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 This study investigates the generalized stiffness of laterally functionally graded materials (LFGMs) 
and applies these findings to dynamic beam elements. The generalized stiffnesses of LFGM, coupled 
with material and cross-sectional properties such as flexural and axial rigidity, mass per unit length, 
and mass-moment of inertia, are explicitly formulated. In the context of LFGM, material properties 
depend on an asymmetrical power law function with respect to cross-sectional depth. An example of 
the generalized numerical stiffness of a circular cross-section is provided for various material 
properties. To illustrate the application of generalized stiffness to dynamic beam elements, free 
vibration of LFGM beams with rotary inertia is considered. The dimensionless differential equation 
governing the free vibration of such beams is derived and numerically solved to obtain natural 
frequencies and corresponding mode shapes. Numerical results demonstrate a good consistency with 
the finite element method.  
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Nomenclatures 

𝐴 = area 

𝐴ோ = axial rigidity 

𝑎ଵ, 𝑎ଶ = constant 

𝐶 = 𝑖th frequency parameter 

𝐷 = mass density per unit length 

𝑑 = diameter of circular cross-section 

𝐸, 𝐸 , 𝐸 = Young’s moduli at any depth, lower and upper sides of cross-section 

𝐹ோ = flexural rigidity 

ℎ = neutral axis position 

𝐼 = second moment of inertia 

𝑖 = integer mode number, 𝑖 = 1,2,3, ⋯ 

𝐼 = mass-density of inertia 
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𝑘 = exponential index 

𝑙 = beam length 

𝑀 = internal moment 

𝑚 = modular ratio 

𝑚ଵ = constant (= 𝑚 − 1) 

𝑠 = slenderness ratio 

(𝑤, ℎ) = Cartesian coordinates for representing circular equation 

(𝑥, 𝑣) =  Cartesian coordinates to depict mode shape 

𝛼 = neutral axis position ratio 

𝛤 = inertia multiplier 

𝜁 = normalized coordinate (= ℎ 𝑑⁄ ) 

(𝜉, 𝜂) =  nondimensional Cartesian coordinates 

𝜌, 𝜌 , 𝜌 = mass density at any depth, lower and upper sides of cross-section 

𝛹 = area multiplier 

𝜔 = 𝑖th angular frequency. 
 

1. Introduction 
      

      Functionally graded materials (FGMs), conceptualized in Japan in 1984, have seen expanding applications in recent years 
due to their excellent mechanical characteristics under harsh environmental and thermal conditions. FGMs are currently used 
in various engineering fields, including architecture, civil engineering, biomedicine, aerospace, and precision mechanical 
engineering (Zaczynska & Kazmierczyk, 2020). FGMs are typically classified based on the direction of material grading: 
axially functionally graded materials (AFGMs) and laterally functionally graded materials (LFGMs) (Javania et al., 2019; 
Czechowski & Kolakowski, 2019). In AFGMs, material properties such as Young’s modulus and mass density vary along the 
axial direction, while properties remain constant laterally across the cross-section. Conversely, in LFGMs, material properties 
are graded laterally, with axial properties remaining unchanged. This paper primarily focuses on LFGMs (Trinh et al., 2016). 
Over the past four decades, numerous studies have addressed AFGMs and LFGMs in structural analysis. Key works related 
to FGMs encompass both AFGM and LFGM, which will be briefly reviewed. 
 
1.1. AFGM Studies 
 

      Representative studies in AFGM include those by Alshorbagy et al. (2011), who derived a system of equations for a beam's 
dynamic properties utilizing the virtual work principle under Euler-Bernoulli beam theory. Horibe and Mori (2015) explored 
the non-linear response of tapered cantilever bend beams subjected to a transverse point load, while Lee and Lee (2019) 
investigated the free vibrations of a circular arch based on dynamic equilibrium principles incorporating a second-degree 
polynomial for material properties. Additional studies by Lee and Lee (2022a) addressed the optimization of buckling loads 
for columns under various end conditions and volume constraints, and another investigation by Lee and Lee (2022b) focused 
on out-of-plane free vibration of horizontal curved beams with rectangular and elliptical cross-sections, assuming a quadratic 
relationship for material properties in the axial direction. 

1.2. LFGM Studies 
 
      Key research focused on LFGMs includes the work of Qatu and Elsharkawy (1993), who employed the Ritz method to 
determine accurate natural frequencies of laminate composite arches. Kang and Li (2009) used large deflection theory to 
analyze the elastica behavior of nonlinear cantilever beams under end forces, while Malekzadeh et al. (2009) studied free 
vibrations of deep circular arches in a thermal environment based on first-order shear deformation theory, assuming 
temperature-dependent material properties. Malekzadeh (2009) also analyzed the free vibration of LFGM thick circular arches 
subjected to thermal prestressing with uniform and variable temperature rises. Other notable studies include those by Yousefi 
and Rastgoo (2011), Zhao et al. (2012), Raki et al. (2012), Liu and Shu (2014), Sitar et al. (2014), and Huynh et al. (2017), 
each contributing to the academic discourse surrounding LFGMs. 

