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 The increasing amount of IoT devices increases the size of network traffic data, causing an 
increase in the incidence of security breaches in IoT networks. Cybercriminals have developed 
malware to compromise the security of sensitive data, among other cyber threats. In the presence 
of inadequate and robust security mechanisms, sensitive data is prone to vulnerability. Hence, 
protecting data in the IoT environment is becoming a mandatory task. Various approaches have 
addressed malware detection using network data features. However, there is still room for 
improvement in developing superior techniques and utilizing more comprehensive datasets. This 
paper presents a novel lightweight ensemble voting classifier to detect malware traffic by 
deploying the best possible network data. The merits of the correlation coefficient and Opposition-
Based Crow Search Algorithm (OCS) have been leveraged to compute the best possible features. 
Another advantage of this proposed experiment is its focus on a dataset tailored to malware traffic 
features. This focus enables highly accurate malware detection. After feature selection using OCS, 
the proposed malware classifier is trained and validated with both 5-fold and 10-fold cross-
validation techniques. The tested results confirm that the presented malware classifier performs 
best using a minimal feature set, which is highly advantageous for IoT networks due to resource 
constraints. 
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1. Introduction 
 
The deployment of IoT devices is becoming increasingly essential in today's smart environments to implement a wide range 
of services that improve our lives. The inclusion of IoT devices has surged in almost all sectors, like energy, transportation 
systems, education, government, healthcare, and industry.  Data produced by IoT devices creates vulnerabilities that cyber 
attackers can exploit. The protocols and standards used by many IoT devices and networks are inherently susceptible to 
cyberattacks due to weaknesses in security design. While cyberattacks come in many forms, malware acts as a silent but 
significant weapon, compromising the security of vast networks of interconnected devices within the IoT.  The malware 
classification techniques were broadly categorized into static, dynamic, and hybrid approaches (Abusitta et al., 2021). Static 
procedures are more mature compared to other systems. A static approach inspects the new application without executing it, 
and the methods consider the permissions associated with the application and API calls (Almin & Chatterjee, 2015). Most 
static malware classification relies on domain insight for portable executables, which is good enough in the context of known 
attacks (Rao & Hande 2017). IDS works to analyze the output through bytes, n-grams, and strings. Collecting domain 



 2

knowledge for such a technique is practically infeasible; due to this fact, this category of methods fails to gain much attention 
(Raff et al., 2018). The system extracts the features from portable executable files to train machine-learning models to 
complement the detection process (Saxe & Berlin 2015; Raff et al., June 2018; Mohy-eddine et al., 2023). Dynamic behavioral 
approaches check the application code at runtime to track the history of various system calls and combine the merits of neural 
network structure to enhance the involved procedures (Canfora et al., 2015; Huang et al., 2016; Pascanu et al., 2015; Shibahara 
et al., 2016). Techniques include a combination of static and dynamic hybrid methods. For example, Android malware 
detection attempted by Yuan et al. (2024) using application's static and dynamic features to design machine learning-based 
models that feed deep learning models (Yuan et al., 2024). Recently, zero-day malware has become a significant threat to the 
cybersecurity world. This type of malware exploits unknown vulnerabilities to penetrate the system. To analyze the malware 
code, IDS uses the Cuckoo sandbox and generates features that are fed into feature extraction (Yoo et al., 2021).  Installing 
dynamic complex models (Kim et al., 2023) shows better results in detecting zero-day malware. Researchers use image 
processing techniques to detect malicious code in candidate applications by analyzing its payload through visual 
representation. Such methods convert the candidate file into a binary image to train a SOINN based model to detect the 
malicious payload deviation (Baptista et al., 2019). Tested results show that SOINN enabled malware detection detects 
malicious code at the earliest possible and similarly, the network traffic data (Bendiab et al., 2020) is collected and converted 
into RGB images through the Binvis tool.  Dataset includes 1000 Binvis images with normal and malignant labels. The Binvis 
images were used to train the optimized ResNet50 framework for the candidate task. And the obtained testing accuracy is 
94.5%. The DeepMal framework (Marín et al., 2021), considers the raw byte stream of network data as its input to detect 
malicious traffic. Since the proposed model works on raw byte streams, it does not require insight about the network traffic. 
To derive the spatiotemporal pattern of the raw byte stream, DeepMal combines the merits of CNN and Recurrent Neural 
networks. The tested results reveal that models built upon raw flow-based stream data showed better results than the one built 
upon raw packet-based stream data. In machine learning model development, careful selection of dominant features is 
essential. Selecting dominant features from a static feature set requires domain expertise, but there's no guarantee that human-
chosen features will always lead to improved model performance. Hence, Deep learning-based Feature Selection was 
(DQFSA) built upon reinforcement learning has been presented by (Fang et al., 2019) to select the differentiated features from 
the dataset. 

