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 In order to monitor the surface condition of the conveyor belt in the process of running, a method of 
beam structure light irradiation based on machine vision is adopted. A spring-type mechanical 
vibration damping device is designed to improve the focusing quality of the camera, and an algorithm 
is proposed to solve the selection of spring parameters under different flutter amplitudes. Yolov7 deep 
learning algorithm was adopted and ACmix attention mechanism was introduced to identify the 
surface cracks of conveyor belt. The experimental results show that the improved YOLOV7-ACmix 
algorithm can effectively improve the accuracy and generalization ability of image recognition. 
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1. Introduction  

      The belt conveyor is a crucial piece of equipment for transporting materials over long distances and high volumes, widely 
used in ports, mining sites, and construction material facilities. Since the conveyor belt is primarily made of rubber, it is 
susceptible to damage from materials during loading or misalignment, which can lead to severe issues such as tearing or 
breaking of the belt, resulting in significant economic losses and potential threats to personal safety. Therefore, timely 
inspection of the belt surface and identification of safety hazards is essential. Traditional manual inspection methods require 
extensive human resources and may be affected by subjective biases, compromising the quality of inspections. With 
advancements in industrial intelligent technology, machine vision is now commonly used for online monitoring of belt surface 
conditions (Fei, 2023). 

     During the operation of a belt conveyor, factors such as transmission speed, uneven material load, belt elasticity 
deformation, and mechanical vibrations inevitably cause belt vibrations (YanBin, 2022). These vibrations can significantly 
impact the focus of industrial cameras during online imaging, making it challenging to obtain stable and clear images of cracks. 
Therefore, implementing effective vibration reduction measures is crucial for successful machine vision monitoring (Fan, 
2023, Qi, 2022).This study examines a material conveyor belt from a pelletizing workshop at Hunan and involves setting up 
an experimental platform to explore vibration reduction methods, specifically using springs. On this vibration-controlled 
platform, a linear laser was installed, and an industrial camera was employed to capture clear images of surface cracks on the 
belt (Haibin et al., 2013), aiding in the development of monitoring algorithms. 

     In the study of belt surface crack detection algorithms, image recognition algorithms based on artificial intelligence and 
deep learning are widely used in the field of machine vision for online monitoring (Gu & Zong, 2022). This paper employs 
the YOLOv7 (Wang et al., 2023) algorithm for object detection and introduces ACmix (Pan et al., 2022) into the network 
architecture of the object detection algorithm. By combining the advantages of convolution and self-attention mechanisms, 
the algorithm's sensitivity to small target objects is enhanced. This approach is utilized to achieve intelligent online monitoring 
of surface cracks on the belt. 
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2. Construction of the Conveyor Belt Testing Platform 

    The conveyor belt crack online monitoring test platform described in this paper is shown in Fig. 1. It includes a conveyor 
belt system equipped with sensors and actuators to simulate real-world operating conditions. The platform features adjustable 
components for tuning vibration parameters and integrating different damping technologies. Additionally, it is fitted with a 
machine vision system to capture and analyze belt surface images, facilitating the assessment of the effectiveness of vibration 
control methods. 

     The belt is made of black rubber, with a width of 650 mm and a drive power of 3 kW, utilizing variable frequency speed 
control with a maximum belt speed of 1.6 m/s. The belt is connected using mechanical chain links, which cause significant 
vibration every time the belt passes over rollers and tensioning idler. However, this vibration is patterned and can be 
distinguished from abnormal vibrations. 

     Two locations for vibration reduction devices are reserved at the center of the conveyor's lower crossbeam. On one side of 
the vibration reduction device, a camera bracket and a linear laser emitter bracket are installed. The camera used for capturing 
belt crack images is a high-resolution Hikvision MV-CH250-90UC model (with a resolution of 25 megapixels and a frame 
rate of 4.5 fps). 

 

 
Fig. 1. Conveyor belt test platform physical picture 

3.  Vibration Reduction Device Testing Platform Construction 

3.1  Design of Vibration Reduction Device Structure 

     The structure of a single vibration reduction device is illustrated in Fig. 2.  

