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 The classification of large-scale textual dataset is associated with a huge number of instances and 
millions of features which must be discriminated between large numbers of categories. The task 
requires the utilization of a defined hierarchy structure and tools that automatically classify in-
stances within the hierarchy known as Large Scale Hierarchical Text Classification (LSHTC). 
Predicting the labels of instances by the employed classifiers is challenging due to the high number 
of features. Furthermore, the existing Dimensional Reduction (DR) approaches in cooperation 
with the LSHTC framework are still quite inefficient. In such a problem, an effective Hierarchical 
Dimensional Reduction approach can be advantageous in improving the performance of the 
LSHTC. Therefore, in this paper, we enhance the performance of LSHTC by proposing a Multi-
stage Hierarchical Dimensional Reduction (MHDR) approach based on Modified Feature Hashing 
(MFH) and Hierarchical Bi-Filtering (HBF) method.  In addition to alleviating bad collision and 
result discrepancy, experimental results show that the proposed approach has achieve the best 
performance in terms of micro-f1 and macro-f1 by recording average scores of 58.47% and 
54.77% using TD-SVM, and average scores of 51.14% and 48.70% using TD-LR, respectively. 
The method also achieved 11% speed-up than the approaches compared. 
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1. Introduction 
 
Textual data has increased dramatically because of the development of digital technology. This data was produced by a variety 
of sources, such as social networks and online directories (Ado et al., 2021). High-volume is a well-known and common 
problem related to such kind of generated data. In addition, the currently generated text data, known as a large-scale dataset, 
typically faces issues about a high set of feature dimensions and large number of labelled classes. For example, several large-
scale text datasets, such as Mozilla Directory, Yahoo! Directory, and International Patent Record, consist of millions of in-
stances and billions of features spread across thousands of classes (Naik & Rangwala, 2016a). Even though classifying in-
stances with such properties into many predefined classes has grown substantial interest in the fields of NLP and Data Science 
Babbar et al., (2016). But the task has become more difficult due to the continuous exponential growth of textual data and its 
complexity (Pilnenskiy & Smetannikov, 2020; Naik & Rangwala, 2018), while at the same time giving rise to new issues that 
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are extremely challenging to solve using traditional methods. Furthermore, to efficiently evaluate and extract useful infor-
mation, several new applications require a classification with an extraordinarily high number of instances, features, and classes 
(Pavia et al., 2022). This can simply be accomplished by first defining a structure taxonomy on the data (Naik & Rangwala, 
2016). Typically, hierarchical structures provide an appropriate way for organizing data.  

Taxonomy or hierarchy as the name implies is a well-known approach for structuring large-scale datasets in numerous real 
world application domains (Naik & Rangwala, 2016b; Roul & Sahoo, 2018; Guo et al., 2018), including web page classifica-
tion, image classification, music genre classification, gene sequences classification, and more importantly document classifi-
cation (Charuvaka & Rangwala, 2015). Classification of all these large-scale data is spine around HC problem, also known 
as Large-Scale Hierarchical Classification (LSHC). Currently, a considerable number of LSHC approaches have been pro-
posed to deal with the challenges and problems that arose such as high processing time, poor label prediction, and high 
memory utilization (Ado et al., 2021; Naik & Rangwala, 2016a). One popular approach for lowering processing times and 
memory footprint is to incorporate an appropriate technique for Dimensional Reduction (DR) before training a classification 
model (Pilnenskiy & Smetannikov, 2020).  

DR phase plays a vital role in improving the performance of the LSHTC framework by only utilizing the optimal features 
(Silla & Freitas, 2011). These features are found to be useful in discriminating among the classes at every internal node within 
the hierarchy. Many DR approaches have been proposed to tackle the problem of high-dimensionality. However, the existing 
DR based on FH and multi-filtering approaches integrated into the framework are unreliable due to bad collisions and result 
discrepancy (Pavia et al., 2022; Krishnan et al., 2019; Naik & Rangwala, 2016; Roul & Sahoo (2018). Furthermore, bad 
collisions are inherent problems present in current FH methods, and these collisions occur in the process of hashing features 
into a lower hash space. This could lead to substantial information loss, mainly when collisions occur between features with 
different class distributions. Multi-filtering approaches suffer from result discrepancy issues, the problem occurs due to the 
different rankings assigned to a single feature by the integrated filter methods (Roul & Sahoo, 2018). This issue miss-leads 
the multi-strategy approaches to filter out highly contributory features in the filtering process. Therefore, integrating inappro-
priate DR approaches into the LSHTC framework may lead to lower prediction accuracy and computational expense (Gopal 
& Yang, 2013; Stein et al., 2019).  

To address this issue and build on advanced research in LSHTC, this paper proposes an improved framework termed Multi-
stage Hierarchical Dimensional (MHDR). This aims to scale-up HC models performance by hierarchically reducing the di-
mensionality of the input features set. 

The main contributions of this paper are as follows: 

1. The paper identifies the problems of Large-scale hierarchical classification and proposes a Multi-stage Dimensional 
Reduction Method (MDRM) to improve LSHTC framework, enhancing its performance.  

2. A Modified Feature Hashing (MFH) approach is proposed that can eliminate the collision rates between dissimilar 
features, thereby improving HC models performance. 

3. A new bi-filtering strategy for hierarchical classification is proposed to mitigate the issue of losing most important 
features, thus improving filtering the process.   
 

After the introduction, the subsequent sections of this paper are organized as follows: A literature review is placed in Section 
2. The methodology and the proposed approaches are presented in Section 3. The details of the adapted datasets and experi-
ments are explained in Section 4, followed by a results discussion, which is placed in Section 5. Lastly, the paper ends with 
Section 5 by giving a brief conclusion and possible future work. 