 
As summarized, considerable research has focused on various aspects of AFGMs and LFGMs, including grading types, 

structural member configurations, cross-sectional shapes, modeling approaches, solution methodologies, secondary effects 
influencing FGM behavior, and foundational support types. Despite the diversity of these topics, existing literature has not 
explicitly formulated the coupled cross-sectional and mechanical properties of LFGMs, such as axial rigidity 𝐴ோ, flexural 
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rigidity 𝐹ோ, mass per unit length 𝐷 , and mass-moment of inertia 𝐼. 
 
In structural engineering, physical parameters often result from the product of two distinct parameters. For example, 

flexural stiffness 𝐹ோ, defined as the product of the area moment of inertia 𝐼 and Young’s modulus 𝐸, can be expressed as 𝐹ோ =
𝐸𝐼 (Gere & Timoshenko, 1980), representing a critical quantity in structural analysis. 

 
For AFGMs, 𝐹ோ is easily determined as 𝐹ோ = 𝐸𝐼 for a given cross-section, as 𝐸 is uniform along the lateral cross-section 

depth despite variations in the axial direction. In contrast, for LFGMs, expressing 𝐹ோ as 𝐹ோ = 𝐸𝐼 is inappropriate due to the 
dependence of 𝐸 on section depth. Therefore, a deterministic explicit expression for LFGM stiffness is required. Additional 
generalized stiffness quantities, such as 𝐴ோ, 𝐷 , and 𝐼 , also require consideration. 

 
This study consists of two principal components. First, it formulates the generalized stiffnesses of 𝐴ோ, 𝐹ோ, 𝐷 , and 𝐼 

for LFGMs. The circular cross-section is chosen for the stiffness formulation.  Second, an application example pertains to 
dynamic beam elements, specifically focusing on bending-related issues in structural mechanics, while the analysis of free 
vibration of beams serves as an application context. Numerical results for (𝐴ோ , 𝐹ோ , 𝐷, 𝐼)  are presented in tabular and 
graphical formats, providing a detailed discussion. The derived ordinary dimensionless differential equation governing free 
vibration in beams with rotary inertia is also presented. This equation is numerically solved to obtain natural frequencies and 
mode shapes, with results extensively analyzed. 

2. Graduation for material properties in LFGM 

        Fig. 1(a) illustrates a circular cross-section composed of LFGM, characterized by a diameter 𝑑  and represented in 
Cartesian coordinates (𝑤, ℎ) . The material properties of mass density 𝜌  and Young’s modulus 𝐸  exhibit an asymmetrical 
gradient along the vertical coordinate ℎ measured from the origin 𝑜. Figure 1(b) displays the asymmetric scale profile of 
(𝜌, 𝐸) as a function of ℎ, with the (𝜌, 𝐸) axis perpendicular to the sectional plane (𝑤, ℎ) shown in Fig. 1(a). The cross-section, 
when subjected to external loading, is assumed to remain its plane after deformation. Consequently, the strain distribution 𝜀 
is linear along ℎ as depicted in Fig. 1(c), where ℎ marks the neutral axis position, and 𝜀 signifies the strain at ℎ = 0. 

 
Fig. 1. (a) LFGM circular cross-sections, (b) Asymmetric scaled profile of material properties (𝜌, 𝐸), and (c) Distribution of 
strain 𝜀 due to bending moment. 

The graded function of (𝜌, 𝐸)  shown in Fig. 1(b) can be expressed arbitrarily; however, for this study, a power-law 
function selected from the literature (Akgoz & Civalek, 2013; Noori et al., 2018) is employed: 

𝜌 = 𝜌[𝑎ଵ(ℎ 𝑑⁄ ) + 𝑎ଶ];  𝐸 = 𝐸[𝑎ଵ(ℎ 𝑑⁄ ) + 𝑎ଶ] for 0 ≤ ℎ 𝑑⁄ ≤ 1, (1) 
 
where 𝑘 represents a positive exponential index, and 𝜌 and 𝐸 denote the mass density and Young’s modulus at ℎ 𝑑⁄ = 0, 
respectively, with constants 𝑎ଵ and 𝑎ଶ determined by given material properties. It is essential to note that the profile illustrated 
in Eq. (1) is asymmetric concerning the central axis of the circular cross-section, resulting in an unknown position for ℎ. 

 

To determine constants 𝑎ଵ and 𝑎ଶ, the modular ratio 𝑚 is introduced: 

𝑚 =
ఘೆ

ఘಽ
= 

ఘ( )⁄ సభ

ఘಽ
;  𝑚 =

ாೆ

ாಽ
= 

ா( ⁄ )సభ

ாಽ
,   (2) 
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where 𝜌 and 𝐸 are the mass density and Young’s modulus at ℎ 𝑑⁄ = 1, respectively. It is assumed that the modulation ratio 
applies uniformly to both (𝜌, 𝐸) simultaneously (Akgoz & Civalek, 2013; Noori et al., 2018). 

