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 The accurate and efficient classification of leukemia images is crucial for early diagnosis and effec-
tive treatment planning. Traditional methods often face challenges in handling the complexity and 
variability of medical images. To address these challenges, we propose a novel approach that lever-
ages the Gray Level Co-occurrence Matrix (GLCM) and statistical feature-based segmentation tech-
niques. in this paper, we present a comprehensive framework for the automated classification of 
leukemia images using advanced image processing techniques. The methodology involves six key 
stages: input of leukemia images, preprocessing to enhance image quality, segmentation to isolate 
relevant features, feature extraction using texture analysis, classification using multiple distance 
metrics Euclidean, Manhattan, Canberra, and Chebyshev, and performance evaluation. Our results 
demonstrate significant improvements in classification accuracy, sensitivity, specificity, and error 
rates across various metrics and feature sets. For instance, using the Chebyshev distance, we 
achieved an average accuracy of 82.69%, sensitivity of 85.95%, and specificity of 82.77%. The 
Canberra distance provided optimal performance with 65 features, yielding an accuracy of 85.18%, 
sensitivity of 86.39%, and specificity of 86.31%. These findings underscore the efficacy of our ap-
proach in distinguishing between healthy and leukemic cells, thereby contributing to early diagnosis 
and effective treatment planning for leukemia.  
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1. Introduction 
 

Leukemia is a type of cancer that affects the blood and bone marrow, characterized by an overproduction of abnormal white blood 
cells. It is a complex disease with various subtypes, each presenting unique challenges in diagnosis and treatment. Among these 
subtypes, Acute Lymphoblastic Leukemia (ALL) is particularly significant due to its prevalence, especially in children, and its 
rapid progression. Numerous researchers have conducted studies to discover and classify leukemia images (Terwilliger & Abdul-
Hay, 2017). Muntasa et al. (2022, 2023) proposed a commutative convolutional neural network model for leukemia image classi-
fication using hypercomplex modeling A[+1, -1] and A[-1, +1]. They augmented the image datasets through rotation, zooming, 
and flipping, and evaluated their method using the ALL-IDB2 database. The proposed model achieved average accuracies of 
96.43% for A[+1, -1] and 97.05% for A[-1, +1], with maximum accuracies reaching 100% for both. This method outperformed 
several other classifiers, including k-nearest neighbor, various support vector machines, naïve bayes, decision tree, and color 
hybrid modeling. 
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Muntasa and Yusuf (2021) proposed a method to classify Acute Lymphoblastic Leukemia (ALL) using multi-distance models of 
the Gray Level Co-occurrence Matrix (GLCM), extracting 192 features from image enhancement results across three channels. 
The features were classified using Canberra and Chebyshev techniques, achieving 96.97% accuracy with 2.27% false positives 
and 0.75% false negatives. Our method was evaluated using the ALL Image database and compared to various approaches like 
SVM, Naïve Bayes, and Fuzzy-based detection, outperforming them all. 

Muntasa and Yusuf (2019) proposed a model to detect Acute Lymphoblastic Leukemia (ALL) using principal features of the 
object, particularly through Color Orthonormal Basis Entropy (COBE) and Distribution of the Pixel Intensity (DoPI). Key inno-
vations include combining three channel features for improved accuracy and developing a contrast enhancement filter to automat-
ically recognize and remove noise. The approach involves four main stages: image enhancement, segmentation using the Otsu 
algorithm, feature extraction using COBE and DoPI, and performance measurement with the Manhattan method. Evaluated using 
the 2nd ALL-IDB, the method achieved a high accuracy of 91.67% and a small standard deviation of 0.022. Muntasa et al. (2020) 
proposed a novel convolutional neural network (CNN) architecture with pyramid-like kernel increases. The architecture utilizes 
the final convolution for fully connected layers, followed by the SoftMax function for image classification. Evaluated on the ALL-
IDB2 database, the model achieved an accuracy of 99.17%, precision of 99.33%, and recall of 99%. This approach outperformed 
other models, including shape features, GLCM, CNN and SVM, AlexNet, and hypercomplex-valued CNNs. 