  
Fig. 2. Structure drawing of vibration damping device Fig. 3. Vibration reduction device layout diagram 

     The device consists of an upper and lower crossbar, each equipped with a rolling bearing fixed at regular intervals along 
their axial direction. The upper crossbar is securely fixed in place by a screw-nut mechanism, while the lower crossbar is 
connected in series with a spring on the screw and is constrained by upper and lower nuts to limit its range of movement. The 
conveyor belt passes through the space between the upper and lower crossbars. Under the force of the spring, the rolling 
bearings on the lower crossbar push the belt into contact with the rolling bearings on the upper crossbar, ensuring that the 
bearings maintain constant pressure contact with the belt. Two sets of these vibration reduction devices are arranged at a 
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specific distance, as shown in Fig. 3. This distance is optimized for the best image capture range of the industrial camera. The 
vibration reduction devices are mounted between two lower support beams of the belt conveyor, thereby limiting the vertical 
vibrations of the belt. The design also takes into account material durability, ease of installation, and compatibility with the 
conveyor system. Adjustable elements are incorporated to fine-tune the device's performance according to the specific 
vibration characteristics of the conveyor system. Overall, the goal is to enhance the stability and longevity of the conveyor 
belt by minimizing the impact of vibrations (Haibin, 2011). 

3.2 Static analysis of vibration damping device 

     When the belt passes between the upper and lower crossbars, the lateral forces generated by its vibrations directly act on 
both crossbars. The position of the upper crossbar is restricted by the nuts, while the maximum position of the lower crossbar 
is limited by the nuts, and the minimum position is supported by the pre-tension force of the spring, which acts in the opposite 
direction to the lateral forces exerted on the lower crossbar by the belt. Since the lower crossbar is in close contact with the 
belt, the lower crossbar and the belt can be considered as a single unit (Zhu et al., 2018; Wei & LiQun, 2006; ). Based on this 
setup, the static equilibrium equation can be formulated as follows: 

1 3 22 cosF Kx F F mgθ+ + = +             (1) 

     In the equation, F1 is the preload force of the spring, K is the spring's stiffness coefficient, x is the maximum amplitude, F3 
is the tension force in the belt, cos θ is the angle between the belt and the vertical direction when the maximum amplitude is 
reached, and F2 is the weight of the lower crossbar. m is the mass per unit length of the belt, and g is the acceleration due to 
gravity. Due to the varying vibration amplitudes of the conveyor belt at different lengths of the support beam, and since the 
vibration reduction devices are installed at the same horizontal height along the beam, it is necessary to adjust the height of 
the upper and lower crossbars using screw-nut mechanisms to accommodate the belt's different vertical positions. Given that 
the vibration amplitudes and impulses of the belt vary at different positions along the beam, different spring pre-tension forces 
are required to control the belt's vibration. Therefore, designing suitable springs is a key focus and critical technology in the 
development of this vibration reduction device. 

3.3 Spring parameter calculation 

     To measure the vibration amplitude and frequency of the belt, the conveyor belt testing platform was used to capture the 
edge vibrations of the belt at various speeds, with numerical calibration performed. The belt vibration data collected at 
different speeds is presented in Table 1. 

Table 1 
Vibration parameters of the conveyor belt before the vibration damping device is installed 

 

     Based on the static equilibrium equation (Eq. (1)) and using the principle of energy conservation, the following differential 
equation can be established: 

2 21 1
2 2P Dx E E Kxρ

•

= + +        
(2) 

      

      In the equation, Ep represents the gravitational potential energy added to the system when the belt's vibration amplitude is 
at its maximum. ED denotes the work done by the elastic force generated by the belt deformation, and K is the spring's stiffness 
coefficient. The terms ED and Ep are neglected 

2 21 1
2 2

x Kxρ
•

=     
(3) 

        

     Solving this equation yields: 

Converter frequency 
(Hz) 

Tape speed 
 

(mm/s) 

Lower belt amplitude 
Max 
(mm) 

Maximum wave frequency 
(Hz) 

15 480 15 4 
20 640 16 10 
25 800 21 10 
30 960 15 13 
35 1120 10 10 
40 1280 30 10 
45 1440 9 7 
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2lnK xρ=        
(4) 

      Using this calculation method, the spring stiffness coefficient is determined as shown in Table 2. 