 

Using the two coordinate points (0, 𝜌) and (ℎ 𝑑⁄ , 𝑚𝜌) depicted as ● in Fig. 1(b), the constants are defined as 𝑎ଵ and 
𝑎ଶ. Consequently, the functions for (𝜌, 𝐸) in Eq. (1) simplify to: 

𝜌 = 𝜌(𝑚ଵ𝜁 + 1);  𝐸 = 𝐸(𝑚ଵ𝜁 + 1) for 0≤ 𝜁 ≤ 1, (3) 

where 𝑚ଵ = 𝑚 − 1 and 𝜁 is the normalized coordinate defined as 𝜁 = ℎ 𝑑⁄ . 
 

As illustrative examples of scaled profiles as expressed in Eq. (3), Fig. 2 showcases the asymmetric scaled profiles of the 
dimensionless curves (𝜌 𝜌⁄ ) and (𝐸 𝐸⁄ ) along ℎ 𝑑⁄  for selected values 𝑘 = 0.5, 1, 2 and 𝑚 = 0.5, 1, 2. Profile curves with 
larger exponent indices 𝑘 are positioned further from bottom to top at ℎ 𝑑⁄ = 0, where the profile curve is nonlinear for 𝑘 ≠
1  and linear for 𝑘 = 1 , regardless of 𝑚 . For 𝑚 = 1 , the scaled profiles exhibit uniform distribution, i.e., 𝜌 𝜌 = 1⁄   and 
𝐸 𝐸 = 1⁄ , consistent with the characteristics of a conventional homogeneous material cross-section. 

0.5 0.75 1 1.25 1.5 1.75 2

/ L, E/EL

0

0.25

0.5

0.75

1

h/
d

m=0.5                      m=1                                     m=2

Uniformly distributed when m=1 
regardless of k

: k=0.5
: k=1
: k=2

 
Fig. 2. Examples of scaled profiles of (𝜌 𝜌⁄ ) and (𝐸 𝐸⁄ ) along ℎ 𝑑⁄  for given values of 𝑘 and 𝑚. 

 
3. Generalized stiffness coupled with material and cross-sectional properties of LFGM 

3.1. Position of neutral axis of LFGM cross-section 

      In structural analysis involving bending, identifying the position of the neutral axis is crucial, as this is where the bending 
strain/stress equals zero. With the rotated cross-section assumed to remain planar after deformation, the distribution of strain 
𝜀 is linear along ℎ, as illustrated in Fig. 1(c), with the unknown ℎ marking the neutral axis’s position. 
 

      The neutral position ratio 𝛼 of the LFGM cross-section can be defined as: 

𝛼 =


ௗ
  for 0 < 𝛼 < 1,   (4) 

where ℎ can be expressed as ℎ = 𝛼𝑑. 
 

Given that 𝜀 = 0 at ℎ = ℎ, the linear equation for 𝜀 concerning ℎ or the normalized coordinate 𝜁(= ℎ 𝑑⁄ ) with 𝜀 =
𝜀ୀ can be derived as: 

𝜀 = 𝜀[ℎ (𝛼𝑑)⁄ − 1] = 𝜀(𝜁 𝛼⁄ − 1). (5) 
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The resulting bending stress 𝜎 at 𝜁 can then be expressed using Hooke’s Law: 

𝜎 = 𝐸𝜀 = 𝐸𝜀(𝜁 𝛼⁄ − 1), (6) 

noting that while 𝜀 is linear, 𝜎 is nonlinear due to the nonlinearity of 𝐸. 
 

In Fig. 1(a), the internal moment 𝑑𝑀  generated in the infinitesimal gray shaded area 𝑑𝐴 by the external bending 
moment can be expressed as: 

𝑑𝑀 = (𝜎𝑑𝐴)|ℎ − ℎ|, (7) 

with |ℎ − ℎ| representing the distance between the neutral axis and area 𝑑𝐴 as indicated in Fig. 1(c). 
 

To satisfy moment equilibrium, the total internal moment 𝑀 across the entire area 𝐴 must equal zero: 

𝑀 = ∫ 𝑑𝑀 = ∫ 𝜎|ℎ − ℎ|𝑑𝐴 = 0. (8) 

The unknown 𝛼 of the circular cross-section can now be determined. The circular cross-section, with diameter 𝑑 as 
shown in Fig. 1(a), is defined by: 

𝑤ଶ + (ℎ − 𝑑 2⁄ )ଶ = (𝑑 2⁄ )ଶ.   (9) 

From Eq. (9), the coordinate 𝑤 corresponding to 𝑑𝐴 at ℎ can be expressed as: 

𝑤 =
ௗ

ଶ
ඥ1 − (2ℎ 𝑑⁄ − 1)ଶ. (10) 

The area 𝑑𝐴 at height ℎ is defined using the normalized coordinate 𝜁(= ℎ 𝑑⁄ ): 

𝑑𝐴 = (2𝑤)𝑑ℎ = 𝑑ଶඥ1 − (2𝜁 − 1)ଶ𝑑𝜁.  (11) 

By substituting Eqs. (3), (4), (6), (10), and (11) into Eq. (8), a nonlinear equation involving the unknown 𝛼  for 
predetermined 𝑘 and 𝑚ଵ(= 𝑚 − 1) can be derived: 

∫ ൣ(𝑚ଵ𝜁 + 1)(𝜁 𝛼⁄ − 1)ඥ1 − (2𝜁 − 1)ଶ|𝜁 − 𝛼|൧
ଵ


𝑑𝜁 = 0,   (12) 

when to solve for the unknown 𝛼, the trapezoidal rule (Burden et al., 2016) is employed for numerical integration of Eq. (12), 
while the bisection method (Burden et al., 2016), a numerical solution approach for nonlinear equations, is utilized to ascertain 
𝛼. 

