = 9)  are generated during this phase to identify the dynamic 
spatial dependencies that exist within the data over time. When considering a fixed spatial weight matrix, we denote it as  𝑾1 
(Fig. 2(a)), a commonly employed matrix typically used for rook contiguity. 
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Fig. 2. Tme-varying rook spatial weight matrices 

 

2. Generating spatially structured random effects with the Leroux model. The first step in this process involves calcu-
lating the precision matrix, represented as 𝐐ఠ೟  (Eq. 6), for 𝑡 = 1, . . ,𝑇 (𝑇 = 9). The spatially random effects 𝝎௧ are 
drawn from a multivariate normal distribution (MVN) with mean 0 and precision matrix 𝐐ఠ೟ , that is, 𝝎௧~𝑀𝑉𝑁൫𝟎,𝐐ఠ೟ିଵ൯ and 𝝎 = (𝝎ଵ, … ,𝝎்)′. We define 𝜌 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and 𝜎ఠ೟ଶ = 1 
for 𝑡 = 1, … ,𝑇.   

3. Generating predictor variables 𝐱 of size 𝑛𝑇. Predictor variables 𝐱 of size 𝑛𝑇 are generated from a standard normal 
distribution, denoted as 𝐱~𝑁(0,1) 

4. Setting parameters 𝛽଴ and 𝛽ଵ. The parameters 𝛽଴ and 𝛽ଵ are set as 𝛽଴ = 1 and 𝛽ଵ = 0.5, respectively. 
5. Defining the Linear Predictor 𝜂௜௧. The linear predictor 𝜂௜௧ is defined in (19) :   
6. Drawing  response variable 𝑦௜௧  from Poisson distribution with 𝐸(𝑦௜௧) = 𝑉𝑎𝑟(𝑦௜௧) = 𝜂௜௧ , that is 𝑦௜௧|𝜂௜௧~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜂௜௧)  

 

B. Model estimation using R-INLA  

In starting the modeling process with R-INLA, it is crucial to define hyperpriors for the hyperparameters 𝜎ఉబଶ ,  𝜎ఉభଶ , and  ൛𝜎ఠభଶ , …𝜎ఠ೅ଶ ൟ. It is presumed that 𝜎ఈଶ and 𝜎ఉభଶ   are constant, with both values set at 10^6. Regarding the hyperparameter set ൛𝜎ఠభଶ , …𝜎ఠ೅ଶ ൟ, we assume that the standard deviation ൛𝜎ఠభ , … ,𝜎ఠ೅ൟ is distributed according to a Half Cauchy distribution. The 
value of the scale parameter γ is assigned as 25 (Gelman, 2006): 𝑝ு஼(𝜎|𝛾) = 2𝜋𝛾 ൬1 + ቀఙఊቁଶ൰  for 𝜎 = ൛𝜎ఠభ , … ,𝜎ఠ೅ൟ (21) 

C. Model evaluation criteria 

To assess the predictive performance of the model across time-varying and fixed spatial weight matrices, we employ the Mean 
Square Error (MSE) criteria, defined as follows: 

𝑀𝑆𝐸௝ = 1𝑛𝑇𝑀 ෍෍෍൫𝑦௜௧௠ − exp൫𝜂̂௜௧௠௝൯൯ଶ்
௧ୀଵ

௡
௜ୀଵ

ெ
௠ୀଵ ; 𝑗 = 1,2 (22) 

where 𝑗 = 1 signifies a time-varying spatial weight matrix model, whereas  𝑗 = 2 represents the fixed spatial weight matrix 
model. Additionally,  𝑀 denotes the total number of iterations in the Monte Carlo simulation. 𝑀 = 1,000 replications are 
carried out. We ran the model on an Apple M1 Pro with 16 GB of memory using R version 4.3.3 and the INLA package 
(INLA_24.02.09). The R-code can be accessed at https://github.com/mindra-bit/Time-varying   
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3.2 Simulation result   

Prediction performance  

The predictive performance of spatiotemporal Poisson regression models, evaluated using MSE, is depicted in Fig. 3 for both 
fixed and time-varying spatial weight matrices. A comprehensive summary for each spatial autocorrelation coefficient value 
is presented in Table 1. 