Table 2 
Calculated values of spring stiffness coefficient 

Converter frequency (Hz) 15 20 25 30 35 40 
K（N/mm） 26.4 25.6 22.3 26.4 31.6 22.9 

 

      The required spring stiffness coefficient is 31.6 N/mm. Based on the parameters mentioned above, the maximum lateral 
load exerted by the belt is approximately 350 N. Finally, referring to the Mechanical Design Handbook and considering 
practical conditions, the specific spring parameters are listed in Table 3. 

Table 3 
Spring Types and Dimensional Parameters 

 

4. Belt Crack Machine Vision Monitoring Methods 

      As shown in Fig. 4, the machine vision system described in this paper consists of an industrial camera and a linear laser 
emitter, both mounted on the vibration reduction device platform. The linear laser emitter projects a bright green "I"-shaped 
stripe onto the belt surface. When a crack on the belt surface passes through the laser stripe, it causes a noticeable "interruption" 
in the laser stripe image, as illustrated in Fig. 5. However, variations in brightness or material adhesion on the belt surface can 
also cause similar "interruptions" in the laser stripe image. Therefore,  how to quickly identify the real crack of the belt is also 
an important research content of this study. This paper uses the YOLOv7 deep learning algorithm for crack detection on the 
conveyor belt. 

  

Fig. 4. Machine vision device layout diagram Fig. 5. Linear green laser projection 

      YOLOv7 is one of the most advanced single-stage object detection algorithms, capable of meeting both real-time and 
high-accuracy requirements for belt surface crack detection. It is an enhancement of YOLOv5, featuring several improvements. 
The primary framework of YOLOv7 consists of three parts: the input, the backbone network, and the head. Compared to 
YOLOv5, YOLOv7 incorporates the E-ELAN network module, which enhances training and inference efficiency. 
Additionally, the introduction of auxiliary heads improves detection accuracy without affecting inference time. However, due 
to the elastic nature of the belt, cracks may contract, leading to smaller detection targets and issues such as reduced detection 
accuracy and missed small targets (Chen et al., 2017; Gao et al., 2021). To address these challenges, the YOLOv7 network is 
improved by incorporating the ACmix attention mechanism. Convolution (Krizhevsky et al., 2017; LeCun et al., 1989) and 
self-attention (Vaswani, 2017) are two powerful modules used in representation learning. Convolutional modules typically 
focus on information within a local receptive field, whereas self-attention modules consider information across the entire 
image (Niu et al., 2021). This makes self-attention mechanisms more flexible compared to convolutional neural networks 
(CNNs). However, this flexibility comes with a trade-off: self-attention mechanisms often require more training data to 
perform effectively (Cordonnier et al., 2019). In scenarios with limited training data, self-attention mechanisms may suffer 
from overfitting. 

     On the other hand, CNNs generally require less training data and are less prone to overfitting. However, they may not fully 
leverage the benefits of large datasets as effectively as self-attention mechanisms can. To leverage the strengths of both types 
of neural networks, this paper introduces the ACmix attention mechanism. The ACmix module elegantly combines 
convolutional and self-attention mechanisms, harnessing the benefits of both. The principle is as follows:  

Spring type mean diameter of 
coil 

Material diameter pitch number of active 
coils 

number of total 
coils 

unsupported 
height 

Top tight and smooth 20 mm 3 mm 6.4 mm 6.5 8.5 46 mm 
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     ACmix merges the similar first stages of CNNs and self-attention networks. In the second stage, it creates two branches: 
one for convolutional processing and another for self-attention processing. Each branch performs its respective computations 
in the second stage. Finally, the outputs from both branches are combined through weighted fusion, as illustrated in Fig. 6. 

 

Fig. 6. Three kinds of network structure diagram 

    After merging the outputs from the two branches, the ACmix attention mechanism integrates the strengths of both 
convolutional and self-attention networks. This integration enhances the detection of both global and local features, improving 
the network's overall object detection performance. 