 

As illustrative examples for the computation of the unknown 𝛼 based on specific values of (𝑘, 𝑚), Fig. 3(a) shows the 
curve of 𝛼  versus 𝑘  for selected values of  𝑚 = 0.5, 1  and 2 , while Fig. 3(b) depicts the curve of 𝛼  versus 𝑚  for 𝑘 =
0.5, 1 and 2. In Fig. 3(a), a homogeneous material characterized by 𝑚 = 1 yields a constant 𝛼 = 0.5. For 𝑚 > 1, 𝛼 increases 
with rising 𝑘 , peaks, and subsequently decreases; conversely, for 𝑚 < 1 , the opposite trend is observed. In Fig. 3(b), 𝛼 
consistently increases with increasing 𝑚, irrespective of  𝑘. For  𝑚 = 1, all 𝛼 values converge at 𝛼 = 0.5. 

0 0.5 1 1.5 2 2.5 3

k
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0.5
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0.55
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(a) Effect k on

m=1

m=2

  
0 0.5 1 1.5 2 2.5 3

m

0.3

0.35

0.4

0.45

0.5

0.55

0.6

k=0.5

(b) Effect m on

k=1

k=2

(1,0.5)

 
Fig. 3. (a) Curve of 𝛼 - 𝑘 for the selected 𝑚 values; (b) Curve of 𝛼 - 𝑚 for the selected 𝑘 values. 

To visually represent the influence of (𝑘, 𝑚)  on 𝛼 , Fig. 4 presents a three-dimensional surface map illustrating the 
relationship among (𝛼, 𝑘, 𝑚). This surface map effectively conveys the impact of (𝑘, 𝑚) on 𝛼, as established in Fig. 3(a) and 
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Fig. 3(b). 

 
Fig. 4. Three-dimensional surface map of (𝛼, 𝑘, 𝑚). 

3.2. Generalized stiffness of LFGM 

     The primary objective of this study is to formulate four generalized stiffnesses: axial rigidity 𝐴ோ, flexural rigidity 𝐹ோ, mass 
per unit length 𝐷 , and mass-moment of inertia 𝐼  for the LFGM circular cross-section. 

 

By definition, the axial rigidity 𝐴ோ is the product of Young’s modulus 𝐸 and area 𝐴; thus, the infinitesimal axial rigidity 
𝑑𝐴ோ of 𝑑𝐴 indicates the gray-shaded area depicted in Fig. 1(a): 

𝐴ோ = ∫ 𝐸𝑑𝐴 = 𝐸𝑑ଶ ∫ (𝑚ଵ𝜁 + 1)ඥ1 − (2𝜁 − 1)ଶ𝑑𝜁 = 𝛹𝐸𝐴
ଵ


, (13a) 

𝛹 =
ସ

గ
∫ (𝑚ଵ𝜁 + 1)ඥ1 − (2𝜁 − 1)ଶ𝑑𝜁

ଵ


, (13b) 

where 𝐴 = 𝜋𝑑ଶ 4⁄   represents the area of the circular cross-section. For known material properties  (𝑘, 𝑚, 𝐸) and cross-
sectional area 𝐴 of the LFGM, 𝐴ோ can be derived using Eq. (13). Importantly, the neutral position ratio 𝛼 is not a factor in 
calculating 𝛹, referred to hereafter as an area multiplier. 

 

Flexural rigidity 𝐹ோ  is defined as the product of Young’s modulus 𝐸  and the second moment of area 𝐼 . Hence, the 
infinitesimal 𝑑𝐹ோ of 𝑑𝐴 is represented as 𝑑𝐹ோ = 𝐸𝑑𝐼. The infinitesimal 𝑑𝐼 about the neutral axis ℎ = ℎ can be expressed as: 

𝑑𝐼 = (ℎ − ℎ)ଶ𝑑𝐴 = 𝑑ସ(𝛼 − 𝜁)ଶඥ1 − (2𝜁 − 1)ଶ𝑑𝜁. (14) 

Consequently, 𝐹ோ is computed as: 

𝐹ோ = ∫ 𝐸𝑑𝐼 = 𝐸𝑑ସ ∫ (𝑚ଵ𝜁 + 1)(𝛼 − 𝜁)ଶඥ1 − (2𝜁 − 1)ଶ𝑑𝜁
ଵ


 = 𝛤𝐸𝐼,    (15a) 

𝛤 =
ସ

గ
 ∫ (𝑚ଵ𝜁 + 1)(𝛼 − 𝜁)ଶඥ1 − (2𝜁 − 1)ଶ𝑑𝜁

ଵ


, (15b) 

where 𝐼 = 𝜋𝑑ସ 64⁄  represents the moment of inertia of the circular cross-section. Based on known values (𝑘, 𝑚, 𝐸 , 𝐼) with 
previously determined 𝛼,  𝛤 referred to as an inertia multiplier can be accordingly calculated. 