Alagu and Bagan (2019) proposed a method to reduce diagnostic time and improve accuracy in classifying leukemia from micro-
scopic blood smear images. The images were preprocessed and segmented into three clusters using the k-means clustering algo-
rithm based on shape, color, and texture. Texture features were extracted using the grey level co-occurrence matrix (GLCM) and 
local binary pattern (LBP), and classification was performed using a support vector machine (SVM) with a Gaussian radial basis 
function (RBF) kernel. Testing on 367 images from the ALL-IDB database achieved accuracies of 90.5% for ALL-IDB1 and 
95.3% for ALL-IDB2, outperforming other classifiers like Linear Discriminant (LD), Ensemble (Bagged trees), and KNN. 

Sukhia et al. (2019) proposed a scheme for classifying Acute Lymphoblastic Leukemia (ALL) based on several key steps: pre-
processing and segmenting white blood cell nuclei with the expectation maximization algorithm, extracting features, selecting 
features using principal component analysis, and classifying using sparse representation. This approach demonstrated significantly 
higher accuracy compared to existing methods for ALL classification. Muntasa and Yusuf (2019) proposed model extracted seven 
features—Energy (EN), Entropy (EP), Shannon Entropy, Log Energy Entropy (EE), Mean (ME), Variance (VA), and Correlation 
(CO) were proposed for object characterization. These features were measured using Euclidean Distance, Manhattan, Canberra, 
and Chebyshev methods, achieving maximum accuracies of 81.54%, 81.54%, 76.92%, and 82.31%, respectively. The method's 
accuracy was further validated using a confusion matrix. The proposed approach was evaluated on the Acute Lymphoblastic 
Leukemia-Image Database (ALL-IDB). 

Shafique and Tehsin (2018) used CNN to utilize a pretrained AlexNet for automated detection and classification of acute lympho-
blastic leukemia (ALL) and its subtypes L1, L2, L3, and Normal—previously overlooked in literature. Unlike traditional training 
methods, we fine-tuned the network on our dataset, replacing the last layers for classification into four classes. Data augmentation 
techniques were employed to prevent overtraining, and various color models were compared for performance. Our approach 
achieved notable results: 100% sensitivity, 98.11% specificity, and 99.50% accuracy for ALL detection, and 96.74% sensitivity, 
99.03% specificity, and 96.06% accuracy for subtype classification, surpassing standard methods without requiring microscopic 
image segmentation. Talaat and Gamel (2024) proposed a model for blood microscopic images that distinguishes between leuke-
mia-free and leukemia-affected samples. The method involves three primary steps: Image_Preprocessing, Feature Extraction, and 
Classification, employing an optimized CNN (OCNN). Fuzzy logic is utilized to optimize CNN hyperparameters, significantly 
enhancing classification performance. Results demonstrate that OCNN achieves exceptional accuracy of 99.99% on the C-
NMC_Leukemia dataset, underscoring its effectiveness in improving CNN performance through fuzzy optimization. Pranav, and 
Rekha Sugandhi's proposed model involves extensive pre-processing to isolate WBCs using morphological techniques. Textural, 
geometrical, and statistical properties are then extracted from segmented regions. Four machine learning techniques—random 
forest (RF), support vector machine (SVM), naive Bayes classifier (NB), and K nearest neighbor (KNN)—are evaluated. SVM 
emerges as highly effective in identifying leukemia-inducing cells, outperforming other classifiers due to its robust performance 
across diverse blood smear images. The study proposes EMC-SVM as a viable method for accurate classification of leukocytes, 
demonstrating successful differentiation and categorization within sample images (More & Sugandhi, 2023). 
 

