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 In the dynamic field of cybersecurity within intelligent vehicle systems, the sophistication of threats 
necessitates continual advancements in security technologies. Traditional Network Intrusion Detec-
tion Systems (NIDS) often fall short in detecting emerging and sophisticated intrusion methods, 
primarily due to their reliance on static datasets that fail to capture the nuanced dynamics and com-
plexity of modern network intrusions. This study presents a sophisticated simulation for NIDS tai-
lored to intelligent vehicle environments, utilizing the extensive capabilities of Scapy—a robust net-
work manipulation tool—to generate a highly accurate dataset of network traffic reflective of real-
world scenarios. We created a diverse dataset involving 100,000 network flows, covering a wide 
array of benign, malicious, and anomalous traffic patterns, to thoroughly evaluate the detection ca-
pabilities of our proposed system. This dataset was analyzed using a deep learning framework em-
ploying a Convolutional Neural Network (CNN), which demonstrated outstanding performance met-
rics: an accuracy of 99.08%, precision of 98.96%, recall of 99.11%, and an F1 score of 99.03%. 
These metrics showcase the system's enhanced capability to precisely classify various network 
flows, emphasizing the importance of realistic synthetic data in boosting the training and accuracy 
of NIDS in intelligent vehicles. The results of this research are significant, marking a step forward 
towards more flexible and preemptive security measures for intelligent vehicles, and effectively nar-
rowing the gap between simulation-based testing and real-world network environments. 
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1. Introduction 
 

In the rapidly evolving field of intelligent vehicle security, the escalation of network security threats presents substantial chal-
lenges, necessitating advanced protective measures (Biondi, 2010; Hahn et al., 2019). The emergence of sophisticated attack 
vectors, such as advanced persistent threats and zero-day exploits, underscores the critical role of Intrusion Detection Systems 
(IDS) in safeguarding vehicular network systems Nawaal et al. (2024). Hahn et al. (2019) depicts a collage representing the 
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advanced state of intelligent vehicle security systems, an area experiencing rapid evolution in the face of escalating network 
security threats. The visuals in the collage, featuring a dynamic display of vehicles on a road with glowing lines symbolizing 
active network connections, an individual interacting with a high-tech car interface, and a representation of network connectivity, 
highlight the necessity for sophisticated protective measures within vehicular systems. This scenario illustrates the critical im-
portance of Intrusion Detection Systems (IDS) that must contend with sophisticated attack vectors, including advanced persistent 
threats and zero-day exploits. These systems are integral to the defense against cyber threats that target the complex networked 
ecosystems of modern vehicles, as seen in the central image where the user appears to be engaged with a security interface, 
potentially monitoring or managing the security status of the vehicle's network. As a primary defense mechanism, IDSs scrutinize 
vehicle network traffic to identify malicious activities and policy breaches in real time Schrötter et al. (2024). Despite their essen-
tial role, the efficacy of IDSs is continuously tested by the complex and evolving tactics employed by cyber adversaries (Kruegel 
et al., 2003; Giacinto et al., 2003). 
 
 
A significant limitation in contemporary IDS methodologies is their dependence on datasets that fail to accurately reflect the 
complexity of real-world vehicular network traffic Okoli et al. (2024). Often, IDSs are developed using outdated or synthetic 
datasets that do not capture the variability and intricacy of actual network communications. This discrepancy leads to a 'reality 
gap,' where simulated environments do not accurately represent true network threats, thus compromising IDS reliability in practi-
cal scenarios Scarfone and Mell (2007). To tackle this challenge, our research develops a simulated IDS tailored for intelligent 
vehicles, utilizing the capabilities of Scapy, an open-source Python library known for its sophisticated packet manipulation fea-
tures Buczak and Guven (2015). By employing Scapy, we aim to significantly enhance the realism of network flow data in our 
simulated environment, ensuring it closely mirrors the traffic observed in operational vehicle networks. Our innovative approach 
integrates Scapy within the simulation framework to create diverse network scenarios, encompassing a wide range of traffic pat-
terns, protocols, and anomalous behaviors. This initiative is based on the hypothesis that more realistic training data improves the 
accuracy and generalizability of IDS models Openart AI. (2024). Additionally, it addresses the 'reality gap' by calibrating the IDS 
against a dataset that accurately simulates the current cyber threat landscape in intelligent vehicle networks. The structure of this 
paper is designed to sequentially unfold our research efforts. Section 2 reviews current literature to contextualize our study within 
the broader field of Intrusion Detection Systems. Section 3 outlines our methodological approach, highlighting the use of Scapy 
to generate a detailed dataset of network flows and explaining our experimental setup and evaluation metrics. This groundwork 
prepares for the rigorous assessment of the dataset through a Convolutional Neural Network (CNN), which is explored in Section 
4. This section also discusses how our empirical findings relate to overall IDS effectiveness, examining the practical implications 
of our CNN's results. Section 5 discusses these implications in terms of their utility and relevance to IDS in intelligent vehicles. 
Finally, Section 6 summarizes our key conclusions and suggests directions for future research, emphasizing the importance of our 
contributions to the dynamic field of network security for intelligent vehicles. 
 