 

Fig. 3. Evaluating the predictive performance of spatiotemporal Poisson regression models for fixed and time-varying spatial 
weight matrices using MSE 

Table 1  
Summary of Predictive Performance for Poisson Spatiotemporal Models with Fixed and Time-Varying Spatial Weight Ma-
trices 

Rho MSE 
Fixed Time-Varying 

0 1.788 0.599 
0.1 14.697 0.963 
0.2 11.754 0.749 
0.3 15.008 1.031 
0.4 11.282 0.732 
0.5 34.788 0.817 
0.6 21.124 0.710 
0.7 24.822 0.704 
0.8 60.195 0.789 
0.9 568.444 0.434 

 

The results of the comparative analysis, as shown in Table 1 and Fig. 4, demonstrate a significant difference in predictive 
accuracy between models that use fixed and time-varying spatial weight matrices. More precisely, the model that uses a fixed 
spatial weight matrix has much higher Mean Squared Error (MSE) values compared to the model that adjusts to changes in 
the spatial structure over time. The significant differences in mean squared error (MSE) highlight the crucial need to consider 
changes over time in the relationships between spatially dependent variables when analyzing spatiotemporal data. 

Fixed Time-Varying
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Fig. 4. Variation of MSE with Increasing Spatial Autocorrelation 

Fig. 4 shows a clear pattern: as the level of spatial autocorrelation increases, the model's ability to predict outcomes improves 
significantly when using time-varying weight matrices. This improvement is particularly noticeable at an autocorrelation level 
of 0.90. In contrast, the model that uses a fixed spatial weight matrix shows a different pattern, where the accuracy of predic-
tions decreases as the level of spatial autocorrelation increases. The observed phenomenon demonstrates a non-linear corre-
lation between the increase in spatial autocorrelation and MSE for the model using time-varying spatial weight matrices. The 
fluctuating impact of the predictor variable on the response variability is attributed to the changing spatial autocorrelation. 
When spatial autocorrelation is low or close to zero, the predictor variable primarily explains the variability in response vari-
able. Therefore, even if there is only a small amount of spatial correlation, a model that uses a fixed spatial weight matrix can 
still provide accurate prediction values with a relatively low MSE. On the other hand, when spatial autocorrelation increases 
to higher levels, specifically larger than 0.30, the influence of spatial structure becomes more significant in explaining the 
response variable. The variability of response variable in these cases is mainly attributed to the spatial random component, 
which represents the complex spatial relationships between years. Therefore, the effectiveness of using weight matrices that 
change over time becomes more noticeable in these situations. On the other hand, the utilization of fixed spatial weight ma-
trices demonstrates a reciprocal correlation. If there is an increase in spatial autocorrelation but the specifications of the spatial 
matrix are inaccurate, the prediction errors may increase significantly. Hence, selecting the correct weight matrix specifica-
tions is vital in reducing prediction errors, especially when spatial autocorrelation fluctuates. Nevertheless, it is important to 
acknowledge that there is a potential for overfitting, particularly when dealing with significant spatial autocorrelation. 

Biased estimate of the regression parameter 

We also evaluated the estimator bias of the regression parameters, with the results displayed in Fig. 5 and Fig. 6. 

 

 

 

Fig. 5. The estimation of the regression parameter for 1000 
sample sets 

Fig. 6. Biased estimate of the regression parameter 
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The results of the Monte-Carlo simulation show that the fixed spatial weight matrix has the least bias compared to the time-
varying spatial weight matrix when there is no spatial autocorrelation. Nevertheless, when the spatial autocorrelation falls 
within the range of 0.3 to 0.7, employing a spatial weight matrix that varies over time yields parameter estimates that are the 
least biased. Overfitting can occur when a time-varying spatial weight matrix is used at both low and high levels of autocor-
relation. As a result, the differences in the response variable are primarily attributed to spatial effects rather than the covariates 
in the model. 