2. The proposed method  

The methodology for acute lymphoblastic leukemia (ALL) image classification involves six stages: inputting leukemia images, 
preprocessing to enhance quality, segmenting white blood cells, extracting textural features, classifying, and evaluating perfor-
mance with metrics. 
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3. ALL-IDB2 as experimental datasets 

We use the dataset of acute lymphoblastic Leukemia image database type 2 (ALL-IDB2) to evaluate our proposed method. It 
consists of 260 images, of which 130 images are categorized as healthy images, and the remaining are Leukemia images (Labati 
et al., 2011) . We obtain the ALL-IDB2 datasets from the department of computer science - università degli studi di Milano (in 
acronym "UniMi"). Expert oncologists have provided the classification and location of ALL lymphoblasts for every image in the 
dataset, as shown in the image samples in Figure. 4. The ALL-IDB2 image datasets are crop results from the ALL-IDB1 datasets 
with a 2592 × 1944 resolution size of 24-bit color depth. 
 
4. Proposed Model Flowchart 

Fig. 1 represents the research methodology for this study, which encompasses several critical stages aimed at the effective classification 
of leukemia images. Initially, the input consists of leukemia images, which serve as the primary data for analysis. 

 
Fig. 1. Proposed Model flowchart 

4.1 Preprocessing 

The Preprocessing stage is carried out to prepare the images for feature extraction and is crucial in ensuring the integrity and quality of 
the data used in subsequent analysis. This stage involves sophisticated techniques designed to enhance the dataset images and make it 
suitable for accurate feature extraction. normalization is performed to scale the pixel values to a standard range, ensuring uniformity 
across all dataset images. The preprocessing stage plays a pivotal role in enhancing the reliability and accuracy of the feature extraction 
process, setting a solid foundation for the entire analysis workflow. 

4.2 Segmentation 

The segmentation stage is a critical process. This process involves several key steps, each contributing to the accurate extraction 
and identification of features within the image, as shown in Fig. 2. First, the input image is decomposed into its three primary 
color channels: green, red, and blue. A color image (Fr,g,b) can be represented by its red (Fr), green (Fg), and blue (Fb) channels, 
as shown in Eq. (1). 
 
𝐹𝐹𝑟𝑟,𝑔𝑔,𝑏𝑏 = (𝐹𝐹𝑟𝑟 ,𝐹𝐹𝑔𝑔,𝐹𝐹𝑏𝑏) (1) 

 

Eq. (1) can be broken down into three separate matrix equations, as demonstrated in Eqs. (2-4). 

𝐹𝐹𝑟𝑟 = �
𝐹𝐹𝑟𝑟(1,1) ⋯ 𝐹𝐹𝑟𝑟(1,𝑛𝑛)

⋮ ⋱ ⋮
𝐹𝐹𝑟𝑟(𝑚𝑚, 1) ⋯ 𝐹𝐹𝑟𝑟(𝑚𝑚,𝑛𝑛)

� 
 

(2) 

𝐹𝐹𝑔𝑔 = �
𝐹𝐹𝑔𝑔(1,1) ⋯ 𝐹𝐹𝑔𝑔(1,𝑛𝑛)

⋮ ⋱ ⋮
𝐹𝐹𝑔𝑔(𝑚𝑚, 1) ⋯ 𝐹𝐹𝑔𝑔(𝑚𝑚,𝑛𝑛)

� 
(3) 

𝐹𝐹𝑏𝑏 = �
𝐹𝐹𝑏𝑏(1,1) ⋯ 𝐹𝐹𝑏𝑏(1,𝑛𝑛)

⋮ ⋱ ⋮
𝐹𝐹𝑏𝑏(𝑚𝑚, 1) ⋯ 𝐹𝐹𝑏𝑏(𝑚𝑚,𝑛𝑛)

� 
(4) 
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Moreover, each image channel is enhanced to compute the histogram and automatically adjust the limit values. In this instance, 
we used the standard gamma correction with 𝜸𝜸=1. If the enhanced color image is represented by the variable G, then the improved 
result matrix is a combination of Gr, Gg, and Gb, as described in Eq. (5). 
 

𝐺𝐺𝑟𝑟,𝑔𝑔,𝑏𝑏 = (𝐺𝐺𝑟𝑟 ,𝐺𝐺𝑔𝑔,𝐺𝐺𝑏𝑏) (5) 

Additionally, Eq. (5) is transformed into the HSV (Hue, Saturation, and Value) model, with the hue channel being selected for 
further processing. 