 

In a similar process, the mass per unit length 𝐷, defined as the product of mass density 𝜌 and the area 𝐴 (Chopra, 2001), 
can be characterized as: 

𝐷 = ∫ 𝜌𝑑𝐴 = 𝜌𝑑ଶ ∫ (𝑚ଵ𝜁 + 1)ඥ1 − (2𝜁 − 1)ଶ𝑑𝜁 =
ଵ


𝛹𝜌𝐴, (16) 
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with 𝛹 following from the equation already defined in Eq. (13b). 
 
The mass-moment of inertia 𝐼 , defined as the product of 𝜌 and 𝐼 (Chopra, 2001), is expressed as: 

 

𝐼 = ∫ 𝜌𝑑𝐼 = 𝜌𝑑ସ ∫ (𝑚ଵ𝜁 + 1)(𝛼 − 𝜁)ଶඥ1 − (2𝜁 − 1)ଶ𝑑𝜁
ଵ


= 𝛤𝜌𝐼,   (17) 

 
where 𝛤 is the same expression described in Eq. (15b). 

 

To compute the multipliers (𝛹, 𝛤) expressed in Eqs. (13b) and (15b), respectively, the numerical integration methods 
(Burden et al., 2016) such as the Improved Euler method, Trapezoidal rule, and Runge-Kutta method may be employed. In 
this study, the Trapezoidal rule was chosen. 

3.3. Numerical experiments of generalized stiffness 

      The previously defined multipliers (𝛹, 𝛤) for calculating the generalized stiffnesses (𝐴ோ , 𝐹ோ, 𝐷 , 𝐼) have been explicitly 
formulated in the preceding sections. As a numerical experiment, relationships depicting 𝛹 and 𝛤 in relation to the exponential 
index 𝑘 and the modular ratio 𝑚 are illustrated in Fig. 5: (a) 𝛹 versus 𝑘 curve, (b) 𝛹 versus 𝑚 curve, (c) 𝛤 versus 𝑘 curve, 
and (d) 𝛤 versus 𝑚 curve. In Fig. 5(a), at  𝑚 = 1, corresponding to a homogeneous material, 𝛹 remains constant at  𝛹 = 1. 
For  𝑚 > 1 , 𝛹  decreases as 𝑘  increases, while for 𝑚 < 1 , 𝛹  increases with rising 𝑘 . In Fig. 5(b), 𝛹  consistently shows 
growth with increasing 𝑘, independent of  𝑚. When 𝑚 = 1, all instances yield 𝛹 = 1 as depicted earlier in Fig. 5(a). The  𝛤 
values in Fig. 5(c) and Fig. 5(d) exhibit similar trends to 𝛹, although the 𝛤 versus 𝑚 curves in Fig. 5(d) reveal a nonlinear 
rather than linear relationship. 
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Fig. 5. (a) 𝛹 versus 𝑘 curve, (b) 𝛹 versus 𝑚 curve,  (c) 𝛤 versus 𝑘 curve, and (d) 𝛤 versus 𝑚 curve 

In order to visualize the effects of 𝑘 and 𝑚 on 𝛹 and 𝛤, three-dimensional surface maps are displayed in Fig. 6: (a) 
(𝛹, 𝑘, 𝑚) and (b) (𝛤, 𝑘, 𝑚). These surface maps effectively illuminate the impact of  (𝑘, 𝑚)  on (𝛹, 𝛤), reflecting observations 
made in Fig. 5(a) and Fig. 5(b). 
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Fig. 6. Three-dimensional surface maps: (𝛹, 𝑘, 𝑚) and (b) (𝛤, 𝑘, 𝑚) 

As a numerical example, the dimensional generalized stiffnesses (𝐴ோ , 𝐹ோ , 𝐷 , 𝐼) for LFGMs, incorporating the neutral 
position ℎ, are reported in Table 1 based on the given values of (𝑘, 𝑚). The circular cross-section features a diameter 𝑑 =
0.1 m with an are 𝐴 = 7.854 × 10ିଷ m² and moment of inertia 𝐼 = 4.909 × 10ି m⁴. The material properties of LFGM at 
ℎ = 0  are specified as 𝜌 = 2700 kg/m³ and 𝐸 = 70 GPa. For each value of 𝑘, (𝐴ோ, 𝐹ோ, 𝐷 , 𝐼) increase as 𝑚 increases; 
similarly, for each value of 𝑚, (𝐴ோ , 𝐹ோ , 𝐷 , 𝐼) rise as 𝑘 increases. For 𝑚 = 1, the quantities (𝐴ோ, 𝐹ோ, 𝐷 , 𝐼) remain constant 
irrespective of the 𝑘 value. For instance, when  𝑚 = 1, 𝐴ோ equals 𝐴ோ = 549.8 MN across all cases where 𝑘 = 0.5, 1 and 2. A 
distinct advantage arising from the explicit calculation of generalized stiffness presented in this study is its direct applicability 
to structural analysis without the iterative internal calculations required by finite element methods. 