4. Application to Modeling the Impact of Multi-Pollutant Exposure on Tuberculosis 

4.1 Data 

Tuberculosis (TB) is a highly infectious and potentially fatal disease caused by the bacterium Mycobacterium tuberculosis 
(M. tuberculosis) (Herrera, et al., 2022). TB is transmitted through the air when individuals with pulmonary tuberculosis 
cough, sneeze, or spit. This disease is categorized as a re-emerging disease due to its consistent annual occurrence. Based on 
data provided by the World Health Organization (WHO), approximately 10 million individuals receive a tuberculosis diag-
nosis annually, resulting in 1.5 million deaths each year (WHO, 2024). Indonesia is among the Asian nations grappling with 
a severe TB issue. Based on the Global TB Report 2022, Indonesia is the second highest country in terms of TB cases, 
following only India. The prevalence rate in Indonesia is 354 per 100,000 population (RI, 2023). Jakarta, the capital of Indo-
nesia, is significantly impacted, primarily because of its poor air quality. TB is characterized by spatial clustering, often found 
in economically disadvantaged urban regions with low air quality, which may be linked to a higher likelihood of infection 
(Carrasco-Escobar, Schwalb, Tello-Lizarraga, Vega-Guerovich, & Ugarte-Gil, 2020).  Over the past few years, Jakarta has 
consistently been listed as one of the top five cities with the most severe air pollution globally (Nurhaliza, 2024). 

Multiple studies have investigated the correlation between air pollution and the likelihood of contracting TB and have deter-
mined that higher levels of air pollution can heighten the risk of developing TB (Yang, et al., 2020) (Feng, et al., 2022) (Lin, 
et al., 2019) (Dimala & Kadia, 2022). Studies have demonstrated that specific contaminants, including particulate matter 2.5 
(PM2.5), particulate matter 10 (PM10), nitrogen oxides (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3), 
heighten the vulnerability to TB infection. Furthermore, research has demonstrated that air pollution amplifies the likelihood 
of mortality in individuals with tuberculosis (Peng, Liu, Xu, Kan, & Wang, 2017). The data used in these studies typically 
have both spatial and temporal dimensions. The analysis techniques employed include correlation analysis and log-linear 
models. The utilization of spatiotemporal information is essential for making well-informed decisions regarding the timing 
and location of outbreaks, which allows for more effective allocation of resources. These techniques have been successfully 
employed in the management of infectious diseases to identify areas of high disease prevalence and outbreaks (Jaya & Folmer, 
2021). 

 

 

Fig. 7. Jakarta Region with Five Observation Stations 

Jakarta covers an area of 661.52 square kilometers and has a population of 10.956 million people, resulting in a population 
density of 16,562.25 individuals per square kilometer. The city is divided into five administrative regions: Central Jakarta, 
South Jakarta, North Jakarta, East Jakarta, and West Jakarta. The Jakarta health profile report (2014-2020) provides infor-
mation on the yearly occurrence of tuberculosis cases in these administrative divisions. The Jakarta Environmental Monitoring 
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Center provided data on the yearly average levels of different air pollutants, including PM10, NO2, SO2, CO, and O3. The 
data was collected from five separate monitoring stations, each located in a different administrative zone (Fig. 7). It covers 
the identical period as the records of pneumonia and TB cases.  

We refrained from using data from 2021 onwards because of the COVID-19 pandemic, especially during its peak in Indonesia 
in 2021. A significant number of TB cases were not reported during this time, and the levels of pollutants decreased due to 
limitations on movement. Therefore, examining the influence of air pollutants on TB during this period would be filled with 
difficulties. 

4.2 Statistical Method 

Time-Varying Spatial Weight Matrices  

Spatial weight matrices are typically created using contiguity measures, such as queen's or rook’s contiguity, or distance 
measures. The weight matrix in this study is established by considering the cluster areas that exhibit either high or low risk. 
High-risk areas are characterized by an incidence rate that exceeds the average, whereas low-risk areas are characterized by 
an incidence rate that falls below the average. The areas should exhibit spatial clustering, whereby all areas within high-risk 
or low-risk clusters should be interconnected. 

1. Calculate the incidence rate using the formula:  𝐼𝑅௜௧ = 𝑦௜௧𝑁௜௧ × 100,000 (23) 

where  𝑦௜௧  represents the number of TB cases and  𝑁௜௧  represents the population at risk at the 𝑖-th location and 𝑡-th period. 

2. A spatial cluster is defined as a high-risk area with an incidence rate greater than the average or a low-risk area with an 
incidence rate lower than the average. Each area within a spatial cluster must be connected to at least one other area within 
the same cluster. 

3. Create a weight matrix based on high or low spatial cluster areas by identifying clusters with many connected areas. 
4. Evaluate spatial dependency using spatial autocorrelation measures such as Moran's I.  