𝐻𝐻𝐻𝐻𝐻𝐻 =  

⎩
⎪
⎨

⎪
⎧

60 𝑥𝑥 �2+ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑅𝑅𝑅𝑅𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉=𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

60 𝑥𝑥 �4+ 𝑅𝑅𝑅𝑅𝑅𝑅−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉=𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

60 𝑥𝑥 � 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�𝑖𝑖𝑖𝑖 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=𝑅𝑅𝑅𝑅𝑅𝑅

0                      𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0             

 

 

(6) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �
0                                           𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 0 

1 − min(𝑅𝑅𝑅𝑅𝑅𝑅,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 > 0 
 

 

(7) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = max(𝑅𝑅𝑅𝑅𝑅𝑅,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) (8) 

Fig 3. shows the implementation of the Eqs. (1-8). 
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Fig. 3. The Implementation of Segmentation Stages 

We proceeded by isolating the hue channel image into two components: lymphocytes and the background, with the lymphocyte 
section comprising both the cytoplasm and nucleus. To achieve this, we employed a mask matrix, producing a filtered image. This 
filtered image was then transformed into a binary image through the local entropy threshold method. However, the resulting binary 
image contained substantial noise, necessitating its removal. We established a noise area criterion of less than 125 pixels, removing 
objects smaller than this threshold. As a result, the image retained only two distinct objects: the background and the lymphocytes. 

4.3 Features Extraction 

In the classification and detection of Acute Lymphoblastic Leukemia (ALL) from microscopic images, texture analysis plays a 
critical role. The Gray Level Co-occurrence Matrix (GLCM) is a powerful statistical tool used for extracting texture features from 
images. This methodology focuses on extracting key features such as Contrast, Correlation, Energy, Homogeneity, Mean, and 
Variance using GLCM to improve the accuracy of ALL detection and classification. Spatial relationships (offsets) are defined for 
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GLCM computation. For each offset, a GLCM is constructed by counting the frequency of pixel pairs with specific gray level 
values occurring at the defined spatial relationship. From each GLCM, several texture features are extracted (PS & Vs, 2016). 

Contrast: which measures the intensity contrast between a pixel and its neighbor over the whole image. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  �(𝑖𝑖 − 𝑗𝑗)2𝑃𝑃(𝑖𝑖, 𝑗𝑗)
𝑖𝑖,𝑗𝑗

, (9) 

where higher contrast values indicate a greater disparity in intensity between neighboring pixels, which may signify the presence 
of abnormal cell structures. 

Correlation: which measures how correlated a pixel is to its neighbor over the whole image. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �
(𝑖𝑖 −  𝜇𝜇𝑖𝑖)�𝑗𝑗 −  𝜇𝜇𝑗𝑗�𝑃𝑃(𝑖𝑖, 𝑗𝑗)

𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑖𝑖,𝑗𝑗

, 
 

(10) 

where high correlation values indicate a linear relationship between the pixel values, often reflecting more homogeneous cell 
regions. 
 
Energy: which measures the sum of squared elements in the GLCM. 
 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �𝑃𝑃(𝑖𝑖, 𝑗𝑗)2

𝑖𝑖,𝑗𝑗

 (11) 

where higher energy values suggest less texture complexity and more uniform cell regions.  
 
Homogeneity: which measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal. 
 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = �
𝑃𝑃(𝑖𝑖, 𝑗𝑗)

1 + |𝑖𝑖 − 𝑗𝑗|
𝑖𝑖,𝑗𝑗

, 
(12) 

where higher homogeneity values indicate that pixels are more similar in intensity to their neighbors, characteristic of uniform 
tissue structures. 
 

Mean: is the average value of the pixel intensities in the image. 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑖𝑖.𝑃𝑃(𝑖𝑖, 𝑗𝑗)

𝑖𝑖,𝑗𝑗

, (13) 

 
where the mean provides the central tendency of the gray levels, which can help distinguish between different tissue types. 
 