The results of the experiment reveal that the suggested framework outperforms all the current baseline methods in terms of 
numeric metrics. Furthermore, research confirms that wrapper-based metaheuristic methods are highly effective in facilitating 
feature selection. Wrapper-based metaheuristic algorithms were used by (Chakravarthy et al., 2021) to select dominant 
features for Android malware detection. Machine learning models were built using features selected by various wrapper-based 
methods. The results showed that models using features selected by the firefly algorithm performed well on the 
CICInvesAndMal2019 dataset, which has 4119 features. Similarly, Particle Swarm optimization has been used by (Azad et 
al., 2022) to select the influential features upon the experimented dataset CICAndMal2017. Neural network-based model has 
been built upon the chosen feature derived through the wrapper method. For feature selection, PSO employs a wide-ranging 
search across the high-dimensional feature space to identify the most informative features for a machine learning model. 
Hence, the candidate proposal attempts to leverage the merits of the wrapper established metaheuristic technique, Opposition-
Based Crowd Search Algorithm (OCS) to select the dominant features. Diverse ML models were built upon the features 
derived through OCS. Among them, the results obtained by the RF, ADB and XGB results are promising, hence, the candidate 
malware traffic classification framework uses these three tree-based models to improve the classification accuracy. 

The major contributions of the study presented in this manuscript are as follows.  

  Investigation on the merits of ML, DL, and FL for malware detection, along with the importance of feature 
engineering also reported 
   Opposition-Based Crowd Search Algorithm is used to minimize the chances of local minima, while selecting the 
best features.  
  The tested results obtained from diverse machine learning models are leveraged to build an ensemble-voting 
malware traffic classifier. 
   Lightweight malware traffic is designed to make it suitable for IoT networks with minimal features.  

The rest of the paper is organized as follows. Section 2 discusses the related works. Section 3 discusses the bench-marking 
works focused on feature engineering related to the candidate problem. Section 4 presents the proposed methodology. Section 
5 discusses the experimented outcomes. Finally, section 6 concludes the paper. 

2. Malware Classification 

Cyber threats due to malicious code have been rapidly increasing as internet usage continues to rise. Internet users frequently 
access various applications such as internet banking, e-commerce websites, online reservations, and more, making them 
vulnerable to cybercriminals who design malware and code to steal sensitive information or compromise systems. Malware 
could be identified by its method of infecting devices or networks (Kavitha & Muruganantham, 2021). The literature presents 
several approaches for detecting malware, consisting of signature-based, behavior-based, hybrid, and memory content 
analysis. To distinguish malware from standard applications, countermeasure methods utilize different sets of features. In 
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addition to state features such as static or dynamic, the technique that employs these features to detect malware plays a crucial 
role. This section analyzes the strengths of existing malware classifiers built using machine learning (ML), deep learning 
(DL), and federated learning (FL). 

2.1 Malware Classification Using Machine Learning 

This section discusses the use of machine learning techniques for classifying malicious code in malware detection. The tech-
nique of signature-based detection is simple and efficient, and it is often complemented by machine learning approaches. 
Researchers in (Mahajan et al., 2019) focus on using signatures of the target file to identify malware. Features extracted from 
malware are pre-processed and then fed into machine learning models to detect and categorize malware into appropriate 
families. Experimentation has been carried out using KNIME and Orange tools. Tested results show that RF based malware 
family classifiers outperform those of others. Suitable feature selection (Ramaiah et al., 2021; Mangayarkarasi et al., 2023; 
Vishnukumar and Ramaiah 2024) methods are another challenge associated with feature engineering.  Information gain was 
used to select the best features upon uploading the malicious and benign files on virus tool and cuckoo-sanbox (Babaagba et 
al., 2019) Both supervised and unsupervised machine learning models were analyzed with and without feature selection. 
Among the various models, the Information gain-enabled Multi-layer Perceptron (MLP) showed the best accuracy for mal-
ware family detection. Detection of trojans and spyware is yet to be included. Al-Kasassbeh et al. (2020) presented framework 
underscores the practical implications of feature selection in malware detection. These dominant features were chosen upon 
the belief that different parts of a PE file's characteristics tend to be more related to each other than to the output class labels. 

 Cuckoo Sandbox has been used in (Kim et al., 2020) to gather malware characteristics. Five groups are created from the 
attributes of the samples. Recursive feature elimination, or RFE, is first used to calculate the feature significance. Subse-
quently, a decision tree, random forest, and extra random forest are used to construct a multiclass malware classifier that 
illustrates the chosen feature's role in malware detection. According to the experimental part, a minimal number of features 
were used to identify the four different malware variants. The authors in (Romli et al., 2021) Present a novel framework for 
detecting Android malware. Three different methods are used for feature representation. The filter-based method is used to 
identify dominant features when designing the malware classifier. The tested results say that the random forest with 23 features 
produces better results than other methods. In most cases, malware threats target network traffic data, and features extracted 
from .pcap files have been used to design ML models. Therefore, researchers in (Nugraha et al., 2021) have proposed a 
lightweight machine learning-based malware classifier based on network traffic packet attributes. Extra Tree classifier (ETC) 
has been used to find the best features. Upon the features derived from ETC, RF based models show the best results than its 
counterpart models. As feature selection has been considered for dimensionality detection, the authors (Nugraha 2021) 
claimed that the proposal is suitable for any sector to detect the malicious applications.  