Moran's I is a statistical measure commonly used to evaluate spatial autocorrelation, which is the degree to which a set of 
spatial data points is correlated with itself over a given area. It helps in determining whether similar values occur near each 
other or if there is a random distribution of values. The Moran's I statistic for a given weight matrix  𝑾௧ can be formulated 
as follows: 

𝑀𝑜𝑟𝑎𝑛ᇱ𝑠𝐼௧ = 𝑛∑ ∑ 𝑤௧௜௝௡௝ୀଵ௡௜ୀଵ ቆ∑ ∑ 𝑤௧௜௝௡௝ୀଵ (𝐼𝑅௜௧ − 𝐼𝑅തതത௧)௡௜ୀଵ ൫𝐼𝑅௝௧ − 𝐼𝑅തതത௧൯∑ (𝐼𝑅௜௧ − 𝐼𝑅തതത௧)ଶ௡௜ୀଵ ቇ 
 

(24) 

where 𝑛 denotes the total number of areas, 𝑖 and 𝑗 represent basic units, 𝑤௧௜௝ is the spatial weight matrix that varies over 
time 𝑡, and 𝐼𝑅௜௧ and 𝐼𝑅௝௧ represent the TB incidence rate in units 𝑖 and 𝑗, respectively. 𝐼𝑅തതത௧ is the average TB incidence 
rate at time 𝑡. Moran's I index ranges from -1 to 1, with 𝐼>0 indicating positive spatial correlation. The larger the value, 
the higher the degree of spatial clustering.  

Latent Gaussian Model  

This study employed a latent Gaussian model (LGM) (Rue, Martino, & Chopin, 2009)to analyze the impact of air pollutants 
on the incidence of Pneumonia and TB cases in Jakarta, Indonesia. The mathematical representation of the LGM is outlined 
as follows. Assume the number of TB cases at area-𝑖 and time -𝑡 follows a Poisson distribution with mean and variance equal 
to 𝜆௜௧ = 𝐸௜௧𝜃௜௧ . This expressed as: 

 

This study utilized a latent Gaussian model (LGM) to examine the influence of air pollutants on the occurrence of Pneumonia 
and TB cases in Jakarta, Indonesia. The mathematical formulation of the LGM is presented as follows. Let's assume that the 
number of tuberculosis (TB) cases in area-i and at time-t is distributed according to a Poisson distribution. The mean and 
variance of this distribution are both equal to 𝜆௜௧, which is calculated as the product of 𝐸௜௧. and 𝜃௜௧. This can be stated as: 𝑦௜௧|𝐸௜௧𝜃௜௧~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸௜௧𝜃௜௧); for i = 1, … , n and t = 1, … , T 

 
(25) 

where 𝐸௜௧ and 𝜃௜௧  denote expected count and the relative risk at location i and time -t respectively. Here 𝑛 = 5 and 𝑇 = 7 
denote the total number areas and period respectively. The expected count is formulated as (Jaya & Folmer, 2021): 
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(26) 

The relative risk is modeled (𝜃௜௧) by a log-linear model as follows: log(𝜃௜௧) = 𝜂௜௧ = β଴ + xଵ௜௧βଵ + ⋯+ xହ௜௧βହ + ω௜|௧ + ν௧ 
 

(27) 

where β଴ represents the intercept, which explains the average TB risk across different locations and time periods. The varia-
bles xଵ, … , xହ represent the air pollutants PM10, NO2, SO2, CO, and O3, respectively. The effects of these pollutants are 
denoted by βଵ, … . , βହ. The random effects component represents the spatially structured effects ω௜|௧ that exhibit temporal 
variation, while v_t represents the effects that vary over time. We omitted the consideration of spatiotemporal interaction 
effects due to their potential to render the impact of air pollution on TB risk insignificant. Not all components may be included 
in the final model. We examine model selection criteria to ensure the inclusion of air pollutants' significant effects. If including 
the random effects components leads to an insignificant impact of air pollutants on TB risk, they are not considered. 

A crucial goal in disease mitigation, such as tuberculosis, is to accurately pinpoint regions with a high prevalence of the 
disease, commonly known as hotspots. By utilizing a Bayesian approach, it is possible to calculate the posterior probability 
exceedance value of the relative risk.  The probability Pr෢(𝜃௜௧ > 𝑐|𝐲) denotes the likelihood that the estimated posterior mean 
of the relative risk 𝜃௜௧ for area 𝑖 at time 𝑡 exceeds a specified threshold value 𝑐. The estimation is defined as: 

Pr෢(𝜃௜௧ > 𝑐|𝐲) = 1 −න 𝑝(𝜃௜௧|𝐲)௖
ିஶ 𝑑𝜃௜௧ (28) 