Variance: which measures the dispersion of pixel intensities around the mean. 
 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = �(𝑖𝑖 −  𝜇𝜇)2

𝑖𝑖,𝑗𝑗

𝑃𝑃(𝑖𝑖, 𝑗𝑗) (14) 

where higher variance values indicate greater variability in pixel intensities, often seen in regions with mixed cell types. 

4.4. Classification 

The classification and detection of Acute Lymphoblastic Leukemia (ALL) in microscopic images is crucial for early diagnosis and 
treatment. In this research, we explore various distance metrics Manhattan, Euclidean, Canberra, and Chebyshev to enhance the accuracy 
of image classification algorithms in detecting ALL. These metrics are applied to feature vectors extracted from microscopic images, 
allowing us to compare their effectiveness in distinguishing between healthy and leukemic cells. 

4.4.1. Manhattan Distance 

The Manhattan distance calculates the distance between two points in a grid-based path by summing the absolute differences of their 
coordinates. 

𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑦𝑦) =  � |𝑥𝑥𝑖𝑖 −  𝑦𝑦𝑖𝑖|
𝑛𝑛

𝑖𝑖=1
. (15) 
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4.4.2 Euclidean Distance 
 
The Euclidean distance is the straight-line distance between two points in Euclidean space. 
 

𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥, 𝑦𝑦) =  �� (𝑥𝑥𝑖𝑖 −  𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1
. 

 

(16) 

4.4.3. Canberra Distance 

The Canberra distance is a weighted version of the Manhattan distance, giving more importance to differences in dimensions with smaller 
values. 

  𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) =  ∑ |𝑥𝑥𝑖𝑖− 𝑦𝑦𝑖𝑖|
|𝑥𝑥𝑖𝑖|+ |𝑦𝑦𝑖𝑖|

𝑛𝑛
𝑖𝑖=1 . (17) 

4.4.4.  Chebyshev Distance 

The Chebyshev distance, also known as the L∞ distance, measures the greatest difference between corresponding coordinates of 
two points. 
 

𝑑𝑑𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑦𝑦) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖|𝑥𝑥𝑖𝑖 −  𝑦𝑦𝑖𝑖| (18) 

4.5.  Evaluation 

The evaluation of the classification model is a crucial stage that ensures the reliability and effectiveness of the model. For this 
purpose, we utilize several performance metrics: Matthews Correlation Coefficient (MCC), sensitivity, specificity, accuracy, error 
rate, recall, and precision. Each metric provides unique insights into the performance of the model, helping us understand its 
strengths and weaknesses (Chicco & Jurman, 2023). Matthews Correlation Coefficient (MCC) which measures the quality of 
binary classifications. It considers true and false positives and negatives and is regarded as a balanced measure even for imbalanced 
datasets as the following Formula. 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
(𝑇𝑇𝑇𝑇 ×  𝑇𝑇𝑇𝑇) − (𝐹𝐹𝐹𝐹 ×  𝐹𝐹𝐹𝐹)

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
. 

(19) 

 

Sensitivity measures the proportion of actual positives that are correctly identified by the model as the following formula: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 
. (20) 

 
Specificity measures the proportion of actual negatives that are correctly identified by the model as the following formula: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 
. (21) 

Accuracy measures the overall correctness of the model, considering both true positives and true negatives as the following for-
mula. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 
. (22) 

Error rate measures the proportion of incorrect predictions made by the model as the following formula. 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 
. (23) 

 

5. Experimental Results and Discussion 

In this paper, we evaluated our proposed method using a dataset of 260 images, labeled 0 for healthy individuals and 1 for leukemia 
patients. Among these, 130 images are of healthy individuals, and 130 are of leukemia patients. We utilized random sampling for 
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training set selection and conducted experiments using four distance measures: Manhattan, Euclidean, Canberra, and Chebyshev. 
Fig. 4. Shows the positive and negative of the ALL-IDB samples.  
 