A hybrid feature selector (Narayanan 2021) combines the best parts of XGBoost and the vote-based backward feature elimi-
nation method. A voting algorithm with a filter method selects features initially. The wrapper method then determines the 
optimal characteristics. Finally, selected features were used to enhance the performance of malware classifiers. As a result, 
the proposed framework obtains 99.5% classification accuracy, which is higher than the results obtained from conventional 
machine learning methods, demonstrating the practical relevance of their approach. The authors (Manzano et al., 2022) believe 
the classification efficacy relies on reduced features. The presented framework uses PCA (Principal component analysis) and 
Logistic Regression (LR) to select the network flow features. In addition, various machine-learning algorithms are used to 
experiment with both binary and multiclass malware classification models. The tested result concludes that the selected thir-
teen features significantly improve the malware traffic data. 

2.2 Malware Classification Using Deep Learning 

Another category of technique that excels in detecting malware is deep learning techniques. Since 2008, malware growth has 
rapidly increased, and almost all sectors have suffered due to its impact. Conventional machine learning (ML) techniques can 
no longer detect all dynamic and complex malware variants. Using a Deep Convolutional Network (DCNN), the method in 
(Kalash et al., 2018) figures out the hidden pattern to find the malware. The malware binary file is a grayscale image for the 
facilitated DCNN model to detect the malware precisely. A malware detection method that utilizes hybrid deep learning 
extracts information from a grayscale image is presented by (Aslan & Yilmaz 2021) and applies it to supervised deep learning 
models. Two neural networks that are operated and already trained are Alexnet and Resnet-152 Net. Here, the convolution 
layers of the hybrid model are considered in contrast to other approaches that use traditional feature extraction techniques. 
The testing indicated that the hybrid deep learning model improves obfuscation variation identification. However, it must still 
be shown to resist attacks on the carefully constructed features. With little training time, pre-trained models provide passably 
excellent results. Hence, the authors of (Pant et al., 2021) created a malware classifier using a customized CNN and demon-
strated its superiority over the pre-trained modelsVGG-16, Inception-13, and other methods in terms of outcomes. Merits of 
CNN and LSTM were leveraged to discriminate against the malware family in (Dawra et al., 2023). Features extracted from 
PE files are converted into gray scale images to train the CNN+LSTM based model. Tested results reveal that CNN+LSTM 
is able to detect the malware more quickly than that of the other pre-trained models. 

  



 4

2.3 Malware Classification Using Federated Learning 

Malware attacks on IoT devices have been on the rise, and detecting infectious IoT devices is a challenging task. Ensuring 
privacy and security for IoT devices is of utmost importance, especially in Industry 4.0 applications. As IoT devices have a 
centralized repository for data storage, they are vulnerable to security breaches. To address this issue, a federated learning-
based framework for detecting malware that affects IoT devices has been demonstrated in (Rey et al., 2022). Network features 
from the N-BaIoT dataset were used to train supervised (MLP) and unsupervised (autoencoder) models. To assess the security 
of this approach, an adversarial setup was employed. The results reveal that the aggregation step used in federated learning is 
vulnerable to many cyberattacks. 

Federated learning involves training on data that is stored on different machines, with the model results being aggregated 
through a centralized server. This method ensures data privacy and efficacy.  Federated learning has been successfully em-
ployed to classify malware using data dispersed across different machines by ( Lin et al., 2020). Malware behaviors are being 
used as features to train LSTM and SVM models in a federated learning approach. Results show that sharing models improves 
accuracy and reduces complexity. However, despite these advancements, federated learning-based methods remain vulnerable 
to adversarial attacks. Therefore, research is ongoing to improve FL-based malware detection and identify malicious attacks. 

Federated learning can struggle when devices have different datasets (non-independent and identically distributed data). This 
can lead to issues like needing more training time and getting less accurate results. To alleviate this issue, one approach 
(D’Angelo et al., 2023) used Markov chains with associative rules to develop a customized FL architecture. The performance 
of this architecture was then compared with the results obtained through various machine learning models to demonstrate its 
superiority. Additionally, researchers (Venkatasubramanian et al., 2022) integrate static features and graph-based features 
derived from ELF binaries to train an FL-upon RF model to detect IoT malware. The tested results showed that the FL-based 
model achieved better malware detection accuracy compared to non-FL-based models. For better readability, Table 1 sum-
marizes recent malware detection systems published in various venues, focusing on those designed for IoT networks and 
Android-enabled devices. 