2. Related Work 
 

The realm of network intrusion detection primarily revolves around two methodologies: signature-based and anomaly-based sys-
tems Bansal and Bansal, N. (2015). Signature-based IDSs operate by comparing network traffic against a database of known threat 
signatures to identify intrusions Ring et al. (2019). This approach is highly effective in recognizing well-documented attacks but 
is inherently limited in detecting new, modified, or previously unseen threats Bacha et al. (2024). In contrast, anomaly-based IDSs 
leverage machine learning techniques Idrissi et al. (2023) and statistical models to establish what constitutes normal behavior 
within a network Phulre et al. (2024). Any deviation from this established baseline may indicate a potential intrusion. While 
capable of detecting novel attacks, anomaly-based systems often face challenges related to high rates of false positives (Bahlali et 
al., 2023; Lazarevic et al., 2005). 

Simulated environments are crucial for assessing the effectiveness of IDS methodologies. These controlled environments allow 
for the systematic testing and training of IDS mechanisms under varied conditions Moustafa et al. (2021). Researchers have uti-
lized testbeds, synthetic data generation, and network traffic simulation tools to create realistic network traffic scenarios Clausen 
et al. (2021). Nonetheless, the development of these simulations is frequently impeded by the scarcity of publicly available, labeled 
datasets for network intrusion, which restricts opportunities for thorough training and validation of IDS models Ciric et al. (2024). 

Scapy, a flexible packet manipulation tool, is renowned for its ability to craft and decode packets across a multitude of network 
protocols, making it an invaluable resource in security research Xiao et al. (2019). It has been employed extensively for protocol 
creation, penetration testing, and the simulation of network attacks to evaluate security defenses Yu et al. (2024). However, the 
application of Scapy in academic research, particularly in the development and evaluation of IDS solutions, remains underex-
plored. This observation suggests a significant research opportunity. 

There exists a conspicuous research gap concerning the utilization of Scapy to generate sophisticated and large-scale network 
traffic datasets that mimic the complexity of real-world intelligent vehicle networks. Most studies to date have not fully exploited 
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Scapy’s capabilities in creating diverse network scenarios that could enhance IDS testing and validation processes. Our research 
aims to bridge this gap by harnessing Scapy not only for generating realistic traffic patterns but also integrating these capabilities 
within a machine learning framework using CNNs. This integration seeks to amplify detection accuracies and refine the predictive 
capabilities of IDS, specifically tailored for intelligent vehicle security systems (Tharwat, 2020). 

3. Methodology 
 
The creation of the Simulated Network Intrusion Detection System (SNIDS) utilized the robust capabilities of Scapy, a powerful 
packet manipulation library, to produce an extensive dataset of synthetic network flows (Goodfellow et al., 2016). Our approach 
is grounded in the design of a controlled, yet intricate simulation environment that effectively replicates the diversity and unpre-
dictability of real-world network traffic. This method allows for a more realistic representation of network conditions, enhancing 
the system's ability to identify and respond to varied security threats effectively. 
 
3.1 Data Generation with Scapy 
 
Scapy, a versatile Python-based packet crafting tool, was utilized to simulate a wide range of network behaviors Bansal and Bansal, 
N. (2015). This included benign activities, established attack patterns, and outlier traffic that could potentially signify emerging 
threats. Each network flow in our simulation was characterized by a set of distinct features as shown in Table 1. 
 