The expression׬ 𝑝(𝜃௜௧|𝐲)௖ିஶ 𝑑𝜃௜௧ is the cumulative probability of 𝜃௜௧ with threshold value 𝑐 . The initial parameter to consider 
is the threshold value, denoted as c, for𝜃௜௧. Typical threshold values include 1, 2, and 3. A value of 1 signifies that a region 
has a moderate relative risk, while values of 2 or 3 indicate a high and very high risk, respectively. The second parameter 
represents the cut-off value 𝛾 = (1 − 𝛼), of the exceedance probability. Typical values for γ are 0.90, 0.95, and 0.99. 

To determine the best model for explaining the impact of air pollutants on TB, we considered the following four models: 

1. Model 1: Uncorrelated spatiotemporal dependencies model, which assumes that different regions have no association 
with each other (𝜔௜|௧) and no temporal trend (𝜈௧). We only consider the overall level of RR (β଴) and the effects of 
air pollutants (βଵ, … , βହ) (M1).  

2. Model 2: The overall level of RR (β଴) and the effects of air pollutants (βଵ, … , βହ) with autoregressive time effects 
(𝜈௧) (M2) 

3. Model 3: The overall level of RR (β଴) and the effects of air pollutants (βଵ, … ,βହ) are modeled along with a spatially 
structured effect using a fixed spatial weight matrix (𝜔௜) (M3) 

4. Model 4: The overall level of RR (β଴) and the effects of air pollutants (βଵ, … ,βହ) are modeled along with a spatially 
structured effect using a time-varying spatial weight matrix (𝜔௜|௧) (M4) 

 

Various Bayesian model selection criteria, such as the Deviance Information Criterion (DIC), Watanabe Akaike Information 
Criterion, and Log-Marginal-Likelihood (LML), are commonly employed to determine the best model. Additionally, classical 
model selection criteria like Mean Absolute Deviance (MAE), Mean Absolute Prediction Error (MAPE), Root Mean Square 
Error (RMSE), and Pearson correlation (R) are also utilized. The model with the lowest DIC, WAIC, MAE, MAPE, RMSE, 
and largest LML and R is selected as the best model with superior predicted performance (Blangiardo & Cameletti, 2015). 

4.3 Result 

Descriptive analysis 

Between 2014 and 2020, a total of 84,651 new cases of tuberculosis (TB) were recorded in the five administrative cities of 
Jakarta. Table 1 presents the incidence rate of TB (per 100,000 inhabitants) across these cities during this period, and Table 2 
shows the concentration of air pollutants (µg/m³) from 2014 to 2020. 
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Table 2  
Incidence Rate of TB Across Five Cities from 2014 to 2020 (per 100,000 Inhabitants) 

City 2014 2015 2016 2017 2018 2019 2020 Average 
Central Jakarta 47.648 101.753 53.457 164.434 103.386 239.519 244.920 136.445 
East Jakarta 88.955 12.367 87.532 144.359 172.701 167.060 232.278 129.322 
North Jakarta 27.881 27.428 23.915 100.768 146.888 138.065 162.170 89.588 
South Jakarta 89.593 79.425 92.615 110.920 111.792 143.286 182.911 115.792 
West Jakarta 67.839 101.973 105.590 112.972 155.039 152.552 153.942 121.415 
Average 64.383 64.589 72.622 126.691 137.961 168.096 195.244 118.512 

 

Table 3  
The concentration of air pollutants (µg/m³) from 2014 to 2020 

Pollutant 2014 2015 2016 2017 2018 2019 2020 Average 
PM10 50.610 52.796 50.818 47.680 52.144 57.146 51.480 51.811 
NO2 12.918 12.714 8.228 8.902 8.420 10.422 14.318 10.846 
SO2 9.764 15.606 20.242 26.364 20.678 17.210 23.462 19.047 
CO 23.526 23.426 26.312 19.266 17.628 18.138 17.990 20.898 
O3 64.478 54.508 54.620 63.516 75.116 78.364 57.570 64.025 

 

Table 2 shows that Central and East Jakarta had the highest occurrence rates of TB, with five-year averages of 136.44 and 
129.33 per 100,000 residents, respectively. Notably, each successive year witnessed a rise in reported incidents compared to 
the preceding year. One of the primary factors thought to contribute to this rising trend is the air quality in Jakarta, which has 
a substantial influence. Table 3 indicates a notable rise in various air pollutants from 2018 to 2020. Among these pollutants, 
O3 and PM10 exhibit the highest concentration levels, surpassing NO2, SO2, and CO.  