Table 1. Dimensional generalized stiffness of LFGM* with varying (𝑘, 𝑚) 
Parameters       Dimensional generalized stiffness of LFGM 
𝑘 𝑚 ℎ(m) 𝐴ோ(MN) 𝐹ோ(kN∙m2) 𝐷(kg/m) 𝐼(kg∙m) 
0.5 0.5 0.04704 363.1 227.8 14.01 0.00879 
 1 0.05 549.8 343.6 21.21 0.01325 
 2 0.05239 923.1 558.4 35.61 0.02154 
1 0.5 

1 
2 

0.04664 
0.05 
0.05336 

412.3 
549.8 
824.7 

250.8 
346.3 
501.6 

15.90 
21.21 
31.81 

0.00967 
0.01325 
0.01935 

2 0.5 0.04695 463.9 273.0 17.89 0.01053 
 1 0.05 549.8 343.6 21.21 0.01325 
 2 0.05374 721.6 456.8 27.83 0.01762 

* Refer to the text for material and cross-sectional properties. 

 

4. Application of generalized stiffness to dynamic beam element 

     The explicit formulation of generalized stiffness (𝐴ோ, 𝐹ோ, 𝐷 , 𝐼) derives potential applications within structural analysis. 
Various structural behavior topics, including bending analysis for static and dynamic applications, involve parameters such as 
deflection, strain/stress analysis, stability assessment, and natural frequency evaluation. Within this context, the free vibration 
of beams is addressed as a representative problem associated with generalized stiffness. However, the applicability of 
generalized stiffness is not limited to free vibrations and can extend to all structural behavior analyses involving static and 
dynamic beam elements. 

4.1. Governing differential equation 

     To apply the coupled properties of (𝐴ோ , 𝐹ோ, 𝐷 , 𝐼), consideration is given to the free vibrations of beams, which exemplify 
typical problems related to these coupled properties. The straight dashed line in Fig. 7 represents the undeformed static beam 
fabricated from LFGM, characterized by length 𝑙 and defined by either hinged, fixed, or free ends. The beam features a circular 
cross-section with diameter 𝑑, while its coupled properties, including the neutral position ℎ, have been previously established. 
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Fig. 7. Configuration of vibrating beam and its parameters 

As the beam undergoes free vibration excitation, the dynamic transverse deflection is denoted by 𝑣(𝑥, 𝑡) in Fig. 7, where 
𝑥 is the axial coordinate and 𝑡 signifies time. For this study, the transverse free vibration is assumed to exhibit harmonic 
motion, leading to the expression: 

𝑣(𝑥, 𝑡) = 𝑣 sin(𝜔𝑡), (18) 

where 𝑣 = 𝑣(𝑥) represents the amplitude at coordinate  𝑥, and 𝜔  denotes the natural frequency with integer mode number  
𝑖 = 1, 2, 3, ⋯. 

 

The partial differential equation governing the transverse free vibration of the beam can be referenced from Chopra 
(2001): 

𝜌𝐴
డమ௩(௫,௧)

డ௧మ + 𝐸𝐼
డర௩(௫,௧)

డ௫ర − 𝜌𝐼
డర௩(௫,௧)

డ௫మడ௧మ = 0,   (19) 

where (𝜌𝐴, 𝐸𝐼, 𝜌𝐼)  correspond to the mass per unit length, flexural rigidity, and mass-moment of inertia, respectively, 
applicable to homogeneous material beams. Notably, the three partial derivative terms with 𝜌𝐴, 𝐸𝐼 and 𝜌𝐼 in Eq. (19) describe 
dynamic components representing bending moment, transverse inertia, and rotary inertia. 

 

To adapt Eq. (19) for the LFGM beam, terms (𝜌𝐴, 𝐸𝐼, 𝜌𝐼) are replaced with (𝐷 , 𝐹ோ , 𝐼) of LFGM beams, resulting in 
the equation: 

𝐷
డమ௩(௫,௧)

డ௧మ + 𝐹ோ
డర௩(௫,௧)

డ௫ర − 𝐼
డర௩(௫,௧)

డ௫మడ௧మ = 0.   (20) 

Applying Eq. (18), the relevant partial derivatives are derived as follows: 

డమ௩(௫,௧)

డ௧మ = −𝜔
ଶ sin(𝜔𝑡) 𝑣;  

డర௩(௫,௧)

డ௫ర = sin(𝜔𝑡)
ௗర௩

ௗ௫ర;  
డర௩(௫,௧)

డ௫మడ௧మ = −𝜔
ଶ sin(𝜔𝑡)

ௗమ௩

ௗ௫మ.          (21a)–(21c) 

Substituting these relationships into Eq. (20) yields the ordinary differential equation governing transverse free vibration 
of the LFGM beam: 

ௗర௩

ௗ௫ర = −
ఘಽ

ாಽ
𝜔

ଶ ቀ
ௗమ௩

ௗ௫మ −
అ

௰



ூ
𝑣ቁ for 0 ≤ 𝑥 ≤ 𝑙   (22) 

To facilitate the numerical analysis within this study, the following dimensionless beam parameters are defined: 

𝜉 =
௫


,  𝜂 =

௩


,  𝑠 =



ඥூ ⁄
,  𝐶 = 𝜔𝑙ට

ఘಽ

ாಽ
, 

(23a)–(23d) 

where, (𝜉, 𝜂) depicts normalized coordinates, 𝑠 represents slenderness, and 𝐶  denotes the frequency parameter for integer 
mode number 𝑖 = 1, 2, 3, ⋯. 