Table 1 
Existing malware detection software using ML, DL and FL, comparative report  

Ref Input Technique Merits Feature selection 
(Mahajan et al., 2019) Behavioral  features  RF Intend to detect Ransomwares   
(Babaagba et al., 2019) Behavioral  features MLP Collected features influences the unseen malware detec-

tion. 
  

(Al-Kasassbeh et al., 2020) PE file features J48 Novel feature selection   
(Kimet al., 2020) Behavioral  features RF Dimensionality reduction using  RFE   
(Romli et al., 2021) Behavioral  features RF Privacy aspects are implemented for android enabled ap-

plications 
  

(Nugraha  2021) Network traffic RF Presented Lightweight model is appropriate for any sector   
(Narayanan  2021) PE file features SVM,RF Backward Feature Elimination technique   
(Manzano et al., 2022) Flow and Network traffic RF Feature extraction (PCA) and feature selection (LR)   
(Kalash et al., 2018) Malware binaries to grayscale image DCNN Automatic feature extraction -- 
(Aslan & Yilmaz, 2021) Malware binaries to grayscale image DNN Feature extraction done through Alex-net and Resnet-152 -- 
(Pantet al., 2021) Malware binaries to grayscale image DNN Customized CNN -- 
(Dawra et al., 2023) Malware binaries to grayscale image CNN-LSTM Merits of CNN and LSTM influences the task --- 
(Rey et al., 2022) Network traffic MLP,AE IoT data privacy is ensured -- 
(Lin et al., 2020) Behavior based features SVM, LSTM Data privacy --- 
(D’Angelo et al., 2023) Behavior based features FL Suitable for edge and cloud --- 
(Venkatasubramanian et al., 
2022) 

Static and graph based features RF Decentralized model    
 

Table 1 confirms that most recent malicious code detection methods have benefited significantly from ML.  Among DL based 
models, Convolutional Neural Network (CNN) based models achieve consistent results without extensive feature engineering, 
whereas other ML models rely heavily on feature engineering for classification. Federated Learning (FL) aims to improve 
connected device security. References (Rey et al., 2022; Lin et al., 2020; D’Angelo et al., 2023; Venkatasubramanian et al., 
2022) demonstrate various malware detection strategies using network flow and behavior-based features with ML and DL 
techniques. In contrast to the display of the datasets used in existing works, Table 1 highlights the types of features used for 
successful malware detection in IoT networks. Such analysis facilitates the researchers in understanding the merits of different 
types of features. Based on this analysis, the proposed solution will also leverage network traffic features. Another takeaway 
from the literature analysis is that Random Forest (RF)-enabled frameworks often perform the best. 

3. Methodology 

With the proliferation of devices and diverse communication protocols in the IoT network, it has become an attractive target 
for malicious applications and botnets. Unfortunately, most IoT devices compromise their security via botnet attacks. Hackers 
exploit botnets to execute DDoS and flooding attacks. The IoT architectures, comprising perception, network, and application 
layers with distinct functionalities, are all susceptible to various types of security breaches. The network layer, in particular, 
is the most vulnerable to cyber-attacks compared to other layers. In the literature, numerous researchers propose the use of 
machine learning techniques to detect or prevent software anomalies. Hence, a robust ensemble machine-learning-based 
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malware classifier is urgently needed. We have proposed such a classifier, leveraging finely crafted network data features 
through a novel hybrid feature selection technique. 

Our proposed malware classification framework, a significant contribution to the field, is developed in two phases. The first 
phase utilizes the merits of statistical tools and OCS algorithms to select the unique features. Including all the collected fea-
tures may not be the optimal approach to train the machine learning models. Recognizing that more components may escalate 
the model's complexity and some variables may be redundant, such variables may significantly impact the model's generali-
zation capability. Subsequently, it would degrade the model’s performance.  In the second phase, a fine-tuned ensemble voting 
classifier is designed. This framework actively collects data from various sources during the data collection phase. 

 

 

Fig. 1. Components and workflow of the lightweight malware ensemble classifier 

4.1 Dataset and Pre-Processing 

The tested (MTA-KDD'19) Malware Traffic Analysis Knowledge Dataset is a collection of real-world network traffic data 
specifically designed for training and testing malware detection systems. It incorporates data from the Malware Capture Fa-
cility Project (MCFP), which gathers both malicious and legitimate traffic. The MTA-KDD'19 dataset includes data captured 
from June 2013 to August 2019, totalling over 7 GB across 2112 files. Initially, the dataset contained 50 features (Hublikar 
& Shet 2022) describing various network traffic attributes. Researchers then refined the data through a multi-step process, 
removing redundant features, null values, and outliers. This resulted in a final version with 33 key features (Letteri et al., 
2020) for malware detection. As mentioned in Fig. 2, the dataset consists of 30206 legitimate samples and 34350 malicious 
traffic samples This allows researchers to develop and evaluate malware classifiers effectively. 