Table 1  
Simulation Features 

Simulation Features Description 
src_ip An anonymized integer representation of the source IP address. 
src_port The originating port number of the flow. 
dest_ip An anonymized integer corresponding to the destination IP address. 
dest_port The receiving port number. 
protocol A numerical value indicating the transport layer protocol (e.g., 6 for TCP, 17 for UDP). 
bytes_in/out The volume of bytes transferred in either direction. 
num_pkts_in/out The number of packets observed in the flow. 
entropy A statistical measure of randomness within the flow's payload. 
total_entropy. The aggregate entropy across all packets. 
mean_ipt The mean inter-packet arrival time. 
time_start/end Timestamps marking the flow's duration. 
duration The computed length of the flow in seconds. 
label The classification label assigned to the flow, distinguishing between benign, malicious, and outlier traffic. 

 
The classification of each network flow was conducted using a heuristic algorithm, which employed predefined criteria designed 
to emulate standard intrusion detection mechanisms. This methodological approach allowed for systematic and precise categori-
zation, aligning closely with the operational protocols typically observed in advanced intrusion detection systems. 

3.2 Simulation Configuration 

The architecture of our simulation environment was precisely engineered to create a substantial and balanced dataset comprising 
100,000 individual network flows Xiao et al. (2019). This dataset is designed to capture a wide spectrum of classification labels, 
accurately reflecting the complex nature of real-world network traffic. Our goal was to develop a simulation that meets the quan-
titative demands for robustness and comprehensiveness while truly representing the qualitative nuances of network behavior across 
various contexts. To achieve a representative blend of traffic types, the simulation was structured to evenly distribute benign, 
malicious, and outlier flows. Benign flows mimic regular user activities and standard network communications, serving as a base-
line for normal traffic. Malicious flows, on the other hand, represent patterns and payloads characteristic of established cyber 
threats, such as distributed denial-of-service (DDoS) attacks, malware propagation, and unauthorized data breaches. Additionally, 
outlier flows were incorporated to represent ambiguous activities that might indicate new or evolving threats, thereby providing a 
crucial resource for evaluating the responsiveness of intrusion detection algorithms. We utilized the Scapy tool to meticulously 
construct detailed packet-level interactions, granting precise control over the diversity of the flows. Through Scapy’s capabilities 
to customize packet headers and payloads, we were able to simulate a range of network behaviors from standard protocol ex-
changes to sophisticated attack vectors. This level of detailed control over each flow’s attributes—such as packet size, timing, 
sequence, and payload specifics—ensures an authentic replication of the complexity seen in active network environments. 
 
3.3 Pseudocode Generation 

In our research, we developed a simulation script to generate a comprehensive dataset of synthetic network traffic that mimics the 
complexities of real-world network behavior. This script utilizes prominent libraries, including Pandas for data handling, Numpy 
for numerical computations, and Random for generating random variables, and Scapy for detailed network packet manipulation. 
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Through a series of defined functions, we produce network flows each distinguished by attributes such as anonymized IP ad-
dresses, port numbers, protocols, and traffic metrics. Each flow is categorized as benign, malicious, or an outlier, with the classi-
fication determined by heuristic criteria concerning byte volume and entropy levels. 
The core of the script is the simulate_network_flows function, which systematically generates 100,000 individual flows. These 
flows are then compiled into a Pandas DataFrame, offering a structured and accessible format for analyzing the simulated network 
traffic. This dataset is crucial for the validation of our intrusion detection system, providing a rich and varied environment to 
assess the system's capability to accurately detect and respond to potential threats. 
 
 

ALGORITHM  1:   Network Flow Simulation 
1 Import necessary libraries: pandas, numpy, random, scapy 
2  
3 Define function generate_ip: 
4     Generate and return a random IP address string 
5  
6 Define function anonymize_ip with parameter ip: 
7     Return anonymized IP using hash function and modulus 
8  
9 Define function generate_flow: 
10     Create and return a dictionary representing a network flow with: 
11         Anonymized source and destination IP addresses 
12         Random source and destination port numbers 
13         Random protocol (TCP or UDP) 
14         Random byte and packet counts for both incoming and outgoing traffic 
15         Random entropy and total entropy values 
16         Random mean inter-packet arrival time 
17         Random start time and duration 
18  
19 Define function classify_flow with parameter flow: 
20     Classify flow as 'malicious', 'outlier', or 'benign' based on: 
21         Bytes transferred and entropy values 
22  
23 Define function simulate_network_flows with parameter n: 
24     Initialize an empty list to store flows 
25     Loop n times to generate and classify flows 
26     Add each flow to the list 
27     Return a DataFrame created from the list of flows 
28  
29 Execute simulate_network_flows function with 100000 flows 

 

3.4 Validation Using CNN Model for Network Intrusion Detection 

The evaluation of the simulated network flows was conducted through a Convolutional Neural Network (CNN) model, specifically 
designed to detect and categorize network intrusions. This phase is critical, confirming that the generated data adequately prepares 
machine learning models for training and ensures these models can effectively generalize to new, unseen data that mirrors actual 
real-world scenarios. 
 