Samples of  negative images  

   
Samples of  positive images 

   
Fig. 4. Samples of ALL Images 

Table 1 demonstrates that we developed 15 scenario models for each distance measure, performing 30 random samplings per 
scenario, resulting in a total of 450 experiments (15 scenarios × 30 samplings). We applied k-fold cross-validation with k=15, 
where each experimental scenario was evaluated using random sampling. The sample indexes for both training and testing sets 
were computer-generated, with the training set size consistently doubled, indicating equal numbers of acute lymphoblastic leuke-
mia patient images and healthy individual images. For example, in scenario No. 1, the training set comprises 112 images (56 of 
leukemia patients and 56 of healthy individuals), which is similarly reflected in the third column of our data. 
 
Table 1 
Scenarios models 

No Training Testing No Training Testing 
1 56 × 2=112 74 × 2=148 9 64 × 2= 128 66 × 2=132 
2 57 × 2=114 73 × 2=146 10 65 × 2= 130 65 × 2=130 
3 58 × 2= 116 72 × 2=144 11 66 × 2= 132 64 × 2=128 
4 59 × 2= 118 71 × 2=142 12 67 × 2= 134 63 × 2=126 
5 60 × 2=120 70 × 2=140 13 68 × 2= 136 62 × 2=124 
6 61 × 2= 122 69 × 2=138 14 69 × 2= 138 61 × 2=122 
7 62 × 2= 124 68 × 2=136 15 70 × 2= 140 60 × 2=120 
8 63 × 2= 126 67 × 2=134    

 

We evaluated our proposed method using four measurement techniques: Euclidean Distance, Manhattan, Canberra, and Cheby-
shev. 
 

5.1. Experimental Results and Discussion using Euclidean Distance 

Fig. 5. present the MCC using Euclidean distance, where the average performance improves steadily from 73.04 at 56 features to 
a peak of 84.45 at 65 features. Minimum performance also increases, reaching 79.37 at 65 features. Maximum performance values 
peak at 90.48 with 62 features, while standard deviation remains low, indicating consistent results. Overall, the best performance 
and stability are observed with around 65 features. 

 
Fig. 5. The MCC for Euclidean distance 
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Fig. 6 presents the accuracy metrics using Euclidean Distance. The average accuracy improves, peaking at 65 features with 84.51. 
Minimum and maximum accuracy values also show improvements, with peaks at 60 and 61 features, respectively. The standard 
deviation remains low, indicating consistent performance, especially stable at 70 features. Overall, 65 features offer the best bal-
ance of high average accuracy and stability. 

 

 
Fig. 6. The Accuracy for Euclidean distance 

 

Fig. 7 presents error rates using Euclidean Distance. The average error rate decreases as features increase, reaching a low of 15.49 
at 65 features before rising again. Minimum error rates show significant improvement, with the lowest at 62 features (8.82). 
Maximum error rates vary but show a notable reduction around 64 and 65 features. The standard deviation remains relatively low, 
indicating consistent performance, with the lowest at 70 features (0.024). Overall, the optimal performance is observed around 64 
to 65 features. 
 

 
Fig. 7. The Error Rate for Euclidean distance 

Fig. 8 presents the sensitivity using Euclidean Distance as a performance metric. The highest average sensitivity (85.48) is 
achieved with 56 features, while sensitivity generally declines as features increase, dropping to 75.29 at 70 features. The minimum 
sensitivity values show variability, with the lowest at 66.10 for 59 features. Maximum sensitivity remains relatively high, peaking 
at 96.83 for 63 features. Standard deviation values indicate consistent performance, with the lowest variability at 64 features 
(0.040). 

 
Fig. 8. The Sensitivity for Euclidean distance 
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Fig. 9. The specificity for Euclidean distance 

5.2. Experimental Results and Discussion using Manhattan distance 
 
Fig. 10 presents MCC performance metrics using Manhattan distance. The average MCC improves steadily, peaking at 85.25 with 
65 features. Minimum MCC values show improvement, particularly from 65 to 70 features. The maximum MCC value reaches 
92.31 at 66 features. Standard deviation remains low, indicating consistent performance across feature sets. Overall, optimal per-
formance and stability are achieved around 65 to 66 features. 
 