 

Fig. 2. Class distribution of the MTA-KDD-19 Dataset 
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4.2 Feature Selection through OCS 
 

In the earlier phase of the feature selection, to eliminate the multicollinearity, the correlation coefficient tool has been used. 
The resultant uncorrelated features are furnished in Table 2. The Crow Search Algorithm (CSA) is inspired by crow behavior 
involving food anonymity and recovery. CSA characteristics include flocking behavior that mimics collective crow move-
ment, the memory of hiding places that resemble crow caches, probabilistic following that reflects crows following each other, 
and cache defence that mirrors crows' defensive behavior. The Opposition-Based Crow Search Algorithm (OCS) enhances 
the performance of the traditional Crow Search (CS) method for the feature selection of the dataset. Introducing an opposite 
response to each original solution in the search field is the basic principle of OCS. By contrasting several solutions, the best 
option may be chosen, and this ultimately results in the identification of the ideal qualities. 

Initialization: A population of crows is formed to represent features derived from the dataset. According to Eq. (1), these 
crows are dispersed randomly over the search space. 𝐹 = 𝑓𝑆 + 𝑓𝑆 + ⋯… + 𝑓𝑆      where j = 1,2, … . , n (1) 

Opposite Process: Each initial solution is followed by opposite solutions produced by OCS, which builds on the principles 
of meta-heuristic optimization. This procedure enables the search space to be explored outside of the local area of the first 
solutions, for instance 𝐹 ∈  (𝑐,𝑑)  is a valid number, then the opposite point represented in Eq. (2). 𝐹 = 𝑐 + 𝑑 − 𝐹  (2) 

Evaluation of Fitness: An objective function unique to the research challenge is used to evaluate each solution's fitness. In 
this scenario, the goal is to improve the accuracy of feature selection from the provided dataset through Eq. (3). 𝑂𝑓 = 𝑀𝑎𝑥 (𝐴)             (3) 

Position Generation: Using a random selection of another crow ‘i’ and its location into its movement equation, each crow 
changes its position as 𝐺𝑝 ,  via Equation 6. Exploration and exploitation inside the search space are made more accessible 
by this procedure. The equation considers a variety of elements, including random numbers and flying duration. 

𝐺𝑝 , = 𝐺𝑝 , + 𝑅 ∗ 𝐹𝑙 , ,         𝑖𝑓 𝑅 > 𝑃 ,𝑅𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝 𝑜𝑓 𝑐𝑟𝑜𝑤,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (4) 

where, 𝑅  and 𝑅  represent the random number of crow j and i within the range of [0-1], 𝐹𝑙 ,  is represents the crow fly 
length, 𝑃 ,  probability iteration of crow j. The algorithm ends when a predetermined stopping requirement is satisfied after 
iterating repeatedly. Finding a solution with a continuously higher fitness value or reaching a predetermined number of itera-
tions might be the requirement for this criterion. Number of features has been fixed as a termination criterion for the candidate 
feature selection experiment. Therefore, the features that are used by the OCS algorithm are displayed in Table 2. Table 3 
presents the varying number of dominant features chosen based on the merits of the OCS algorithm. 

Table 2  
List of uncorrelated features 

Feature name Feature name Feature name Feature name 
FinFlagDist-F1 1stPktLen-F13 MinLen-F7 NumPorts-F19 
RstFlagDist-F2 MaxLenrx-F14 MaxIAT-F8 FlowLENrx-F20 
PshFlagDist-F3 MinLenrx-F15 MinIAT-F9 repeated_pkts_ratio-F21 
DNSoverIP-F4 StdDevLenrx-F16 AvgIAT-F10 NumCon-F22 
TCPoverIP-F5 AvgLenrx-F17 AvgWinFlow-F11 Start_flow-F23 
MaxLen-F6 MinIATrx-F18 PktsIOratio-F12 HTTPpkts-F24 

 

Table 3  
List of reduced crafted feature columns through OCS 

Ten Features FinFlagDist,DNSoverIP,TCPoverIP',UDPoverIP,MaxIAT,AvgIATPktsIOratio,1stPktLen,StdDevLenrx,MinIATrx 
Eight Features FinFlagDist,DNSoverIP,TCPoverIP,UDPoverIP,MaxIAT,AvgIAT,1stPktLen,MinIATrx 
Five features FinFlagDist,TCPoverIP,MaxIAT,AvgIAT,MinIATrx 

 