 

Considering Eqs. (22) and (23), the governing non-dimensional differential equation can be expressed as: 
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ௗరఎ

ௗకర = −𝐶
ଶ ቀ

ௗమఎ

ௗకమ −
అ

௰
𝑠ଶ𝜂ቁ for 0 ≤ 𝜉 ≤ 1 (24) 

Next, boundary conditions must be elucidated. At the hinged end (𝑥 = 0 or 𝑥 = 𝑙), the deflection 𝑣 and bending moment 
𝑀(= 𝐹ோ 𝑑ଶ𝑣 𝑑𝑥ଶ⁄ ) are zero, leading to dimensionless conditions: 

Hinged end (𝜉 = 0 or 𝜉 = 1):  𝜂 = 0;  
ௗమఎ

ௗకమ = 0.   (25) 

At the clamped end (𝑥 = 0 or 𝑥 = 𝑙), both 𝑣 and rotation 𝜃(= 𝑑𝑣 𝑑𝑥⁄ ) are zero, resulting in dimensionless forms: 

Clamped end (𝜉 = 0 or  𝜉 = 1):  𝜂 = 0;  
ௗఎ

ௗక
= 0.   (26) 

At the free end (𝑥 = 0  or 𝑥 = 𝑙 ), both 𝑀  and shear force 𝑄(= 𝐹ோ 𝑑ଷ𝑣 𝑑𝑥ଷ⁄ )  equal zero, resulting in dimensionless 
conditions: 

Free end (𝜉 = 0 or 𝜉 = 1):  
ௗమఎ

ௗకమ = 0;  
ௗయఎ

ௗకయ = 0. (27) 

4.2. Numerical solution method and validation 

     To solve the differential Eq. (24), beam parameters encompassing various end conditions such as hinged–hinged, hinged–
clamped, clamped–clamped, and clamped–free must be defined, along with the beam length 𝑙, diameter 𝑑 of circular cross-
section, and material properties (𝑘, 𝑚) and (𝜌, 𝐸). Based on these parameters, (𝛹, 𝛤, 𝑠) can be computed and applied to Eq. 
(24). The numerical integration method, specifically the Runge-Kutta method (Burden et al., 2016), will then be utilized to 
compute (𝜉, 𝜂) , adhering to the boundary conditions delineated by Eqs. (25)–(27). 

 
The determinant search approach, combined with the bisection method, one of the nonlinear equation solution methods, 

is employed to identify the eigenvalue  𝐶 . This method for initial and boundary value problem solutions featuring eigenvalues 
has been extensively utilized in existing literature (Lee and Lee, 2022), with comprehensive coding performed in the 
FORTRAN programming language to facilitate calculations for coupled properties (𝛼, 𝛹, 𝛤). Calculations are conducted on 
a PC equipped with graphical support. 

 
The initial numerical experiment involves comparing natural frequencies 𝜔 obtained from the finite element method 

(FEM) with frequencies derived in this study to validate both the theoretical framework and numerical methods employed. 
The results are summarized in Table 2. Parameters used for the beam include 𝑘 = 2 , 𝑙 = 2  m, 𝑑 = 0.1  m with 𝐴 =
7.854 × 10ିଷ m2 and 𝐼 = 4.909 × 10ିm4, (𝜌 = 2700 kg/m3, 𝐸 = 70 GPa) at ℎ = 0 and (𝜌 = 5400 kg/m3, 𝐸 = 140 
GPa) at ℎ(= 𝑑) = 0.1 m. This study derives a remaining parameter of modular ratio 𝑚 = 2 alongside the slenderness ratio 

𝑠 = 80(= 𝑙 ඥ𝐼 𝐴⁄⁄ ). The frequency parameter 𝐶, obtained through this study, translates to 𝜔 = 2545.9𝐶 rad/s using Eq. 
(23d). The ADINA software is employed to provide the FEM solution modeling the LFGM cross-section as 20 stepped-thick 
layers with varying material properties (𝜌, 𝐸) characterized in Eq. (3). Comparisons of the first three natural frequencies 
𝜔ୀଵ,ଶ,ଷ in rad/s show strong agreement between the two methods, with an average error of 1.98% and a maximum error of 
3.86%. The results presented in Table 2 affirm the theoretical framework and numerical approaches undertaken, inclusive of 
coupled properties of LFGM used in this study. 