 
Fig. 10. The MCC for Manhattan distance 

 

Fig. 11 presents the accuracy performance metrics for Manhattan distance which it shows an increasing trend in average accuracy, 
peaking at 85.1 with 65 features. Minimum accuracy improves significantly from 69.6 to 79.2, reflecting enhanced worst-case 
performance. Maximum accuracy reaches its highest at 92.2 with 66 features, indicating strong best-case scenarios. The standard 
deviation remains low, suggesting consistent performance, especially stable at 70 features. Overall, using around 65-66 features 
yields the best classification accuracy and reliability. 
 

 
Fig. 11. The Accuracy for Manhattan distance 

 
Fig. 12 present the average error rate metrics using Manhattan distance where it decreases steadily from 23.63 to 14.90 as the 
number of features increases, reaching the lowest at 65 features. Minimum error rates show significant improvement, dropping 
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from 18.24 to 10.77. Maximum error rates also decrease, with the best performance around 70 features at 25. The standard devi-
ation values remain low, indicating stable error rates across feature sets. Overall, increasing features improves classification ac-
curacy, with optimal performance around 65 features. 
 

 
Fig. 12. The Error Rate for Manhattan distance 

Fig. 13 presents the sensitivity for Manhattan distance as a performance metric for leukemia image classification. The average 
sensitivity shows a peak at 86.10 with 65 features, while minimum values improve up to 66 features. Maximum sensitivity is 
highest at 60 features with 96.88. Standard deviation values indicate consistent performance, particularly from 65 to 70 features. 
Overall, the sensitivity peaks and stabilizes around 65 features, highlighting optimal performance. 
 

 
Fig. 13. The Sensitivity for Manhattan distance 

Fig. 14 presents the sensitivity for Manhattan distance as a performance metric for leukemia image classification. Average sensi-
tivity improves consistently, peaking at 85.97 with 69 features. Minimum values show variability but generally increase, with a 
low of 58.43 at 57 features and a high of 74 at 70 features. Maximum sensitivity values peak at 96.92 with 65 features. The 
standard deviation remains low, indicating stable performance across feature sets. Overall, sensitivity is optimized around 65 to 
70 features. 
 

 
Fig. 15. The Specificity for Manhattan distance 
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5.3.   Experimental Results and Discussion using Canberra distance  
 
Fig. 15 presents the MCC performance metrics for leukemia using Canberra distance. Average MCC values show an upward 
trend, peaking at 85.25 with 65 features. Minimum and maximum MCC values also increase, with notable peaks at 65 features 
(minimum 80.92, maximum 91.47). Standard deviation values are low, indicating consistent performance, particularly stable at 
70 features. Overall, 65 features provide optimal performance and stability. 

 
Fig. 15. The Specificity for Canberra distance 

Fig. 16 presents accuracy metrics using the Canberra distance. Average accuracy peaks at 85.18 with 65 features, indicating the highest 
performance. Minimum accuracy improves steadily, peaking at 80.77 for 65 features. Maximum accuracy also peaks at 91.54 with 65 
features. Standard deviation remains low, suggesting consistent performance across feature sets. Overall, 65 features achieve the best 
accuracy and stability. 

 
Fig. 16. The Accuracy for Canberra distance 

 

Fig. 17 presents the error rate for Canberra distance as a performance metric. The average error rate decreases from 23.90 to a low of 
14.82, with the minimum error rate also improving from 18.24 to 8.46. Maximum error rates show variability, peaking at 30.41 and later 
stabilizing around 25.83. The standard deviation remains relatively stable, indicating consistent performance. Overall, lower error rates 
are achieved with increased features, improving classification accuracy. 
 

 
Fig. 17. The Error Rate for Canberra distance 
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Fig. 18 presents sensitivity metrics using Canberra distance. Average sensitivity peaks at 86.39 with 64 features and declines to 73.76 
with 70 features. Minimum sensitivity improves until 64 features and fluctuates thereafter. Maximum sensitivity remains high, peaking 
at 96.43 with 56 features. Standard deviation indicates relatively stable performance, with the lowest variability at 63 features (0.035). 
Overall, optimal performance is observed around 64 features. 

