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 This paper investigates the impact of dual phase latency caused by the reflection of plane waves that 
propagate in a swelling porous thermoelastic medium with an impedance boundary. Two transversal 
waves (SVS, SVF), a thermal wave (T), and two longitudinal waves (Ps and Pf) propagate with distinct 
velocities. Reflection coefficients are determined by the incidence of these waves, and energy ratios 
for reflected waves are calculated and illustrated using these amplitude ratios.  In this particular 
instance, the current model was downsized to an LS model.  It has been noted that the energy ratios 
acquired are significantly influenced by dual phase lag. The results that have been obtained may be 
beneficial in a variety of engineering problems that are related to structure. 
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1. Introduction 
      

      The theory of thermoselasticity, which is characterized by a finite speed for thermal signals, has garnered significant 
attention in recent decades as a result of its potential relevance in the area of aerodynamic engineering and seismology. Lord 
and Shulman (1967) replaced the classical Fourier's law with a new wave type heat equation, which is also referred to as LS 
theory or extended thermoelastic theory. They employed only one thermal relaxation time. The microstructural interface effect 
is associated with the dual-phase lag model (DPL) in the rapid temporary heat process. Chandrasekharaiah (1998) was the 
first to introduce the dual phase lag model in the theory of thermos elasticity. Ramadan and AL-Nimr (2009) employed a dual 
phase lag model to investigate the reflection and transmission phenomena of thermal waves in a two-layer slab with imperfect 
contact. Their findings indicated that the thermal contact resistance should be minimized in order to mitigate thermal stress. 
Abouelregal (2011) examined the influence of dual-phase lag parameters on the reflection of P and SV waves from magneto-
thermoelastic solid half space. He found that the reflection coefficients are considerably affected by the magnetic field, but 
the thermal coupling parameter has the least impact. Singh (2012) obtained reflection coefficients as a result of the motion of 
waves in a dual-phase lag anisotropic thermoelastic solid half-space. Kumar (2012) investigated the reflection of plane waves 
in thermodiffusive elastic half-space with cavities. Sharma et al. (2013) explored the impact of micropolar thermoelastic solid 
with two temperatures on wave propagation, which is surrounded by strata of half spaces of inviscid liquid. Zenkour et al. 
(2013) have observed that dual phase lag has a more significant impact on the reflection of thermoelastic waves from 
isothermal and stress-free and boundaries than other thermoelastic theories.  
 
      Sharma et al. (2013, 2014) considered the reflection and refraction of plane waves in micropolar elastic solids. The 
uniqueness and reciprocal theorems for dual-phase lag thermoelastic theory were established by El-Karamany and Ezzat 
(2014) through the use of Laplace transformation. Kumar and Gupta (2015) proposed a dual phase lag diffusion model and 
augmented classical Fick law to investigate the reflection and refraction of waves at the boundary of thermoelastic and elastic 
diffusion media. Alla et al. (2016) employed a dual phase lag model to derive the expression of amplitude ratios resulting 
from the reflection of waves from the electro-magnetic thermoelastic half space. They then compared the results to those of 
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the LS theory. In the context of a time differential dual phase lag thermoelastic model, Chirita (2017) established the results 
of continuous dependence and uniqueness.  
 
      Deswal et al. (2019) found that the reflection coefficients for the DPL model are modest in comparison to those of the LS 
theory. Kalkal et al. (2019) employed a dual phase lag model to analyse the impact of initial stress and fiber reinforcement on 
the reflection and transmission coefficients. Dahahb et al. (2019) conducted an investigation into the impact of gravity and 
rotation on an electro-magneto-thermoelastic medium. They found that the solutions derived for the LS and DPL models 
exhibit the same tendency along the z-axis. The non-local dual phase lag model (DPL) was introduced by Kumar et al. (2019) 
to investigate the impact of thermomass and thermoelastic properties on nan-scale heat transport. The authors concluded that 
the non-local dual phase lag model is more realistic than the dual phase model. Lata et al. (2020) analyzed the elastic properties 
of waves propagating in a magneto-thermoelastic medium using a dual phase lag model and obtained reflection coefficients. 
Kumar et al. (2021) performed a study on the influence of nonlocal, void, and micropolar parameters on the reflection of 
waves from the thermoelastic half space using a DPL model. They then compared the results to those obtained using the LS 
model.  
 