3.4.1 Model Architecture 
 
The design of the CNN was specifically engineered to align with the unique attributes of network traffic data Yu et al. (2024). 
This model incorporates multiple convolutional layers, which are particularly adept at detecting patterns within the input features, 
relevant to one-dimensional time-series data typical of network Salam et al. (2021). Following the convolutional layers, pooling 
layers were employed to reduce the dimensionality of the data and mitigate the risk of overfitting Park and Kwak (2017). Addi-
tionally, to enhance the model's ability to generalize, dropout layers were strategically placed following the convolutional layers 
to thin out neural connections intermittently Murugan (2018). The architecture culminates in fully connected layers that lead to a 
softmax activation function, facilitating the classification of multiple classes Mehta et al. (2019). 
 
3.4.2 Training Process 
 
The CNN underwent training utilizing the backpropagation technique complemented by an Adam optimizer to enhance conver-
gence efficiency Tharwat (2020). The training process was structured around mini-batches, facilitating incremental updates to the 
network's weights and enhancing its ability to generalize. To mitigate the risk of overfitting and to establish the most effective 
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moment to cease training, the model’s accuracy and loss were consistently evaluated against a designated validation set throughout 
the training period. 
3.4.3 Performance Metrics 
 
To assess the performance of the Convolutional Neural Network (CNN) model, we utilized a comprehensive set of metrics, each 
providing distinct insights into the model’s effectiveness: 
 

• Accuracy: Measures the proportion of total correct predictions out of all predictions made, offering an overview of the 
model's overall effectiveness (Sokolova & Lapalme, 2009; Tavallaee et al., 2009). 

• Precision: Indicates the ratio of true positive predictions to all positive predictions made by the model. This metric is 
particularly useful for understanding the model’s ability to minimize false positives Powers (2020). 

• Recall: The ratio of true positive predictions to all actual positive instances in the dataset, reflecting the model's sensitivity 
or its ability to detect all relevant cases van Rijsbergen (1979). 

• F1-Score: The harmonic mean of precision and recall, this single metric helps balance the trade-offs between precision 
and recall, providing a more comprehensive view of model performance Fawcett (2006). 

• ROC Curve and AUC: The Receiver Operating Characteristic (ROC) curve plots the true positive rate against the false 
positive rate at various threshold settings, while the Area Under the Curve (AUC) provides an aggregate measure of 
performance across all possible classification thresholds Fawcett (2006). 

 
The CNN model's capability to accurately classify benign, malicious, and outlier network flows was rigorously evaluated using 
these metrics. The results were meticulously documented to affirm the efficacy of the simulated dataset in replicating real-world 
scenarios typically encountered in practical intrusion detection applications. This methodical evaluation helps validate the robust-
ness and applicability of the CNN model within a simulated IDS environment, ensuring its preparedness for deployment in more 
dynamic and unpredictable real-world settings. 
 
3.4.4 Model Validation 
 
After the training phase, the Convolutional Neural Network (CNN) underwent a rigorous validation process using a test set that 
was not seen during training, derived from the generated dataset. This critical step was essential to verify the model’s ability to 
generalize and maintain accuracy within a simulated operational environment, mirroring the conditions of real-world Intrusion 
Detection System (IDS) applications. This validation helps ensure that the CNN can reliably identify threats and anomalies, re-
flecting its practical efficacy and readiness for deployment in actual security settings. 
 
4. Results 
 

Upon running the simulation, the Simulated Network Intrusion Detection System (SNIDS) generated a comprehensive dataset 
that underwent thorough analysis. The findings were clearly illustrated through a series of detailed graphs, designed to reveal the 
intrinsic patterns in the traffic data and to demonstrate the system's classification abilities effectively. These visual representations 
played a crucial role in understanding the distribution and characteristics of network behaviors, as well as in assessing the precision 
of the system's detection mechanisms. 