2. Literature review  

This section of the paper gives a comprehensive literature review of LSHC. Firstly, hierarchical classification is briefly ex-
plained, followed by a discussion on Dimensional Reduction (DR) techniques. And lastly, the section ends with a summary 
of some related works. 

2.1 Hierarchical Classification (HC) 
 
In response to the widespread use of hierarchies in numerous application domains, particularly text categorization, a team of 
researchers from the Institute of Informatics, Greece, and Laboratoire d'Informatique de Grenoble, France, have organized 
the Large-Scale Hierarchical Text Classification (LSHTC) challenge to increase the motivation of HC (Ramírez-Corona et 
al., 2016). This effort eventually resulted in a series of contests (2009, 2011, 2012, and 2014) that made it possible to establish 
benchmarks for the problem (Naik & Rangwala, 2016; Roul & Sahoo, 2018; Guo et al., 2018). This is accomplished by 
analyzing large-scale datasets with a high number of instances and classes to evaluate the methods' performance. Due to their 
efforts, presently, hierarchical datasets are now extensively employed across diverse application domains, including ImageNet 
(a system designed to index hundreds of millions of images), audio hierarchy (a system designed to organize and classify 
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music signals), international patent classification (a system for perusing patent documents), DMOZ hierarchy (a system for 
categorizing and organizing web pages), and gene hierarchy (a system for classifying and organizing gene sequences). 
  
HC, often referred to as structured classification, is a type of classification task where the classes of the instances include pre-
defined hierarchical information, typically represented as a directed acyclic graph (multi-label) or a tree (single-label) (Naik 
& Rangwala, 2018). HC leverages the structure of the taxonomy to divide a large-scale classification task into a subset of 
smaller problems, one per each node within the tree taxonomy.  

Two primary approaches are typically used for designing hierarchical classification models (HC model). The first strategy, 
known as flat classification, is simpler and does not take interdependence relationships between classes into account when 
training the model Naik & Rangwala (2018). The second approach is more complicated, and it is popularly known as Hierar-
chical Classification. It considers the interdependencies between the classes when training the model. The first approach is 
further divided into Local Classifier (LC) and Global Classifier (GC) (Naik & Rangwala, 2018). The LC approach considers 
parent-child relationships locally when training the model Ado et al., (2021). In contrast, GC trains a single global model 
while taking the hierarchy information into account and handles the classification problem (Stein et al., 2019). Compared to 
the local approach, this strategy is more computationally expensive and complex. Both approaches adopt a similar strategy 
when predicting the class of new instances. Furthermore, LC can be divided into three approaches based on top-down explo-
ration of the hierarchies Stein et al., (2019): Local Classifier per Node (LCN), Local Classifier per Parent Node (LCPN), and 
Local Classifier per Level (LCL) (Serrano-Pérez & Sucar, 2021). More importantly, both the approaches followed a similar 
approach in predicting new examples. 

2.2 Feature Selection  

Feature Selection (FS) is one of the well-known DR techniques that is usually applied to high-dimensional datasets (Cun-
ningham & Ghahramani, 2015). The technique selects highly discriminated features from the original set of features that could 
improve the performance of learning algorithms. The technique is usually applied in the pre-processing stage, avoiding the 
curse of dimensionality. This technique tries to select and construct a suitable subset of informative features which will serve 
as the representative of the original features set so that it can be fed into machine learning algorithms for processing without 
degrading their performance (Vora & Yang, 2017; Azeez et al., 2022; Rong, Gong & Gao, 2019). FS technique essentially 
removes irrelevant, noisy, and redundant features from an input feature set extracted from a given dataset. There are two main 
approaches generally used in selecting features or subsets of features from a set of input features: the ranking approach and 
the subset evaluation approach. The earlier approach ranks features according to their importance (scores) using some criterion 
evaluation (metrics) and selects the top k-features. While the latter approach selects a minimum subset of informative features 
using subset evaluation criteria with the involvement of machine learning models. Generally, feature selection methods are 
broadly grouped into three main categories, namely, Filter methods, Wrapper methods, and embedded methods (Vora & Yang, 
2017; Azeez et al., 2022; Rong, Gong & Gao, 2019). 
 

2.3 Feature Hashing  

Feature hashing (FH), popularly known as hashing trick or hash kernel proposed by Weinberger et al., (2009), is one of the 
most recent DR techniques used in scaling-up machine learning algorithms for large-scale classification Vora & Yang (2017). 
The technique hashed original high-dimensional input space vectors Rd into lower-dimensional space vectors Rk, preserving 
Euclidean distance Azeez et al., (2022). FH is formally defined as: “Given an input features in a d-dimension space x ∈ Rd, a 
mapping function f: Rd  → Rk   is learned to hash it into k-dimension  Rk  where k << d, Rd denotes the original vectors space 
while Rk  is the hashed vectors space“ (Rong, Gong & Gao, 2019). The sparse high-dimensional features x is projected to a 
low-dimensional space f(x) via a defined map function Rong, Gong & Gao, (2019). Therefore, FH is the most effective and 
powerful tool in terms of enormous memory, time savings, and model size reduction (Rong, Gong & Gao, 2019). The main 
downside of the technique is a hash collision, whereby multiple features could be hashed together into a single index, which 
as a result, seriously affects the learning model performance (Rong, Gong & Gao, 2019). Even a single collision could dete-
riorate the performance of a classifier.  
 