      Sharma and Khator (2021, 2022) investigated certain issues related to the generation of electricity from renewable sources. 
Sharma et al. (2022) investigated the impact of impedance parameters on the propagation of waves in a micropolar 
thermoelastic medium using a modified Green-Lindsay (GL) theory. Khan and Tanveer (2022) employ a dual phase latency 
model to determine the reflection and transmission coefficient of SV waves that are propagating at the solid-liquid interface. 
Kumar et al. (2023) investigated the influence of non-local dual phase latency and double porosity on the propagation of 
waves at the boundary of a double porous thermoelastic medium and an inviscid liquid half-space. Ma and Liu (2023) 
developed a non-local thermoelastic model and discovered that the deflection parameter of the nanoplate is reduced by the 
nonlocal heat parameter and increased by the nonlocal structural parameter. The impact of nonlocal triclinic micropolar 
thermoelastic medium on the reflection and transmission of the plane wave propagating at the interface with distinct elastic 
properties was obtained by Kumar et al. (2024). Additionally, they conducted a comparison between the phase velocity and 
energy ratios obtained from the DPL model and the LS theory. In order to investigate the influence of hall current and initial 
stress on micropolar thermoelastic theory under dual phase lag, Abouelregal and Rashid (2024) employed higher order time 
derivatives. In their study of the sensitivity of the heating process of thin metal films, Majchrzak and Mochnacki (2024) 
examined that the sensitivity of the temperature field remains high when the metal has a higher mean conductivity. In a 
transversely isotropic exponentially graded thermoelastic medium with cavities, Barak et al. (2024) investigated the impact 
of dual phase lag and non-local lag models. Additional issues concerning the reflection of waves under dual phase latency are 
detailed in (Deswal et al., 2024; Punia et al., 2024; Eraki et al.; 2024). 
 
      In the current study, the reflection of plane waves from the half space of a swelling porous thermoelastic medium with 
impedance boundary conditions under dual phase lag is studied. There are two longitudinal waves, a thermal wave, and two 
transversal waves that propagate at varying speeds. The numerical computation of reflection coefficients and energy ratios 
resulting from the incidence of each wave. The energy ratios in dual phase lag (DP) and LS model are compared numerically 
and presented through a graphical representation. 
 

2. Fundamental Equations 

     Fundamental equations in swelling porous thermoelastic medium when body forces are ignored is given as Eringen 
(1994) 

𝜇𝑢௜,௝௝
௦ + (𝜆 + 𝜇)𝑢௝,௝௜

௦ − 𝜎௙𝑢௝,௝௜
௙

+ 𝜉௙௙൫𝑢̇௜
௙

− 𝑢̇௜
௦൯ + (𝛾௙ − 𝛼଴)∇𝑇 = 𝜌଴

௦𝑢̈௜
௦ (2.1) 

𝜇௩𝑢̇௜,௝௝
௙

+ (𝜆௩ + 𝜇௩)𝑢̇௝,௝௜
௙

− 𝜎௙𝑢௝,௝௜
௦ − 𝜎௙௙𝑢௝,௝௜

௙
− 𝜉௙௙൫𝑢̇௜

௙
− 𝑢̇௜

௦൯ − (𝛾௙+𝛼௙)∇𝑇 = 𝜌଴
௙

𝑢̈௜
௙ (2.2) 

𝐾∗ ൬1 + 𝜏்

𝜕

𝜕𝑡
൰ ∇ଶ𝑇 = ቆ1 + 𝜏௤

𝜕

𝜕𝑡
+

𝜏௤
ଶ

2!