   

  
 

Fig. 8. Trends in TB Incidence Rates (Bar Chart) and Air Pollutant Levels (Line Chart) 
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During the past five years, the mean concentration of PM10 was 51,811 µg/m³, while the mean concentration of O3 was 
64,025 µg/m³. The extensive data reveals a steady and continuous rise in air pollution levels annually, with some fluctuations 
depicted in the accompanying line chart of Fig. 8. Fig. 9 shows the spatial and temporal distribution of TB incidence rates 
throughout the research period. The data exhibits variations in both space and time. Temporally, there is a clear and consistent 
upward trend observed each year. Spatially, the data shows the existence of spatial clusters among administrative districts. In 
general, East Jakarta consistently demonstrates a high rate of occurrence each year. Fig. 10 displays the spatial and temporal 
distributions of air pollutant levels, including PM10, NO2, SO2, CO, and O3. Although there have been variations in space 
and time, pollution levels in 2020 have consistently increased. 

 
Fig. 9. Incidence rate of TB from 2014 to 2020 

 

 

 

 

 

Fig. 10. Spatiotemporal distribution of air pollutants 
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Associations between TB and air pollutants 

To create a dependable model for evaluating the influence of exposure to multiple pollutants on tuberculosis, it is essential to 
include spatial and temporal interdependencies. Fig. 9 illustrates that certain areas exhibit comparable TB incidence rates, 
creating spatial clusters. Fig. 11 provides a more distinct representation of these clusters, which are defined by similar inci-
dence rate values across different areas, whether consistently low or consistently high. Nevertheless, these clusters display 
temporal variability, which requires modifying the modeling approach to account for these annual fluctuations. 

To account for this variability, we suggest modifying the spatial weight matrix on a yearly basis. We conducted a spatial 
autocorrelation analysis using Moran's I, comparing fixed and time-varying spatial weight matrices. The results of this analysis 
are summarized in Table 4. The spatial weight matrix, which was created using queen contiguity, produced a negative Moran's 
I value. This indicates that there is a lack of significant spatial dependencies and a negative autocorrelation of TB incidence 
rates. On the other hand, the custom time-varying spatial weight matrix, which considers changes in both high and low spatial 
clusters, showed a positive spatial correlation, indicating significant statistical spatial dependencies. 

 

Fig. 11. Defining Varying Spatial Weight Matrices for Clustered Incidence Risk Areas 

Table 4 
Comparison of Moran's I for Fixed and Varying Spatial Weight Matrices from 2014 to 2020 

Period Fixed Spatial Weight Varying Spatial Weight 
Moran's I p-value Moran's I p-value 

2014 -0.137 0.533 0.461 0.041 
2015 -0.551 0.125 0.585 0.013 
2016 -0.316 0.697 0.543 0.026 
2017 -0.235 0.933 0.574 0.018 
2018 -0.278 0.882 0.509 0.026 
2019 -0.312 0.501 0.203 0.048 
2020 -0.233 0.930 0.560 0.016 

 

Table 5  
Bayesian spatiotemporal model comparison  

Model WAIC MPL MAE RMSE MAPE R 
M1: 𝜂௜௧ = 𝛽଴ + 𝒙௜௧ᇱ 𝜷 6289.631 -8462.083 0.347 0.449 70.648 0.394 
M2: 𝜂௜௧ = 𝛽଴ + 𝒙௜௧ᇱ 𝜷 + 𝜈௧ 5319.353 -3402.907 0.221 0.268 39.764 0.835 
M3: 𝜂௜௧ = 𝛽଴ + 𝒙௜௧ᇱ 𝜷 + 𝜔௜ 7812.061 -6734.343 0.301 0.368 60.184 0.654 
M4: 𝜂௜௧ = 𝛽଴ + 𝒙௜௧ᇱ 𝜷 + 𝜔௜|௧ 1657.759 -652.828 0.067 0.079 10.095 0.987 

 