2.3 Related works 

However, few research papers have proposed DR approaches for LSHTC that have been shown to achieve significant im-
provement. Ristoski and Paulheim (2014) proposed a method that leverages hierarchies for feature selection. Firstly, the pro-
posed method filters out features that are redundant along hierarchy paths, and further performs pruning on the obtained 
features subset by considering relevance features. Wibowo and Williams (2011) use simple feature selection methods at each 
node in the hierarchy to adaptively select a fixed size of features subset from the upper part of every document. Zhou et al. 
(2011) modified the objective function of the HC-model; this forces the model to select the same set of features at each internal 
node rooted to the leaf node in the hierarchy. Mladenić and Grobelnik (2003) investigate six different filter-based FS methods 
with Hierarchical model using large-scale HC datasets. Their findings show that the best performance was recorded with Odd 
ratio among the six methods compared. In view of minimizing space requirement and processing time. Zhao et al. (2015) 
proposed hierarchical feature hashing termed “HESHING” to effectively reduce dimensionality of LSHC problem. They 
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uniquely defined multiple hash functions for each node within the structured categories taxonomy, findings shown reduced in 
information loss that may occur because of collisions. Naik and Rangwala (2016) proposed a method by embedding feature 
selection in the LSHC framework. The study investigates four different filter-based methods in both adaptive and global 
approaches. Experiment results show that by utilizing FS methods, HC model achieved around three times speed-up and about 
45% memory improvement without sacrificing classification accuracy.  

3. Methods  

In this section, we present the proposed approach to overcome the stated problem of dimensionality affecting the LSHC 
problem. Firstly, we present two distinct approaches to handle bad collisions and results discrepancy, and then we present an 
integrated approach that combines these approaches in a single framework. Table 1 presents the notations used in this paper 
and their meaning. 

Table 1  
Notations and meaning ℋ Original Tree Hierarchy ℋ௠ Modified tree Hierarchy ℵ Set of all nodes in ℋ ℓ  (T) Set of leaf nodes (categories)  in ℋ ; ℓ ⊆ ℵ ℵ − ℓ Set of internal nodes ; ℵ − ℓ ⊆ ℵ 𝒬 Root node in  ℋ 𝒫(𝑛) Parent of node 𝑛 𝒞(𝑛) Set of all children of node 𝑛 𝑠𝑖𝑏(𝑛) Siblings of node 𝑛 𝒟 = ሼ(𝑥௜  , 𝑦௜)ሽ௜ୀଵ௠  Dataset of m training instances, where  𝑥௜ ⊆  𝒳 𝑎𝑛𝑑 𝑦௜ ⊆ ℓ 𝑇௡(𝑥) Total number of training instances at node 𝑛; 𝑇௡(𝑥) ⊆ 𝑚 𝑅ௗ Original feature space 𝜙(𝑥,𝑢) Hash feature space ; 𝜙(𝑥,𝑢) ∈ 𝑅ௗ and 𝑢 ∈ ℵ 𝑓௜ 𝑖௧௛ feature 𝑆𝐿 Subset of relevant features selected using filter method; 𝑆𝐿 ⊆ 𝜙(𝑥,𝑢) 
 

3.1 Hierarchical Classification (HC) method  
 

The HC algorithm divides the classification problem into smaller task problems, one for each internal node of the tree hierar-
chy, using the hierarchical structure of the dataset that is provided. A different classifier is deployed at each internal node of 
the tree structure to enable HC to be performed using the considered classification learning model. The classification method, 
also known as the top-down strategy, proceeds greedily down the tree structure until it reaches the target leaf node 𝑦𝑖 to 
forecast category label 𝑦𝑖 for unknown input instance 𝑥𝑖. The procedure begins at the root node, 𝒬, and proceeds recursively 
to select the best child nodes, (𝑛), until it reaches the terminal node, 𝑦𝑖 ∈ ℓ. The entire HC process is illustrated in Algorithm 
1.     

Algorithm1: Top-Down Hierarchical Classification Algorithm 
Input: Input: instance 𝑥௜  , parameters 𝑤௖𝒬 
Output: ℓ௦ 
1 Set 𝒬 = 0     \\ Start from the root node 
2 Repeat 
3  𝒬 =  𝑎𝑟𝑔𝑚𝑎𝑥ሼ௖:(𝒬,௖)∈୽ሽቀ௪೎𝒬ቁ೅௫ഢෝ     \\ Transverse through the most weighted child 

4 Until |𝑐(𝑛)| = 1          \\ Until a node with single category label is reach.  
5 Return ℓ௦                    \\ Return the predicted label  

 
3.2 Multi-class Top-Down LR and SVM model  
 
For a given dataset with a known taxonomy (hierarchy) structure ℋ, to categorized between the children’s nodes 𝒞(𝑛) of any 
parent nodes 𝒫(𝑛), a multi-class learning model is train for each of the non-leaf nodes (including root node) 𝑛 ∈ ℵ − ℓ in the 
taxonomy. The LR and SVM objectives utilize log loss and hinge loss, respectively, to reduce empirical risk and l2-norm 
squared term to monitor complexity and avoid overfitting the model. For training multi-class LR and SVM model in respect 
of 𝑖௧௛ child (𝐶௜) of the corresponding internal node 𝑛, their respective objective functions are formulated in Eqs. (1-2).  
 𝐿𝑅_𝑓௡௖ = min௪೙೎ ቎𝜆෍ log(1 + exp(−(𝑦௜)௡௖ (𝑤௡௖)்𝑥௜)) + ‖𝑤௡௖‖ଶଶ೙்

௜ୀଵ ቏   
(1) 

𝑆𝑉𝑀_𝑓௡௖ = min௪೙೎ ቎𝜆෍|1 −  (−(𝑦௜)௡௖ (𝑤௡௖)்𝑥௜)|ା + ‖𝑤௡௖‖ଶଶ೙்
௜ୀଵ ቏   

(2) 
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where 𝜆 > 0 denotes the penalty parameter value for misclassification, ‖  denotes regularization term, and 𝑇𝑛 is the total 
number of instances. For each child 𝐶𝑖 that belongs to the associated node 𝑛 inside the taxonomy ℋ, one of the equations is 
solved (depending on the model employed) to obtain the optimal weight vector 𝑊𝑛 𝐶 . The multi-class learnt 
model for that specific node is constructed using the whole set of parameters for (𝑛) or 𝑊 𝑁, whereas the TD-
learned model is constructed using the total parameters for all non-leaf nodes, 𝑊 𝑁.   