    We abstract the convolution process into two stages: 

     First Stage: Convolution is performed by applying a specific pixel from the convolutional kernel to the previous feature 
map, generating a feature map unique to that kernel. Second Stage: The feature maps obtained in the first stage are shifted 
according to their respective pixel positions and then summed together, as illustrated in Fig. 7. 

 

Fig. 7. Convolution schematic 

      In the first step of the convolution operation, the k×k convolution kernel is decomposed into K×K 1×1convolution kernels. 
Each element of these 1×1 kernels is multiplied by the corresponding pixel value from the previous layer’s feature map, 
without performing any summation. The operation can be described as follows: 

( , )
,

p q
ij p q ijg K f=     (5) 

      In the second step, the feature maps obtained from the first step are shifted according to their corresponding positions. 
This shifting process can be represented by the following formula: 

( , ) ( , )( , , )
2 2

p q p q
ij ij

k kg Shift g p q= − −  
(6) 

After obtaining the shifted feature maps, the next step is to aggregate these features. The aggregation process is given by 
the following formula: 

( , )

,

p q
ij ij

p q
g g= ∑  (7) 
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      The attention mechanism first calculates the weights for the feature at the current pixel (i , j) relative to the features in its 
surrounding area. It then performs a weighted sum of these features. This process can be visualized as shown in Fig. 8. 

 

Fig. 8. Self-attention mechanism schematic 

      In the first step of the attention mechanism, the input features are linearly transformed into three different representations: 
Query (Q), Key (K), and Value (V). This transformation can be expressed by the following formulas: 

( ) ( ) ( ) ( ) ( ) ( ), ,l l l l l l
ij q ij ij k ij ij v ijq W f k W f v W f= = =  (8) 

     The Fij is the input feature matrix. In the second step of the attention mechanism, the attention weights are calculated and 
then used to aggregate the Value (V) matrix, effectively focusing on relevant features. This process involves the following 
steps and formulas: 

( ) ( ) ( )

1 , ( , )
( ( , ) )

k

N
l l l

ij ij ab ab
l a b N i j

g A q k v
= ∈

= ∑  (9) 

 
 

Nk (i , j) denotes a pixel region centered at (i , j) with a spatial width of k.A (W , k) represents the weights corresponding 
to the Nk (i , j) region. 

5. Experimental results and analysis 

5.1 Vibration reduction effect experiment 

     Based on the vibration reduction device structural design and the spring types and dimensions detailed in Table 3, the 
vibration reduction devices were installed at 600 mm intervals along the center of the lower belt on the conveyor test platform 
for laboratory experiments. Using the same belt speed and the same edge vibration measurement methods and equipment as 
described in Table 1, the maximum amplitude data of the belt was obtained, as shown in Table 4. 

Table 4 
Amplitude of conveyor belt after vibration damping device installation 

Converter frequency 
（Hz） 

Tape speed(mm/s) Lower belt amplitude Max(mm) damping range（%） 

15 480 4 73 
20 640 5 69 
25 800 6 71 
30 960 5 67 
35 1120 5 50 
40 1280 6 80 

     From Table 4, it can be observed that after installing the vibration reduction devices, the average maximum amplitude of 
the lower belt was 5 mm, with an average reduction in vibration amplitude of 66.7%. The factors affecting this result include 
uneven belt tension distribution and collisions between the belt chain links. However, since the longitudinal tear cracks in the 
belt have a simple profile, even with a 10 mm focusing error in the camera lens, relatively clear images of the belt cracks can 
still be obtained. 

5.2 yolov7 improved algorithm detection effect experiment 

      A total of 1,036 images were collected in this study. The images were cropped to a 1:1 ratio, resulting in a resolution of 
480×480 pixels, and then augmented to 2,038 images. Among these, 2,004 images were used for training, and 154 images 
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were used for validation. The platform utilized for operations included a 13th Gen Core i5-13490 CPU, NVIDIA GeForce 
RTX 3060 Ti GPU, with programming conducted in Python 3.11.3, running on Windows 11. The environment also included 
Anaconda3 and the PyTorch deep learning framework, with CUDA used for acceleration. 