4.1 Traffic Volume Analysis 

The data visualization of total incoming bytes, segmented by protocol and label, was graphically represented and indicated that 
both TCP (protocol 6) and UDP (protocol 17) exhibited similar volumes of benign and malicious traffic. Notably, outliers con-
tributed substantially to the traffic volumes in both protocols (refer to Fig. 1). This analysis highlights the significant role of these 
protocols in network traffic and underscores the importance of monitoring outlier behavior, which could provide insights into 
unusual or potentially harmful network activities. 



 82 

  
Fig. 1. Traffic Volume by Protocol Fig. 2. Entropy Distribution by Label 

4.2 Entropy Analysis 
 

The analysis of entropy distribution by label revealed that flows identified as 'malicious' exhibited a significantly higher average 
entropy than those labeled as 'benign'. Moreover, flows categorized as 'outliers' displayed the greatest variability in entropy, indi-
cating these could be key targets for further enhancements in anomaly detection efforts (refer to Figure 2). This pattern suggests 
a nuanced understanding of how different types of network flows manifest in terms of entropy, pointing to potential areas for 
improving the precision of anomaly detection algorithms. 

4.3 Total Entropy Distribution 
 

A consistent pattern was also evident in the overall entropy distribution, further affirming the importance of entropy as a critical 
distinguishing characteristic in flow analysis (refer to Fig. 3). This observation underscores the utility of entropy in differentiating 
between various types of network flows, thereby reinforcing its role as a valuable metric in the analysis of network traffic. 

 

  

Fig. 3. Total Entropy Distribution by Label. Fig. 4. Confusion Matrix visualizing the classification results 
of the CNN model 

4.4 Performance of the CNN Model 
 

Testing the generated network flows with the Convolutional Neural Network (CNN) model resulted in exceptionally high perfor-
mance metrics (see Fig. 4), highlighting the effectiveness of the CNN model and the quality of the simulated dataset in identifying 
network intrusions. The CNN model was evaluated using a test set distinct from the training data to ensure an unbiased assessment. 
It achieved an accuracy of 99.08%, showcasing an excellent rate of correct classifications. The precision of the model, which 
measures its ability to correctly identify instances of network attacks, was approximately 98.96%. This high precision indicates a 
minimal occurrence of false positives, affirming that most flows identified as attacks were indeed malicious. The model’s recall 
rate was 99.11%, demonstrating its sensitivity and ability to detect nearly all actual malicious flows present in the network. The 
F1 Score, calculated as the harmonic mean of precision and recall, stood at 99.03%. This score reflects a strong balance between 
precision and recall, verifying the model's capability to maintain both a low false positive rate and a high true positive rate. 

Further supporting the CNN model's discriminatory prowess are the confusion matrix and the Receiver Operating Characteristic 
(ROC) curve. The confusion matrix offers a detailed view of the model’s performance across different categories, showing few 
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misclassifications. The ROC curve, which illustrates the trade-off between the true positive and false positive rates, achieved an 
area under the curve (AUC) nearly perfect at 1.00 for each class, indicating exceptional performance (see Fig. 5). 

The clarity of the confusion matrix and the ROC curves underscores the high detection capabilities of the CNN model, with the 
matrix showing a high accuracy of correct classifications across benign, malicious, and outlier categories. The ROC curves, with 
an AUC of 1.00 for each class, confirm the model’s excellent ability to classify correctly at various decision thresholds. 

The remarkable performance metrics of the CNN model, including accuracy, precision, recall, and F1 Score, along with corrobo-
rative insights from the confusion matrix and ROC curves, indicate that the combination of our simulation framework and Scapy's 
ability to generate network traffic creates a data environment ideal for training efficient intrusion detection models. The findings 
confirm that our approach to generating synthetic data produces a dataset that is both complex and realistic, making it an excellent 
stand-in for real-world data when evaluating and training intrusion detection systems. 

 
Fig. 5. Receiver Operating Characteristic (ROC) curves for each class. 

5. Discussion 
 

The simulated dataset created using Scapy closely mirrored real network traffic, establishing a robust foundation for testing de-
tection algorithms within intelligent vehicle systems. The Convolutional Neural Network (CNN) model, with its impressive re-
sults—99.08% accuracy, 98.96% precision, 99.11% recall, and an F1 score of 99.03%—demonstrated its effectiveness in differ-
entiating between benign and malicious network activities. 