3.3 Proposed Multi-stage Hierarchical Dimensional Reduction (MHDR) Method 

We first proposed two main important algorithms for dimensional reduction that are based on FH and FS, namely, MFH and 
HBFA. Firstly, a MFH method (present as Algorithm1) is proposed to hierarchically hash original features set into smaller 
hashed index. Secondly, a new HBFA (present as Algorithm2) is proposed to select the highly discrepant features from the 
resultant hashed space at each internal node within the hierarchy. The proposed algorithms are detail below:  

3.3.1 Modified Feature Hashing (MFH) Method 

We preassume that 𝑅ௗ is a set of variable-length features. Let say the maximum length in 𝑅ௗis denoted by 𝐿௡, which should 
be treated as a scalable parameter. The total set of bins is given by B such that 𝑏௭ ∈ 𝐵, where z = (1,2,…., m). All the bins size 
are uniform, and each bin can reach the maximum size of T, where 𝐿௡ ൑ 𝑇, and is also consider as a scalable parameter. A 
local index xi of each feature in each dataset is computed using Eq. (3). The computed local index is utilized to get the hash 
weight wi of each feature as can be seen in Eq. (4). We then finally apply the hash function to get the global index of each 
feature as shown in Eqs. (5-7).  𝑥௜ = ((෍ 𝑡௜) − 1)௧೔∈೑ೌ 𝑚𝑜𝑑(𝑇);  𝑡௙ ൑ 𝐿௡, 𝑡௙ ൑ 𝑇 (3) 

𝑤௜ =  𝑥௜ ൈ 𝐵௡,            𝑖 = 1,2, …𝑛  (4) 

𝑗 = 𝑤௜ + ℎ(∙); 𝑤௜ → 𝑓௔ ∈ 𝑅ௗ ൈ𝑊 
 

(5) 𝑖 = 𝑗𝑚𝑜𝑑(𝐵௡); 𝑗 ∈ 𝑅௞ (6) 𝑓(௜,௝) = ෍ 𝑓௔𝜉(𝑖)௝:௛(௝)ୀ௜  (7) 

where 𝐿௜ ൑ 𝑇, and  𝐵௡denotes number of bins, 𝑙௜ represents each token's length in the corpus, 𝑥௜ and 𝑤௜ denote the local index 
and the term weight, respectively, and 𝑓(௜,௝) denotes the global feature index. It should be noted that those collisions which are 
likely to happen between not similar features are significantly prevented by the local index. However, unavoidable collisions 
could occur with local indexing but nevertheless, most of the bad collisions are prevented. The steps of the proposed approach 
are presented in Algorithm 2. 

Algorithm 2: Modified Feature Hashing 
Input: 
 Original Feature Space: 𝑅ௗ 
 Hash Functions: ℎ(∙);  𝞷(∙) 
 Number of Bins: 𝐵௡ 
 Maximum Bin Size: 𝑇 
Output:   
 Hashed Feature Space: 𝑅௞    
1 Begin 
2 For all 𝑓௔ ∈  𝑅ௗ do 
3  t୤ = ∑ 𝑡௜௧೔∈೑ೌ   
4  Local_index = ൫𝑡௙ − 1൯𝑚𝑜𝑑(T) 
5  Term୵ୣ୧୥୲୦ =  Local_index ∗ 𝐵௡ 
6  Global୧୬ୢୣ୶(𝑖) = Term୵ୣ୧୥୦୲ + ℎ𝑎𝑠ℎ(𝑓௔)𝑚𝑜𝑑(𝐵௡) 
7  𝑅௜௞ = 𝑅௜௞ + 𝜉(𝑓௔)  
8  End for 
9 Return 𝑅௞ 
10 End 
  

 
3.3.2 Hierarchical Bi-strategy Filtering Approach (HBFA)  
 
The approach first uses IG and t-test methods to compute the scores of each feature, and then normalizes the scores to make 
them comparatively equivalent. The IG and T-test score is computed as:  



 6 𝐼𝐺(𝑡, 𝑐) =  ෍  ෍ 𝑃(𝑡, 𝑐) × log ൬ 𝑃(𝑡, 𝑐)𝑃(𝑡) × 𝑃(𝑐)൰௧∈{௧ೖ ,௧̅ೖ}௖∈{௖೔ ,௖೔̅ }  
(8) 

where P(t, c)  is the conditional probability of category c and existence of feature t, P(t) is the probability of category contain-
ing feature t, P(c) is the probability of category c.  𝑡௞ തതത𝑎𝑛𝑑 𝑐௞ഥ   denote not presence of feature, and not presence of category, 
respectively. 
 𝑡 − 𝑡𝑒𝑠𝑡(𝑡௜ , 𝑐௞) = ห𝑡𝑓௞పതതതതത − 𝑡𝑓పതതതห𝑚௞ × 𝑠௜  

(9) 

 

where 𝑆௜ is the standard deviation within a category, 𝐶௞ is the 𝑘௧௛ category, 𝑘 is the total number of categories, 𝑡𝑓௞௜ is the 
average TF of term 𝑡௜ in category 𝑘, 𝑡𝑓௜ is average TF of term 𝑡௜ in the corpus. Normalization is computed by dividing each 
score by the maximum score obtained for each method independently. Then the V-score of each feature is computed by using 
its normalized scores as can be seen in Eq. (10). The normalized scores generated by each method will be used to sort and 
select top ranked features based on expert defined threshold 𝜏ଵ. Unlike other approaches, our approach automatically set a 
new threshold 𝜏ଶ by considering feature similarities between the optimal features subsets obtained. We defined the new thresh-
old 𝜏ଶ as the maximum of the minimum normalised scores, which is formulated as given in Eq. (11). Furthermore, the new 
defined threshold 𝜏ଶ is used to form the optimal features set by further selecting the most discrepant features from the initial 
selected features sets as seen in Eq. (12). 