Features displayed in Table 3, are crucial in detecting the most probable cyberattacks, DDoS, flooding, and botnets in the 
context of the IoT. FinFlagDist PktsIOratio features help determine the malware traffic. Hence, such features are perfect for 
countering the DDoS attack.  The 1stPktLen feature is good at detecting flooding attacks through the botnet. The features 
MaxIAT, AvgIAT, and MinIATrx are measures to define the inter-packet arrival time, which can facilitate detecting flooding 
attacks. Most malware attacks exploit the vulnerabilities of the communication protocol, So, the values scored against the 
variables 'DNSoverIP', 'TCPoverIP', and 'UDPoverIP'  are very useful to find the  malware traffic. 
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4.3 K-Fold Cross-Validation 

Once the feature selection is done, the malware samples must be scaled to feed into the machine-learning models. The candi-
date experiment preferred to use a standard scalar. This section sketches the idea of k-fold cross-validation. CV (Cross-Vali-
dation) is a statistical tool to train machine learning models. One of the merits of k-fold cross-validation is minimizing the 
chance of models getting stuck into overfitting issues. Cross-validation is not only intended to prevent overfitting but also to 
enhance the reliability of the prediction. Since the model is trained with the data in a single shot, it may yield the best perfor-
mance, which may not be reliable. To prevent such a situation, it is always good to use k-fold cross-validation. In k-fold cross-
validation, all data samples are divided into k-folds. The model uses the k-1 folds of examples to train and the kth fold to test. 
Randomness applied in separating the data samples facilitates the model in ensuring generalization. Also,the model can infer 
insight into the data in a better manner.  In the context of the imbalanced dataset, stratified k-fold cross-validation is the better 
choice to ensure the above-discussed merits.  Python 3.4.6's API  is used to train as well as to validate the ML models upon 
cross-validation, and a stratified K-fold function was applied to the training samples. The efficacies of the machine learning 
models are measured through the cross val_score function. 

4.4 Ensemble Malware Voting Classifier 

This section describes the design process for the ensemble voting classifier, which aims to improve malware detection per-
formance. By combining diverse machine learning algorithms, this approach aims to achieve higher accuracy and reliability 
compared to traditional models. Each ML model contributes its prediction ("vote") to collaboratively strengthen the malware 
traffic classification. The three most effective models, based on their performance in classifying candidate malware samples, 
are chosen to form the ensemble. The presented ensemble voting classifier leverages the merits of RF, ADB and XGB methods 
to influence the malware traffic classification. Ensemble voting approach assigns one vote to each ML model’s prediction for 
a specific output class_label. The class_label with the highest number of votes wins. The average probability scores assigned 
by each ML model for each class have been computed using Eq. (5). The probability scores for a specific class are summed 
across all the ML models and then averaged. The class with the highest average probability wins. 

𝑃(𝑦) = 1𝑁 𝑃 (𝑦 ),     𝑊ℎ𝑒𝑟𝑒 𝑦 ∈ 𝐶                     

(5) 

where, N is number of ML models and C is number of output classes, 𝑃(𝑦) is probability of final predicted sample belongs 
to class C.   𝑃 (𝑦 ) is probability assigned by ML model n to sample i belongs to class C 

4.4.1 Best Tree-Based Classifier 

Random Forest works on a large, uncorrelated decision tree. Samples are collected randomly to create a set of decision trees. 
At every node, the method finds the best split on the selected samples, which is done by either using the Gini index or entropy. 
Eq. (6) and Eq. (7) give the Gini and Entropy indices, respectively. The ‘pi’ represents the relative frequency of a class from 
the training set, and the ‘C’ denotes the number of output classes. Eq. (7) represents the entropy used to decide the branch. 
Then, decision trees allowed to grow until they reach maximum depth. The votes from different decision trees are summed in 
the next step to determine the final class label. 

Gini =  1 − (p )                              (6) 

Entropy = −p ∗ log (p )       (7) 

AdaBoost is a machine-learning technique that uses ensemble learning to improve classification performance. Combining 
several low-performing classifiers into one robust classifier is the logic of AdaBoost. Such action facilitates improvising 
classifier performance. AdaBoost dynamically adjusts weights for both individual classifiers and training samples. It contin-
ually improves its focus on hard-to-classify examples. AdaBoost randomizes the training set and iteratively chooses the train-
ing samples that could yield the best prediction in the previous training session to train the current iteration. The misclassified 
samples are assigned a higher weight, so the probability of including them in the training samples will be higher. One machine 
learning technique needs to be designated as a base estimator. A decision tree will be the default base model if nothing is 
specified. The XGBoost(XGB) algorithm uses the gradient-boosting decision tree algorithm. Like the Decision Tree, each 
node represents a feature condition, the branch denotes the decision on the state, and the leaf denotes the class label; these 
details are combined for the final prediction. XGB is a fine-tuned gradient-tree boosting method built upon decision trees. 
XGB is widely known for its speedy performance in designing models. XGB represents the possible solution through a graph-
ical representation like the decision tree. Each node represents the condition of the n feature, the branch denotes the state, and 
the leaf indicates the class label. Then, the ensemble meta-algorithm item combines predicted decisions through various 
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decision trees based on bagging. Such a bagging method further developed a forest, a collection of decision trees built upon 
randomly chosen features. The gradient boosting method creates new models for predicted errors and the prior model's resid-
uals. The XGB algorithm removes the missing values and addresses the overfitting issues using parallel processing. XGB is 
built upon tree construction and tree pruning processes. The algorithm supports three gradient boosting forms: gradient boost-
ing machines, stochastic gradient boosting, and regularized gradient boosting.  While designing the classifiers, issues incurred 
through high variance can be mitigated through RF model. AdaBoost enables the weak learners to work consistently on the 
tricky samples to derive better insight.   XGBoost's merits, such as sparsity, distributed learning, and early stopping, make it 
a perfect choice for classification tasks. The candidate ensemble voting classifier has been constructed using Random Forest, 
ADB, and XGB after their merits have been thoroughly examined. 