The success of the CNN model can largely be attributed to the diverse and rich dataset generated by Scapy. Scapy’s capability to 
finely tune packet attributes enabled the simulation of various network scenarios, from routine user activities to complex cyber-
attacks. This detailed replication of network behavior is crucial for training Intrusion Detection Systems (IDS) to be both adaptive 
and comprehensive in their threat detection capabilities. 

Scapy's flexibility in packet manipulation played a pivotal role in adding realism to the synthetic dataset, allowing security pro-
fessionals to replicate a wide spectrum of network traffic scenarios accurately. This variety is essential for the IDS to encounter 
and learn from a broad spectrum of potential threats, enhancing its detection capabilities and ability to generalize across different 
scenarios. 

The CNN model’s robust performance metrics validate the synthetic dataset's suitability for training purposes. The model's high 
precision and recall are indicative of its capability to minimize both false positives and false negatives, maintaining the integrity 
and reliability of the network environment. 

A key achievement of this study was ensuring that the synthesized data reflects the complexity of actual network behaviors, 
addressing a common shortfall in many existing datasets. This achievement suggests that the model, when trained on this synthetic 
dataset, is likely to perform well in real-world applications, having been exposed to a comprehensive spectrum of potential network 
situations. 

These results have significant implications for the field of network security, particularly in intelligent vehicle systems. A simulated 
IDS, equipped with high-fidelity data, is better positioned to detect and mitigate real-world intrusions effectively. The performance 
of the CNN model on the synthesized data supports the potential of such systems to be highly effective in actual environments. 

However, the study is not without its limitations. Future research could benefit from integrating additional network flow charac-
teristics, simulating more sophisticated attack vectors, and exploring other deep learning models to further enhance the capabilities 
of IDS. Moreover, comparing these results with datasets derived from actual network traffic would provide deeper insights into 
the model’s practical applicability and effectiveness in real-world scenarios. 
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6. Conclusions and Future Work 
 

In conclusion, the development of the Simulated Network Intrusion Detection System (SNIDS) for intelligent vehicle security 
represents a notable advancement in the field of cybersecurity. Utilizing the sophisticated packet crafting and manipulation capa-
bilities of the Scapy library, we generated a synthetic dataset that effectively mimics the complexities of real-world vehicular 
network traffic. The deployment of a Convolutional Neural Network (CNN) for this dataset’s validation demonstrated excellent 
performance, evidenced by high metrics of accuracy (99.08%), precision (98.96%), recall (99.11%), and F1 Score (99.03%). The 
model's robust predictive ability was further confirmed by an impressive Receiver Operating Characteristic (ROC) curve. The use 
of Scapy enabled precise control over the attributes of network traffic, allowing us to simulate a diverse array of behaviors, from 
routine operations to advanced cyber-attacks. This versatility facilitated a thorough evaluation of the CNN-based IDS within 
various scenarios, effectively narrowing the gap between theoretical research and practical application in operational systems. 
Nevertheless, this study has its limitations. The diversity of the synthetic dataset, while comprehensive, does not capture all con-
ceivable network behaviors and attack vectors recognized in cybersecurity. Moreover, the heuristic classification of network flows 
could be enhanced to better reflect the dynamic nature of vehicular communications and the constantly evolving landscape of 
cyber threats. Future research will aim to expand the simulation environment to incorporate more intricate and covert attack 
scenarios, such as Advanced Persistent Threats (APTs) and insider threats, which are notably challenging to detect. Integrating 
this simulation system with real-world traffic could further improve the realism and applicability of the dataset. There also lies 
potential in exploring various neural network architectures and machine learning strategies to optimize detection performance. 
The overarching goal is to develop a simulation system that serves dual purposes: as a rigorous testing environment for IDS 
solutions and as an educational tool for network administrators and security professionals. By continuously enhancing the simu-
lated dataset and refining the classification methodologies, this system will evolve in sync with the new threats it aims to mitigate, 
ensuring its ongoing relevance and efficacy in the protection of intelligent vehicle networks. This research makes a significant 
contribution to the cybersecurity domain by providing a robust simulated environment for IDS development and demonstrating 
the practical benefits of synthetic datasets in enhancing IDS performance. These promising results set a solid foundation for future 
advancements in network security, paving the way for more effective and resilient defenses against an array of cyber threats. 
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