 𝑉௦௖௢௥௘ =  ඥ𝐼𝐺௦௖௢௥௘ே )ଶ + (𝑇௦௖௢௥௘ே )ଶ (10) 

𝜏ଶ = 𝑀𝑖𝑛 ቆ𝑚𝑎𝑥 ൬𝐴ூீ ↔ (𝐴ூீ ∩ 𝐵்்)𝐵்் ↔ (𝐴ூீ ∩ 𝐵்்)൰ఛభቇ 
(11) 

𝑓௜ = ൜ 1,            𝑉௦௖௢௥௘௜ ≥ 𝜏ଶ0,           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,             𝑓௜ ∈ 𝐴 ∪ 𝐵   (12) 

where 𝐼𝐺௦௖௢௥௘ே  and 𝑇௦௖௢௥௘ே  denote normalized scores of each feature based on IG and T-test, respectively, A and B are the sets 
of original features together with their scores computed by IG and T-test, 𝐴ூீ  and 𝐵்் are the subsets of the initial features 
selected with their scores by IG and T-test,  𝑉௦௖௢௥௘௜  is the score magnitude of each feature 𝑓௜. ). Algorithm 3 presents the 
pseudocode of the entire process 
 

Algorithm 3: The Proposed Bi-Strategy Filtering Approach  
INPUT: 
 𝐷: Set of documents with m Input-output pair (𝑥௜ ,𝑦௜) 
 𝑦: Set of label categories 
 𝜏ଵ: initial threshold 
OUTPUT: 
 𝑆𝐿: Subset of selected features 
FEATURE_SCORING(D, y)         \\compute features score and ranked them 
1. L1    ←       [ ],  L2   ←        [ ] 
2. Rd      ←       EXTRACT TREMS IN DOCUMENTS (D) 
3. For each 𝑓௜ in Rd do: 
4.  A(fi, y)    ←        COMPUTE(SCORE(fi, y)) using IG algorithm 
5.  APPEND(L1(A(fi, y), fi)) 
6.  A(fi, y)   ←         COMPUTE(SCORE(fi, y)) using t-test algorithm 
7.  APPEND(L2(A(fi, y), fi)) 
8. End for  
9. SORT(L1), SORT (L2)  
10. Return L1, L2 
Begin 
1 L1, L2   ←          FEATURE_SCORING(D, y) 
2. FS1      ←     𝜏ଵ% {Lଵ} = {f1, ...fq}      \\ Initial sequence of features selected using IG 
3 FS2      ←     𝜏ଵ% {Lଶ} = {f1, ...fn}      \\ Initial sequence of features selected using t-test 
4. j        ←     q 
5. for fi in [SORT.descend(FS1)]     \\ Compute V-score of each feature in FS1 
6.  Normalize (fi)        \\ by dividing it with the max IG score 
7.  If fi ∈ {FS1} ∩{FS2} 
8.   Vscore(1)     ←       COMPUTE(Vscore_of_fi  using Eq. (10)) 
9.  Break 
10. for fj in [SORT.descend(FS2)]        \\ Compute V-score of each feature in FS2 
11.  Normalize (fj)         \\ by dividing it with the max t-score 
12.  If fi ∈ {FS1} ∩{FS2} 
13.   Vscore(2)      ←      COMPUTE(Vscore_of_fj  using Eq.(10)) 
14.  Break 
15. 𝜏ଶ       ←       MIN(Vscore(1),  Vscore(2))      \\ Set new threshold 
16. APPEND [SL, {FS1∩FS2}]   
17. for fi in [{L1 ⋃ L2} – {SL}] do      \\ Reselect most optima features based on new threshold 
18.  If Vscore(fi)  >= 𝜏ଶ 
19.   APPEND[SL, (fi)]  
20. End for 
21 Return SL 
End 
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Algorithm 4 presents the proposed MHDR that integrates multi-stage dimensional reduction (FH and FS) into the LSHTC 
framework. The order in which the stages (presented below) are executed is imperative to obtain the maximum hierarchical 
classification performance improvement. The algorithm consists of three different main stages. The first stage utilizes MFH 
method (presented as Algorithm2) for hierarchically hashing original features set into smaller hashed index. The second stage 
utilizes HBFA (presented as Algorithm3) for selecting the most informative features from the resultant hashed space at each 
non-leaf within the hierarchy. Let  ℋ௠ be the hierarchy: 

Step 1: After the hierarchy ℋ௠ is fed into the proposed method, the proposed method employs the concept of Hierarchical 
Feature Hashing (HFH) 𝜓(𝑓,𝑦) to hierarchically map the features into hashed space dimensions. The approach applies Algo-
rithm 2 (MFH algorithm) on each internal node ℵ − ℓ in ℋ௠.  

Step 2: Next is the FS step, which aims to select a subset of highly relevant features between siblings’ categories. This step 
reduces the hierarchical error rate and improves the learning model performance. The proposed approach utilizes Algorithm 
3 (HBFA algorithm) on the produced hashed space 𝜙(𝑓,𝑢) of each internal node, ℵ − ℓ to effectively select discriminant 
features. Unlike other approaches that select the exact features set at each node; the proposed approach selects different vari-
able features set at each node.  