5. Experimental Results and Discussion 

This section portrays the efficacy of the presented work with the benchmarking methods in terms of the various quantitative 
metrics mentioned in Section 4. 

5.1 Performance Indicators 

To measure the performance of the candidate proposal, the performance metrics, accuracy, Precision, Recall and then F1-
score are preferred. The metric computation is a combination of true positive (𝑇 ), true negative (𝑇 ), and false positive/neg-
ative (𝐹 /𝐹 ). 𝑇 represents the number of malware samples that are accurately identified. 𝐹   represents the count incor-
rectly classified. On the other hand, 𝐹  represents the count of samples that have been incorrectly labeled as benign, instead 
of malign.  Considered metrics expressions are represented in Eqs. (8-11). 

𝐴 = 𝑇 + 𝑇𝑇 + 𝑇 + 𝐹 + 𝐹  
(8) 

𝑃 = 𝑇𝑇 + 𝐹  
(9) 

𝑅 = 𝑇𝑇 + 𝐹  
(10) 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 𝑃.𝑅𝑃 + 𝑅 (11) 

The framework uses binary classification, so the metrics TPR, FPR and AUC are considered performance measures. The 
mathematical expression of TPR (True Positive Rate), and FPR (False Positive Rate) is represented in Eq. (15) and Eq. (16). 

𝑇𝑃𝑅 = 𝑇𝑇 + 𝐹  
(12) 

𝐹𝑃𝑅 = 𝐹𝐹 + 𝑇  
(13) 

An ROC curve shows how well a model correctly identifies positive cases (true positives) against mistakenly classifying 
negative cases as positive (false positives). Ideally, a model should have a low false positive rate (FPR) while achieving a 
high true positive rate (TPR). AUC, or Area Under the Curve, summarizes this performance by measuring the total area under 
the ROC curve. 

5.2 Discussion on Results 

The proposed malware classifier is implemented in Python 3.7.10 using an Intel i5 machine with 12 GB of RAM on the MTA-
KDD19 dataset. Keras API with a TensorFlow backend simulates the machine learning models. Table 4 presents the diverse 
ML classifier's performance, as evaluated by averaging the results of 10-fold and 5-fold cross-validation.  At 24 features, the 
ADB and model results in terms of precision are higher than that of others. In terms of accuracy RF, ADB , XGB and presented 
Voting classifier results are comparable. At ten number of features, RF based model’s results better than the voting classifier. 
To portray the performance of various ML models alongside the presented ensemble voting model, Tables 5 and 6 summarize 
the results obtained using eight and five features, respectively. Based on the results in Table 5, the ensemble voting classifier 
achieves superior performance across all confusion matrix metrics compared to the other models. Following the ensemble 
classifier, the Random Forest (RF) model performs better than the others. Graphical representation of the tested results fur-
nished in Table 5 is shown in Fig. 3 
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Table 4  
Comparative results of malware classification framework at varying number of features 

Features Method A P R F1-score AUC 
24 RF 0.992 0.990 0.998 0.995 0.999 

ADB 0.992 0.987 0.999 0.993 0.991 
KNN 0.988 0.988 0.989 0.988 0.996 
XGB 0.992 0.987 0.999 0.993 0.989 
Voting 0.992 0.991 0.991 0.991 0.991 

20 RF 0.988 0.994 0.985 0.989 0.999 
ADB 0.981 0.986 0.977 0.981 0.998 
KNN 0.967 0.985 0.953 0.968 0.985 
XGB 0.981 0.989 0.978 0.983 0.998 
Voting 0.98 0.99 0.98 0.98 0.99 

10 
 
 
 
 

RF 0.966 0.974 0.962 0.967 0.994 
ADB 0.933 0.950 0.923 0.935 0.983 
KNN 0.936 0.957 0.921 0.937 0.972 
XGB 0.943 0.954 0.938 0.945 0.989 
Voting  0.961 0.970 0.955 0.962 0.992  

 

Table 5 
Results of averaging 10-fold and 5-fold cross-validation for diverse ML models using 8 features. 