By applying a wide range of model selection criteria, including WAIC, MAE, RMSE, MAPE, and R, we determined that 
Model 4 from Table 5 is the most suitable option. This model, characterized by its use of different spatial weight matrices, 
outperformed Model 3, which depends on a static spatial weight matrix. Initially, our evaluation included the effects of time 
and space-time interactions. However, these factors made the effects of air pollution statistically insignificant. As a result, we 
narrowed down our focus to highlight the impact of air pollution, specifically excluding these elements. 
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Fig. 12. Comparison of Observed and Predicted Values Using Fixed (M3) and Varying (M4) Spatial  Weight Matrices 

Fig. 12 clearly demonstrates that Model 4 outperforms Model 3 in terms of fit. The predictive values produced by Model 4 
demonstrate a more pronounced correlation with observed values, as indicated by the closer alignment of blue points with the 
black linear line in comparison to red points. Model 4 incorporates the influence of air pollutants (PM10, NO2, SO2, CO, and 
O3) and spatially organized effects, providing the most precise understanding of the influence of multiple air pollutants on 
TB. 

Table 6  
Estimations of the associated factors in Bayesian model of total tuberculosis 

Parameters Mean SD q(0.025) q(0.975) RR Δ (%) 
(Intercept) -11.042 0.425 -11.885 -10.218 0.000  
PM10 0.021 0.002 0.016 0.025 1.021 2.12 
NO2 0.191 0.007 0.177 0.205 1.210 21.05 
SO2 0.123 0.004 0.116 0.130 1.131 13.09 
CO 0.064 0.007 0.050 0.079 1.066 6.61 
O3 0.063 0.003 0.058 0.068 1.065 6.50 

 

Table 7  
Estimations of the spatial random effects  

Hyperparameter Mean Sd q(0.025) Q(0.975) Percentage Variance (%) 
SD spatial effect 2014 (𝜎ଶ଴ଵସ) 2.021 0.909 0.850 4.351 16.397 
SD spatial effect 2015 (𝜎ଶ଴ଵହ) 1.986 0.871 0.854 4.211 15.833 
SD spatial effect 2016 (𝜎ଶ଴ଵ଺) 1.304 1.088 0.236 4.251 6.823 
SD spatial effect 2017 (𝜎ଶ଴ଵ଻) 2.334 1.026 0.994 4.949 21.862 
SD spatial effect 2018 (𝜎ଶ଴ଵ଼) 2.701 1.271 1.058 5.950 29.287 
SD spatial effect 2019 (𝜎ଶ଴ଵଽ) 1.389 0.659 0.511 3.050 7.740 
SD spatial effect 2020 (𝜎ଶ଴ଶ଴) 0.716 0.714 0.085 2.658 2.059 
Spatial autocorrelation 2014 (𝜌ଶ଴ଵସ) 0.326 0.265 0.008 0.891  
Spatial autocorrelation 2015 (𝜌ଶ଴ଵହ) 0.241 0.236 0.003 0.822  
Spatial autocorrelation 2016 (𝜌ଶ଴ଵ଺) 0.625 0.296 0.050 0.990  
Spatial autocorrelation 2017 (𝜌ଶ଴ଵ଻) 0.316 0.261 0.008 0.883  
Spatial autocorrelation 2018 (𝜌ଶ଴ଵ଼) 0.374 0.272 0.013 0.908  
Spatial autocorrelation 2019 (𝜌ଶ଴ଵଽ) 0.287 0.260 0.005 0.881  
Spatial autocorrelation 2020 (𝜌ଶ଴ଶ଴) 0.689 0.289 0.065 0.996  

  

Table 6 and Table 7 display the calculated values for the posterior estimates of fixed and random effects, respectively. All 
fixed effects in the study are statistically significant at a significant level of 5%. The estimators' 95% credible intervals do not 
include the value 0. These findings suggest that higher levels of air pollutants (PM10, NO2, SO2, CO, and O3) are associated 
with an increase in the number of tuberculosis cases. Significantly, nitrogen dioxide (NO2) and sulfur dioxide (SO2) are 
identified as the most significant components of air pollution, with the risk of TB increasing by more than 10% for every 1 
µg/m³ increase in their concentrations. In addition, Table 7 shows that there is a positive spatial autocorrelation  𝜌ଶ଴ଵସ −𝜌ଶ଴ଶ଴, indicating that a higher risk of TB in one location increases the risk of TB in nearby areas. 

In Figure 13, we present the projected relative risk and exceedance probability by considering both the fixed and random 
components in Model 4. Green areas represent low-risk locations, whereas red areas indicate high-risk areas (RR > 1). A 
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probability of exceeding close to 1 indicates a significantly elevated level of risk. The analysis findings reveal that during the 
years 2019 and 2020, all locations were classified as high-risk areas.  