Step 3: Is known as the learning and prediction stage. The stage hierarchically classifies Large-scale datasets into pre-defined 
labels. For a given taxonomy, the reduced features set SL (produced in the previous stage) is used to train multi-class learning 
models for each non-leaf nodes 𝑛 ⊆ ℵ − ℓ  in ℋ௠. Let n be an internal node containing only a small set of discrepant features, 
a multi-class learning model is trained on the node to categorize between its children’s nodes 𝒞(𝑛).  
 

Algorithm 4: Proposed Multi-Stage  Hierarchical Dimensional Reduction Approach 

INPUT:       Original Hierarchy ℋ; Input-output pair (𝑥௜, 𝑦௜) 
OUTPUT:   Weight Vectors of the Learned Model 𝑤 = ሾ𝑤௜ሿ,𝑤ℎ𝑒𝑟𝑒( 𝑖 = 1, . .𝑛), 𝑛 ∈ ℵ − ℓ   
1. 𝑤 = [ ]         \\ Initialisation  
2. \\ stage 1: Feature Hashing  
3. For every (𝑓௜, 𝑦௜) with 𝑦௜ ∈ ℵ, 𝑓௜ ∈ F, do 
4. hash 𝑓௜  using Algorithm1 
5. End for 
6. Stage 2: Feature Selection  
7. For every 𝑓௜ ∈ 𝜙(𝑥,𝑢) do   
8. Select top k most discriminate features “𝑆𝐿” using Algorithm2  
9. End for  
10. \\Stage 3: model learning on the resultant reduced features space SL 
11. For every 𝑛 ∈ ℵ − ℓ  do          \\ to learn models for classifying 𝒞(𝑛) at 𝒫(𝑛) 
12.  If 𝑛 ∉ ℓ then 
13. If multi-class learning model = TD-LR             \\ Top-down Logistic Regression 
14. Train multi-class LR model on the reduced feature space “𝑆𝐿” using eq. (1) 
15. Update.[w, wn]                 \\ updating model weight vectors 
16. End if  
17. If multi-class learning model = TD-SVM        \\ Top-down Support Vector Machine 
18. Train multi-class SVM on the reduced feature space “𝑆𝐿” using equ. (2) 
19. Update.[w, wn]                 \\ updating model weight vectors 
20. End if 
21. End if 
22. End for  
23. Return w 
  

 
Unlike other approaches that select the same feature at each internal node, our approach selects different features at each 
internal node which is refer to as adaptive FS. 
 
4. Dataset and Experiment Evaluation  
 

Summary of the datasets and the implantation settings used are briefly explained in this section.  

4.1 Dataset 
 
The experimental evaluation is conducted using three benchmark textual datasets including International Patient Classification 
(IPC), 20Newsgroup (20NG), and Directly Mozilla (DMOZ-small). 20NG is formed from Usenet Newsgroup’s documents 
collection Dhillon (2003). The newsgroups names represent the content forum, and we hierarchically organize them by man-
ually imposing parent-child relationships. IPC offers a hierarchy structure of independent language symbols for patents clas-
sification and patent applications based on various technology areas to which they relate Fall et al., (2003). DMOZ is generally 
a multi-lingual World Wide Web links for open content directory, it is a multiple web document structured into numerous 
classes using the tree structure. DMOZ-small is a variant of DMOZ-dataset and has also been released as part of 2010 and 
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2012 large scale challenge known as LSHTC 9 Partalas et al., (2015). Table 2 summarizes the important characteristics of the 
adapted datasets. All the datasets are shown to be high-dimensional.    

Table 2  
Characteristics of the datasets   

Dataset #training Doc # Testing Doc #Features    #Classes #Nodes Height 
20NG 11269 7505 61188 20 28 4 
IPC 46324 28926 1123497 451 553 4 
DMOZ-small 6323 1858 51033 1139 2388 6 

 
4.2 Experiment settings 

The standard train-test partitions available in the large-scale challenging website (http://lshtc.iit.demokritos.gr/LSHTC3_or-
acleUpload) is utilized for all the experiments, see Table 2. We further split the training set into 90% as the main training set 
(to train Top-Down models) and 10% as the small validation set (to fine tune the regularization parameter). We further split 
the training set into 90% as the main training set for training the employed TD-models (TD-SVM and TD-LR) and 10% as 
the small validation set for fine-tuning the regularization parameter. We train each model by choosing a misclassification 
parameter value (λ) in the set that ranges from 0.01 to 1000 in increments of “*10 (that is multiple of ten)”, and then utilize 
the validation dataset to select the best parameter value. For training of the HC, we set the learning models to compulsory leaf 
node prediction. For FH, we use the extended version (MurmurHash3) as the hash function. As normal convention, we used 
hash bit size ranging from 5-bit to 28-bit hash in 1 step increment to investigate the performance of the proposed MFH. The 
initial experiments demonstrated no noticeable performance improvement beyond 214. Thus, we set the hash size to this value 
for the subsequent experiments. The percentage of collisions is obtained by considering only the number of features that have 
non-zero weights. For FS, we select the best initial threshold using the validation dataset by varying the size of features 
ranging from 1% to 80% of the entire features set in steps of 20. From the preliminary results, we notice no significant 
performance improvement beyond the 60% threshold; thus, this value is selected as the initial threshold.  Finally, to validate 
the proposed approaches, the standard twins’ metrics (micro-f1 and macro-f1) are used. These twins’ metrics are usually used 
for evaluating the performance of HC. Micro-f1 gives equal importance to every document, while macro-f1 gives equal im-
portance to every category. They are calculated using the following equations: 

𝑀𝑖𝑐𝑟𝑜 − 𝐹1 = 2𝑃𝑅𝑃 + 𝑅 (13) 

𝑀𝑎𝑐𝑟𝑜 − 𝐹1 = 1|ℓ|෍ 2𝑃௡𝑅௡𝑃௡ + 𝑅௡    |ℓ|௡ୀଵ  
(14) 

 

P and R can be obtained using the following equations:   

𝑃 = ∑ 𝑇𝑃௡|ℓ|௡ୀଵ∑ 𝑇𝑃௡ + 𝐹𝑃௡|ℓ|௡ୀଵ  

 

(15) 

𝑅 = ∑ 𝑇𝑃௡|ℓ|௡ୀଵ∑ 𝑇𝑃௡ + 𝐹𝑁௡|ℓ|௡ୀଵ  

 

(16) 

where TPn, (True Positives) are positive documents correctly classified as positive. FPn, (False Positives) are negative docu-
ments classified as positive, and FNn (False Negatives) are positive documents classified as negative, for distinct classes in ℓ, 
P denotes precision, R denotes recall, 𝑃௡ and 𝑅௡ are the precision and recall for leaf node n, and|ℓ| denotes a total number of 
labels or classes.   
 