Table 2. Comparison* of natural frequency 𝜔 between FEM** and this study 
End 
constraint 

Data 
source 

Natural frequency 𝜔 (rad/s) 
𝑖 = 1 𝑖 = 2 𝑖 = 3 

Hinged-hinged FEM 312.78 1243.21 2749.99 
This study 315.87 1260.54 2825.27 

Hinged-clamped FEM 489.26 1562.87 3221.22 
This study 493.39 1594.94 3314.42 

Clamped-clamped FEM 711.89 1921.97 3707.31 
This study 715.91 1968.18 3842.51 

Clamped-free FEM 111.10 698.20 1895.73 
This study 112.62 705.01 1968.99 

* Refer to the text for beam parameters. 
** ADINA 

4.3. Numerical experiments 

     A parametric study investigating definitions of beam parameters (𝑘, 𝑚, 𝑠) in relation to frequency parameters 𝐶ୀଵ,ଶ,ଷ is 
presented in Figs. 8(a)–8(b). Fig. 8(a) illustrates the moderate effect of exponential index 𝑘 upon 𝐶 , indicating negligible 
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variability. Conversely, Fig. 8(b) demonstrates that 𝐶 escalates in response to increasing modular ratio  𝑚, though this effect 
becomes negligible for 𝑚 > 1 . Furthermore, Fig. 8(c) depicts a declining trend for 𝐶   as slenderness ratio 𝑠  increases, 
indicating enhanced sensitivity with smaller values of 𝑠. 
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(c) Clamped-clamped end with k=2 and m=2
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(a) (b) (c) 

Fig. 8. Frequency curves of  𝐶 as a function of (𝑘, 𝑚, 𝑠): (a) Hinged–hinged for 𝑘, (b) Hinged–clamped for 𝑚, (c) Clamped–
clamped for 𝑠. 

Fig. 9 illustrates the effects of 𝑘  and 𝑚  on the lowest frequency parameter 𝐶ଵ  (i.e., 𝑖 = 1 ) using surface maps, 
encapsulating the previously discussed frequency trends. The frequency curves demonstrated earlier are consolidated into a 
singular curve depicted in this surface map. The coupling of effects originating from (𝑘, 𝑚) on 𝐶ଵ is readily apparent from 
these surface maps. 

   

    
Fig. 9. Surface maps of (𝐶ଵ, 𝑘, 𝑚)  for 𝑠 = 80 : (a) Hinged–hinged, (b) Hinged–clamped, (c) Clamped–clamped and (d) 
Clamped–free end. 
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The typical mode shapes (𝜉, 𝜂)  associated with corresponding 𝐶 of the free-vibrating LFGM beam are exhibited in Fig. 
10. The boundary conditions depicted by Eqs. (25)–(27) are effectively represented at both ends of the beam in the mode 
shapes demonstrated in Fig. 10. To mitigate resonance issues stemming from external dynamic excitation through mechanical 
devices, these mode shape outcomes furnish essential data for LFGM beam design, illustrating relative amplitude, peak 
amplitude positions, and locations of nodal points (where amplitude equals zero). 
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(a) Hinged-hinged end

C1=0.1241, C2=0.4951, C3=1.1097
 

0 0.2 0.4 0.6 0.8 1
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(b) Hinged-clamped end

C1=0.1938, C2=0.6265, C3=1.3019
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(c) Clamped-clamped end

C1=0.2812, C2=0.7731, C3=1.5093
 

0 0.2 0.4 0.6 0.8 1
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(d) Clamped-free end

C1=0.0422, C2=0.2769, C3=0.7734
 

Fig. 10. Examples of mode shape for 𝑘 = 2, 𝑚 = 2, 𝑠 = 80: (a) Hinged–hinged, (b) Hinged–clamped, (c) Clamped–clamped 
and (d) Clamped–free end. 
 
5. Concluding remarks 

      This paper has investigated the generalized stiffness of laterally functionally graded materials (LFGMs) alongside its 
application to dynamic beam elements within the realm of structural mechanics. The primary focus of this study encompasses 
two key components. 

 
Initially, the research formulates generalized stiffnesses for axial rigidity 𝐴ோ, flexural rigidity 𝐹ோ, mass per unit length 

𝐷, and mass-moment of inertia 𝐼 for the circular cross-section of LFGMs in an explicit manner. The material properties 
(𝜌, 𝐸) are graded asymmetrically with respect to the centroidal axis of the circular cross-section, employing a power-law 
function for the graded profile. Numerical experiments yield results for coupled properties (𝐴ோ , 𝐹ோ, 𝐷 , 𝐼) presented through 
comprehensive tables and graphical charts reflecting a variety of modular ratios and exponential power indices. 

 
In the subsequent portion of the research, relevant properties (𝐹ோ , 𝐷 , 𝐼) derived from the principal formulation are 

applied to bending problems, specifically analyzing the free vibration phenomena in beams. An ordinary differential equation, 
inclusive of rotational inertia effects and associated boundary conditions, governs the free vibration dynamics of the LFGM 
beam, with the governing equation being numerically solved to extract eigenvalues (natural frequencies) and mode shapes. 
Strong correlations in natural frequencies between results derived from the finite element method and those originating from 
this study validate approach efficacy. Numerical investigations elucidate the relationships among natural frequencies and 
differing beam parameters. 

 
The generalized stiffness established herein holds significant potential for broader applications beyond the free vibration 

of beams addressed in this study, including analyses of various structural behaviors characterized by static and dynamic beam 
elements. Further research endeavors should focus on exploiting generalized stiffness to examine additional structural 
behaviors, including strain/stress, deflection, and nonlinear behavior pertaining to both linear and curved beam structures. 
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