 

Fig. 13. Posterior Mean of (a) Relative Risk and (b) Exceedance Probability of TB 

5. Discussion 

The main objective of spatiotemporal data modeling is to attain precise and dependable predictions of outcomes, while mini-
mizing any bias in the estimation of model parameters. Nevertheless, this form of modeling is intricate because it incorporates 
both spatial and temporal dependencies. The prediction accuracy of the spatiotemporal model is greatly influenced by the 
structure of these spatial dependencies. The level of intricacy is further intensified by the fact that the spatial arrangement of 
dependencies can change over time due to multiple factors. Precisely identifying the dependency structure, as indicated by 
the spatial weight matrix, is of utmost importance. Inaccurate prediction values and overfitting issues can arise from errors in 
defining the spatial structure of dependencies (Mingione, et al., 2022). Latent Gaussian models (LGM) are frequently em-
ployed for the modeling of spatiotemporal data (Blangiardo & Cameletti, 2015; Hrafnkelsson & Bakka, 2023; Hazra, Huser, 
& Jóhannesson, 2023). LGMs can incorporate covariate fixed effects and different spatial and temporal characteristics, such 
as structured and unstructured effects and their interactions. This study presents concrete evidence that highlights the signifi-
cance of considering a spatial weight matrix that changes over time. The results of the Monte Carlo simulation show that 
using a time-varying spatial matrix, which adapts to the spatial clusters in the data, leads to more precise prediction results 
compared to assuming a fixed spatial weight matrix. This is particularly true when the level of autocorrelation is moderate 
(0.3-0.7). The simulation results demonstrate a quadratic trend in the Mean Squared Error (MSE) for prediction. When the 
autocorrelation levels are below 0.30 or above 0.70, using the time-varying spatial weight matrix still provides the most 
accurate prediction results. However, there is a significant increase in the likelihood of overfitting. The reason for this is that 
most of the variation in the response variable can be attributed to the spatial effect variable, which results in significant 
distortion in the estimates of the regression parameters at these levels of autocorrelation. Additionally, we offer a concrete 
demonstration of employing time-varying spatial weight matrices to model the influence of various air pollutants on tubercu-
losis risk in Jakarta. The dataset comprises spatiotemporal observations, with 5 spatial units and 7 temporal units. We created 
a spatial weight matrix by considering the spatial groupings of areas with low and high tuberculosis (TB) risk. This matrix 
was designed to maximize the values of Moran's I, which varied from 0.20 to 0.60. The evaluation of the model using various 
criteria such as DIC, WAIC, MAPE, MAE, RMSE, and R indicates that the spatiotemporal latent Gaussian model with a time-
varying spatial weight matrix offers the most precise prediction results. Additionally, the regression coefficients demonstrate 
the anticipated effects. The analysis revealed that all pollutants (PM10, NO2, SO2, CO, and O3) exert a positive and substan-
tial influence on the escalation of TB risk in Jakarta. 
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6. Conclusion  

The results of the Monte-Carlo simulation show that utilizing a weight matrix that changes over time yields the most precise 
prediction values and the least amount of bias, especially for spatial autocorrelation levels within the medium range of 0.3 to 
0.7. However, if the autocorrelation coefficient is extremely high or low, it can lead to overfitting issues. This occurs when 
the spatial effects of time-varying spatial weight matrices overpower the predictor variables. This is evidenced by a rise in the 
bias of the regression parameter estimates. Using time-varying spatial weight matrices in the application to model the impact 
of multi-pollutant exposure on TB results in more precise estimates of fixed and random effect parameters. This is demon-
strated by the significantly narrower credible intervals. Elevated levels of air pollutants, including PM10, NO2, SO2, CO, and 
O3, significantly raise the risk of contracting tuberculosis. Furthermore, the study found that the impact of unquantified vari-
ables on the risk of tuberculosis differs based on the specific location and time, with a noticeable pattern suggesting an increase 
in tuberculosis risk over time. Nevertheless, this study is limited by its dependence on annual TB data, which may fail to 
consider monthly patterns that could provide more profound insights. Remarkably, there has been no prior investigation into 
the spatial and temporal impacts of air pollutants on tuberculosis (TB). Future research should focus on determining the most 
effective methodologies for managing tuberculosis, particularly in Jakarta, Indonesia. 
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