5. Results Discussion 

We first investigate the performance of our proposed MFH and HBFA by comparing it with their counterparts, and then we 
present the performance of the proposed MHDR with the existing approaches. Fig. 1 shows the performance of our proposed 
MFH and that of Conventional Feature Hashing (CFH) with varying length of bit size (in 1 step interval for hash range values), 
starting from 5 to 28 hash bits. To generalize our findings, we compared both the methods on three different text datasets 
which comprise of 20NG, IPC and DMOZ dataset. We record the performance based on Micro-F1 and Macro-F1 scores. 
From the sub-figures in Fig. 1, we can see that our proposed MFH outperformed CFH in all the detailed comparisons with 
minor performance improvement of 3% averagely. This is because our approach mitigates bad collisions that do occur between 
dissimilar features. MFH can reduce bad collisions to a certain degree by utilizing the concept of term weight.  Moreover, 
both the methods return almost the same performance from 210 downward and 220 upward hash bits, this is due to presence of 
unavoidable bad collisions between 0 to 210 hash bits (almost 100%) and presence of very few bad collisions at or beyond 220 

(almost 0%). Specifically, from sub-figures (C and D), the classification model’s performance starts sacrificing from 218 hash 
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bits while the other sub-figures (A, B, E and F) depict that the performance starts sacrificing from 214 hash bits. This variation 
is due to differences in dimensionality of the datasets, IPC has a very high number of features compared to 20NG and DMOZ. 
Therefore, dimensional reduction using feature hashing approaches need approximately 214 to 218 hash bits (depending on the 
dimensionality of the dataset) to achieve competitive performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Performance comparison of MFH and CFH with varying hash bit size using TD-LR on three different LHTC datasets. 

 
To validate the proposed HBFA, we compared it with single strategy filter methods (TD-LR+IG and TD-LR+t-test) using 
20NG, IPC and DMOZ datasets. The performance is recorded using a varying percentage of features starting from 1% to 80% 
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(in 19% interval for the first step and 20% interval for the subsequent steps). Table 2 shows the micro-f1 and macro-f1 scores 
based on the TD-LR model by integrating with the considered FS based filter methods (IG and t-test), and the proposed 
HBFA. The best performances are face bolded. We can notice that all the methods showed acceptable performance results 
compared to utilizing a higher percentage of features for all the datasets. Overall, the proposed HBFA has slightly better 
performance over the single strategy methods. HBFA tends to utilize both the advantages of IG and t-test to remove noisy and 
irrelevant features based on the reduction objective acquired from a sparse data leaf node, which might negatively affect the 
performance of a model. The TD-LR+t-test method recorded poor performance because of the discrepancy between the the-
oretical strategy of the method and statistical properties obtained from the sparse data node. Both the methods achieve worse 
performance when the percentage of features selected is less than 20%, and achieve higher performance when the selected 
features are fixed at 70%. It has been noticed that at less than 40% of features, the filter methods eliminate not only the 
irrelevant and noisy features but also a high number of informative features that positively contribute to discriminating the 
categories.  
  
Table 2  
Performance comparison based on macro-f1 and macro-f1 of the proposed method with varying percentages of features using 
TD-LR. The percentage on the top of the table is the size of the features. The best performance is face bolded 

dataset Methods  Micro-F1 Macro-F1 
20NG  1% 20% 40% 60% 80% 1% 20% 40% 60% 80% 

TD-LR+IG 59.78 77.36 78.54 78.92 80.19 59.23 77.17 78.00 78.52 79.63 
TD-LR+t-test 22.45 68.62 76.94 78.26 80.14 21.45 67.57 76.08 77.97 79.62 
HBFA 59.13 78.51 79.00 80.56 80.24 58.46 77.89 78.32 79.76 79.78 

IPC TD-LR+IG  38.78 45.40 46.00 47.30 47.52 25.78 38.73 39.68 40.15 41.70 
TD-LR+t-test 29.74 38.61 42.67 44.82 48.93 17.74 34.64  36.92 38.75 39.24 
HBFA 40.13 50.04 51.94 51.66 52.00 33.87 40.34 40.20 40.20 41.34 

DMOZ-
small 

TD-LR+IG  17.65 31.24 32.07 33.40 34.85 12.22 18.87 17.03 19.35 19.80 
TD-LR+t-test 12.71 28.19 31.00 32.80 38.97 4.80 16.75 17.83 20.14 23.20 
HBFA 17.33 28.52 33.66 34.51 35.00 15.03 22.34 23.54 27.72 29.16 

 