 A P R F1-Score 
LR 0.77 0.79 0.78 0.78 
GNB 0.72 0.95 0.5 0.64 
KNN 0.92 0.94 0.91 0.92 
RF  0.94 0.95 0.94 0.94 
SVM  0.77 0.83 0.71 0.75 
ADB  0.92 0.94 0.91 0.92 
XGB 0.93 0.94 0.93 0.93 
Voting  0.95 0.959 0.95 0.95 

 

Again, Table 6 summarizes the results of ML models using five numbers of features. The experiment's results, upon averaging 
the 10-fold and 5-fold cross-validation, reveal that the ensemble voting model performs best. Following the ensemble model, 
XGBoost (XGB) achieves better results than the other models considered in the analysis. 

 

 
Fig. 3. Tested results comparison in terms of numeric met-
rics 

 
 
 
Table 6 
Results of averaging 10-fold and 5-fold cross-validation for 
diverse ML models using 5 features 

Method A P R F1-Score 
LR 0.78 0.81 0.78 0.79 
GNB 0.75 0.88 0.61 0.71 
KNN  0.82 0.85 0.82 0.83 
RF 0.86 0.86 0.86 0.86 
SVM  0.77 0.84 0.69 0.75 
ADB  0.84 0.86 0.85 0.85 
XGB  0.86 0.88 0.86 0.87 
Voting 0.87 0.89 0.88 0.88 

 

 

To illustrate the ML models' learning ability with varying sample sizes, Fig. 4 and Fig. 5 depict the evolution of training and 
cross-validation scores obtained by various ML models. The reason for including the snapshots in Figure 4 and Figure 5 is to 
reveal the ML model’s generalizability. Training score indicates the ML models performance on training data, whereas the 
cross-validation score represents the efficacy of the ML models upon the unseen data. Figure 4 shows various ML models 
performance on both training and unseen samples upon 10-fold cross-validation.  Deviation between the training score curve 
with the cross-validation score is expected to be minimal. Initially, when the models begin to learn, there is a high discrepancy 
between the training and validation scores. This is natural. As the models are exposed to more samples, the gap between the 
training and validation scores starts to shrink. While Fig. 4a reveals a high initial discrepancy between the GNB model's 
training and validation scores, these curves converge. This suggests the model achieves good generalizability despite the 
initial difference. However, evaluating the secured value against the specific metric is important to determine its effectiveness. 
ADA Boost and XGBoost have repeated the same scenario, but the accuracy obtained is far better than that produced by the 
GNB. Right from the beginning, the voting classifier exhibits a higher accuracy score than other models. However, it struggles 
to minimize the training and validation scores gap. Interestingly, the voting classifier's initial validation score surpasses that 
of the other models, but it seems unable to improve this difference further. 
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Fig. 4. Training versus (10-fold) validation score curves produced by various ML models. 

 

  

 

Fig. 5. Training versus (5-Fold) validation score curves produced by various ML models 

Fig. 5 depicts the performance of various machine learning models on training and validation sets. However, this experiment 
utilized 5-fold cross-validation. Interestingly, no significant difference was observed when comparing the effectiveness of the 
models using 10-fold and 5-fold cross-validation. One possible explanation for the models' inability to reduce the gap between 
training and validation scores could be the limited number of features considered (five features) in Fig. 4 and Fig. 5. The 
positive aspect of this candidate experiment is that the value of numeric metrics is appreciable in the presence of five features. 

6. Conclusion 

In Industry 4.0 applications, the Internet of Things (IoT) enables smooth automation. However, securing IoT data from in-
truders is still a challenging task.  Among the diverse cyber-attacks, malware poses significant threats to IoT networks. Alt-
hough several research attempts have been put forward in the literature on ML and DL models, fewer studies have focused 
on creating a malware classifier based on attributes that may ease malware traffic identification. This study proposed a light-
weight ensemble voting-based malware classification system that uses OCS for feature selection. To make the malware clas-
sifier suitable for the IoT environment with minimal resource constraints, the proposed work utilizes a minimal feature set 
from the MTA-KDD'19 dataset. The tested findings showcase the merits of the proposed malware traffic classifier in terms 
of accuracy. Therefore, the malware traffic classifier is a viable solution for large-scale IoT settings. Here are some additional 
steps that could be considered for future development.  Experimenting with different feature selection algorithms could iden-
tify optimal features and mitigate overfitting. Data sampling techniques, especially for minority classes, could improve the 
model's performance, particularly when considering deep learning approaches. Investigating the potential of deep learning 
models could lead to further improvements in accuracy and malware detection capabilities. 
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