     To validate the advancement of the YOLOv7 algorithm enhanced with the hybrid attention mechanism, it was compared 
with other YOLO series algorithms (YOLOv7, YOLOv7-SE (Hu et al., 2018), and YOLOv5s) on the same dataset. Training 
was conducted for 150 iterations, and the best-performing model for each algorithm was saved. The evaluation metrics used 
include precision, recall, F1 score, mAP@0.5, and detection speed. mAP@0.5 represents the mean average precision when 
the Intersection over Union (IoU) threshold is set at 0.5, while the F1 score is a measure that combines precision and recall 
into a harmonic mean. The model parameters are listed in the table below: 

Table 5 
Comparison of algorithm models 

 Precision Recall F1 map@0.5 
Yolov7-acmix 88% 93.02% 0.904 83.7% 

Yolov7 83% 85.06% 0.839 81.3% 
Yolv7-se 81% 95.4% 0.874 75.3% 
Yolov5s 80% 80.49% 0.802 76.5% 

     Compared to other methods, the YOLOv7 model with the integrated hybrid attention mechanism shows significant 
performance improvements. Specifically:Precision increased by 5 percentage points compared to the original YOLOv7.Recall 
improved by 7.96 percentage points compared to YOLOv7.mAP@0.5 rose by 2.4 percentage points compared to 
YOLOv7.When compared to YOLOv5s:Precision increased by 8 percentage points.Recall improved by 12.4 percentage 
points.mAP@0.5 increased by 7.2 percentage points.Compared to YOLOv7-SE, which includes the SE attention 
mechanism:Precision and mAP@0.5 both showed improvements.Recall saw a slight decrease. Overall, the YOLOv7-ACMix 
model outperforms mainstream algorithms across all detection metrics. Additionally, it maintains an average detection speed 
of 60 fps, meeting the requirements for real-time monitoring. 

     To further validate the improved model's detection performance, images from the test set under two different lighting 
conditions—well-lit and dimly lit scenes—were selected for detection experiments. The results are shown in Fig. 9 and Fig. 
10. The figures show the predictions of longitudinal tears on the belt surface by the improved algorithm and other models 
after training. 

     In Fig. 9, the clear breaks in the laser pattern are visible in the well-lit scene, and all four algorithms can detect the laser 
breaks. However, the proposed algorithm shows slightly higher confidence compared to the others. In Fig. 10, under dim 
lighting, the belt tears can only be identified through the laser breaks. The proposed algorithm is the only one that accurately 
detects these breaks under such conditions. The other three algorithms missed detections, with the confidence of the detected 
break on the far right being much higher for the proposed algorithm. Overall, YOLOv7-ACmix accurately locates and 
identifies laser breaks in both well-lit and dimly lit scenarios, without any missed or false detections. The experimental results 
demonstrate that the improved model effectively adapts to different detection scenarios and exhibits strong generalization 
capabilities. 

    

Fig. 9. the detection results from left to right are as follows: YOLOv7-ACMix, YOLOv5s, YOLOv7-SE, and YOLOv7. 

    

Fig. 10.  the detection results from left to right are as follows: YOLOv7-ACMix, YOLOv5s, YOLOv7-SE, and YOLOv7. 
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6.  Conclusions 

(1) The machine vision method is used to monitor the surface condition of the conveyor belt online, and the test platform is 
set up according to the actual operation parameters. The test platform adopts a single camera and a laser irradiation mode of 
a frame structure. 

(2) In view of the difficulty of camera focusing due to flutter during the operation of the conveyor belt, a set of spring vibration 
damping devices was designed and a test platform was built, through which the damping effectiveness and parameter selection 
calculation of the spring were studied. 

(3) YOLOv7 deep learning detection algorithm and ACmix attention mechanism are adopted to improve the accuracy and 
generalization ability of image recognition in the field of surface crack identification of conveyor belt. Thousands of images 
are collected on the test platform for sample training. The experimental results verify that the improved YOLOv7-ACmix 
algorithm has improved compared with the mainstream algorithm in various detection standards, and the average detection 
speed can meet the technical indicators of real-time monitoring. 
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