Table 3 shows the TD-LR and TD-SVM models' performance comparison of HFS, HFH, Baseline, and the proposed MHDR. 
The highest scores are face bolded, and the values in brackets are the maximum improvement against the baseline. We can 
see from the table that the proposed MHDR gives the best performance across all the datasets (except TD-SVM’s macro-f1 
score of the NG dataset, which is known to have very few leaf nodes or categories). A significant improvement of approxi-
mately 3% is achieved with the proposed method against all features on all the datasets. In comparison with single-stage (HFS 
and HFH) an improvement of approximately 1% to 2% is noticed on all the datasets except the micro-f1 score of the DMOZ 
dataset, where a more comprehensive improvement of 4% to 5% approximately is noticed. We also observe that HFS achieves 
the worst performance on all the datasets except the micro-f1 score of 20NG and IPC datasets. Therefore, the proposed multi-
stage method outperforms the single-stage methods because of its ability to blend the advantages of the two techniques (FS 
and FH technique). These advantages include: (i) HFS has the advantage of selecting optimal informative features in every 
node of the taxonomy, (ii) the redundancy introduced by HFH drastically reduces information loss due to hash collision. 
Lastly, by carefully studying the performance improvement over all features, we can see that dataset with rare categories (such 
as IPC and DMOZ-Small) benefit significantly from dimensional reduction methods, especially with the proposed multi-stage 
method. 
 
Table 3  
Performance comparison of proposed method, its counterparts, and baseline based on micro-f1 and macro-f1 using TD-LR 
and TD-SVM 

Dataset Metric 
HFS HFH Proposed   MHDR Baseline (All features) 
TD-LR TD-SVM TD-LR TD-SVM TD-LR TD-SVM TD-LR TD-SVM 

20NG 
Micro-F1 80.56 73.21 81.06 74.77 82.84 

(+2.84) 
75.61 
(+2.59) 80.00 73.02 

Macro-F1 79.98 72.80 80.65 75.23 
(+2.37) 

82.20 
(+2.03) 75.19 80.17 72.68 

IPC 
Micro-F1 51.66 51.74 52.13 51.64 53.11 

(+0.87) 
52.86 
(+1.59) 52.24 51.27 

Macro-F1 40.49 41.00 41.38 41.70 42.18 
(+1.06) 

42.13 
(+1.31) 41.12 40.82 

DMOZ-
small 

Micro-F1 34.51 34.44 37.26 34.29 39.48 
(0.62) 

35.58 
(+1.54) 38.86 34.04 

Macro-F1 27.72 27.04 28.17 27.18 29.03 
(+1.26) 

28.79 
(+2.18) 27.77 26.61 

 

Figs. (2-4) show the comparisons of pre-processing time, learning time, and total running time. It should be noticed that Pre-
processing time means the time taken for feature vectorization plus the time required to filter out irrelevant features. Learning 
time is the training and testing time required for the learning model. In contrast, total running time means the combined time 
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for the pre-processing and learning time. From Fig. 2, we can see that BM (all features) takes the lowest amount of time since 
it does not need any additional time for computing features' importance, it only requires time for feature vectorization, which 
is very minimal. On the other hand, HFS takes the most extended amount of time since it requires additional time to filter out 
irrelevant features apart from feature vectorization time. Compared with HFS, the proposed method takes less time despite 
needing extra time to filter out irrelevant features. This is because it is sufficient to vectorize by computing TF and IDF using 
the feature hashing trick. The hashing vectorization time, which is constant per non-zero input feature, is approximately zero 
(≈0). Moreover, FH does not only reduce features dimension but also speeds up pre-processing time. From Fig. 3, the proposed 
MHDR takes shorter training and testing time due to the smaller features dimension, which needs to be considered during 
learning. However, there is no noticeable improvement for the datasets with a small number of instances, such as 20NG. 
Moreover, improvement is noticeable for datasets with a larger number of instances, such as IPC. For example, the proposed 
method reduces the model learning time of IPC from 4143 seconds to 1362 seconds. Fig. 4 shows the proposed method 
archives the shortest time on IPC datasets, whereas the BM method takes the shortest total time on the 20NG and DMOZ-
small datasets. This shows that we can only observe significant improvement if the datasets are sparse and high-dimensional.  
  
Two major observations were drawn from this experiment. Firstly, the effectiveness of the proposed approach can be noticed 
when the dataset is extremely large. Secondly, a significant improvement is noticed with DMOZ-small, although it has fewer 
instances and features than 20NG. This noticeable improvement is due to the larger number of categories present in DMOZ-
small, resulting in larger parameter vectors (≈300M) than 20NG (≈900k). Therefore, exploiting the proposed HMDR in 
LSHTC benefits in achieving higher performance and lower running time. 
 

  
Fig. 2. Pre-processing time comparison 
based on TD-LR model using 20NG, 
IPC, and DMOZ-small Dataset 

Fig. 3. Learning time comparison 
based on TD-LR model using 20NG, 
IPC, and DMOZ-small dataset 

Fig. 4. Total time comparison based on 
TD-LR model using 20NG, IPC, and 
DMOZ-small dataset 

 
6. Conclusion and future work 

To conclude this study, we have proposed a Hierarchical Multi-stage Dimensional Reduction approach for LSHTC problems 
that exploits the advantages of feature hashing and feature selection techniques. In the process of achieving this, we have 
provided solutions to address the two well-known issues associated with the existing dimensional reduction methods, namely, 
bad collisions and results discrepancy. Firstly, we present an MFH approach based on term weight to minimize the rate of bad 
collisions. Secondly, for solving the results discrepancy issue, we present HBFA that selects the most important features based 
on IG and T-test. Lastly, we present an integrated approach to handle the compound issues together faced by HC models. 
Experimental results show that a significant improvement of approximately 3% and 2% is achieved with the proposed HMDR 
against BM and existing single-stage (HFS and HFH) approaches, respectively. It also records the lowest running time with 
a difference of about 300s and 1500s.  

In further work, the following task is recommended for further investigation: (i) the approach should be investigated in Multi-
Task Learning for Large-scale Problems. (ii) Investigating a distributed approach to extend the proposed method in order to 
improve the running speed and scalability will be beneficial. 
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