 
Fig. 18. The Sensitivity for Canberra distance 

Fig. 19 presents specificity metrics using Canberra distance. The average specificity improves from 70.65 to a peak of 86.31 at 68 
features. Minimum specificity shows variability, with a notable dip to 57.35 at 64 features. Maximum specificity peaks at 94 between 
67 to 70 features. Standard deviation remains moderate, indicating relatively consistent performance. Overall, the optimal specificity 
performance occurs around 68 features. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 19. The Specificity for Canberra distance 

5.4.  Experimental Results and Discussion using Chebyshev distance 

Fig. 20 presents performance metrics for MCC using Chebyshev distance. Average MCC values increase steadily from 72.11 to 83.14 
as the number of features ranges from 10 to 65. Minimum MCC values also show a gradual increase from 64.52 to 77.61, indicating 
improved worst-case performance. Maximum MCC values peak at 90.23, suggesting strong predictive capability at optimal feature 
counts. Standard deviation remains relatively low, indicating consistent model performance across feature sets. 

 

Fig. 20. The MCC for Chebyshev distance 
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Fig. 21 presents performance metrics for accuracy using Chebyshev distance. The average accuracy across different experiments ranges 
from 74.89% to 82.69%, with a peak at 82.69% observed with 10 features. Minimum accuracy levels range from 67.14% to 76.92%, 
showing variability across feature sets. Maximum accuracy reaches up to 90.15%, indicating the potential for high classification perfor-
mance. Standard deviations are generally low, indicating consistent performance evaluations. 

 

Fig. 21. The accuracy for Chebyshev distance 
 

Fig. 22 presents performance metrics for error rate using Chebyshev distance. The figure shows varying performance across different 
measurements. The average error rate ranges from 17.31% to 25.11%, with fluctuations observed across different feature sets. Minimum 
error rates are notably lower, ranging from 9.85% to 19.86%, indicating effective classification in some scenarios. Maximum error rates 
range from 23.07% to 32.86%, suggesting variability in classification accuracy. Standard deviations are relatively low, indicating con-
sistent performance measures across the dataset. 

 

 

Fig. 22. The Error rate for Chebyshev distance 

Fig. 23 presents performance metrics for Sensitivity using Chebyshev distance. The sensitivity results for Chebyshev distance as a per-
formance metric indicate varying performance across different experiments. The average sensitivity ranges from 76.29% to 85.95%, 
with the highest average achieved at 85.95%. Minimum sensitivity values range from 67.14% to 78.46%, while maximum sensitivity 
values vary from 84.29% to 94.64%. Standard deviations across experiments are relatively low, ranging from 0.04 to 0.06, suggesting 
consistent sensitivity measurements. These findings highlight the robustness of Chebyshev distance in effectively classifying leukemia 
images with high sensitivity and reliability. 

 

Fig. 23. The Sensitivity for Chebyshev distance 
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Fig. 24 presents specificity metrics for Chebyshev distance across different experiments. Specificity averages range from 68.15% to 
82.77%, showing an increasing trend with varying feature sets. Minimum values range from 56.52% to 72%, indicating variability in 
worst-case performance across experiments. Maximum values span from 77.17% to 98.11%, demonstrating the potential for high per-
formance. Standard deviations, ranging from 0.0369 to 0.0663, suggest consistent performance variability across experiments. 

 

 

Fig. 24. The Specificity for Chebyshev distance 

6. Conclusion 

This research establishes a robust and reliable framework for the automated classification of leukemia images, leveraging state-of-the-
art image processing and machine learning techniques. By incorporating multiple distance metrics Euclidean, Manhattan, Canberra, and 
Chebyshev we achieved high classification performance, with the Chebyshev distance showing an average accuracy of 82.69% and 
sensitivity of 85.95%. The optimal performance was observed with the Canberra distance using 65 features, which resulted in an accuracy 
of 85.18%, sensitivity of 86.39%, and specificity of 86.31%. These results validate the effectiveness of our proposed method in accurately 
classifying leukemia cells, thereby enhancing the potential for early diagnosis and targeted treatment strategies. Future work will focus 
on refining feature extraction techniques and exploring additional distance metrics to further improve classification accuracy and robust-
ness. 
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