𝜕ଶ

𝜕𝑡ଶቇ ൫𝑇଴𝛼௙∇. 𝑢̇௙ + 𝛼଴𝑇଴∇. 𝑢̇௦ + 𝛼ଵ𝑇଴𝑇̇൯ + 𝜁௙(∇. 𝑢̇௙ + ∇. 𝑢̇௦) 
(2.3) 

𝑡௜௝
௦ = ൫−𝛼଴𝑇 − 𝜎௙𝑢௥,௥

௙
+ 𝜆𝑢௥,௥

௦ ൯𝛿௜௝ + 𝜇(𝑢௜,௝
௦ + 𝑢௝,௜

௦ ) (2.4) 

𝑡௜௝
௙

= ൫−𝛼 ௙𝑇 − 𝜎௙𝑢௥,௥
௦ − 𝜎௙௙∇. 𝑢௙ + 𝜆௩𝑢̇௥,௥

௙
൯𝛿௜௝ + 𝜇௩(𝑢௜,௝

௙
+ 𝑢௝,௜

௙ ) (2.5) 

2.1 Nomenclature 

𝜆, 𝜇    = lame’s parameters (N/m2) 
𝜌଴

௦, 𝜌଴
௙   = mass density in solid and fluid in natural state (Ns2/m4) 

𝜎௙, 𝜎௙௙                = dissipation constant (N/m2) 
𝜉௙௙   = coupling coefficient (Ns/m4) 
𝜆௩, 𝜇௩   = viscosity coefficient (Ns/m2) 
T   = temperature (K) 
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T0   = uniform temperature (K) 
𝐾∗   = thermal conductivity (N/sK) 
𝛼௙, 𝛼଴, 𝛾௙  = material constants (N/m2K) 
𝛼ଵ   = material constant (N/m2K2) 
𝜏்   = phase lag parameter of temperature gradient (s) 
𝜏௤   = phase lag parameter of heat flux (s) 
𝜁௙    = material constant related to liquid (N/m2) 
t   = time (s) 
𝑢௦, 𝑢௙   = displacement in solid and liquid (m) 
𝑡௜௝

௦ , 𝑡௜௝
௙    = components of stress tensor in solid and liquid (N/m2) 

𝜔   = angular frequency(rad/s) 
k   = wave number (m-1) 
𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ  = impedance parameters (Ns/m3)  
𝑧ହ   = impedance parameter (N/mK)  
𝛿௜௝   = Kronecker delta function (dimensionless) 
 
3. Problem formation and resolution 

     A homogeneous, isotropic swelling porous thermoelastic half-space has been taken into account. The origin of the 
rectangular cartesian coordinate system (𝑥ଵ, 𝑥ଶ, 𝑥ଷ)  is located at the boundary  𝑥ଷ = 0, with the  𝑥ଷ-axis pointing ordinarily 
into the medium. The intersection of the plane wavefront and the plane surface is represented by the 𝑥ଶ-axis. We limit our 
analysis to the plane strain problem that is parallel to the 𝑥ଵ − 𝑥ଷ  plane. We employ the following approach for two-
dimensional problems:  
 

𝑢௞ = (𝑢ଵ
௞ , 0, 𝑢ଷ

௞) ; k=s,f  (3.1) 
 

     Define dimensionless quantities as: 

𝑥௜
ᇱ =

ఠ∗

௖భ
𝑥௜ , 𝑢௜

௞ᇲ
=

ఘబ
ೞఠ∗௖భ

ఈబ బ்
𝑢௜

௞ , 𝑡௜௝
௞ᇲ

=
௧೔ೕ

ೖ

ఈబ బ்
, 𝑇ᇱ =

்

బ்
, 𝑡ᇱ = 𝜔∗𝑡, 𝜏்

ᇱ = 𝜔∗𝜏், 𝜏௤
ᇱ = 𝜔∗𝜏௤ , 𝜔ᇱ =

ఠ

ఠ∗,   

𝑧௟
ᇱ =

𝑧௟

𝜌଴
௦𝑐ଵ

, 𝑧ହ
ᇱ =

𝑐ଵ

𝐾∗
𝑧ହ  

(3.2) 

where  𝜔∗ =
ఈభ బ்௖భ

మ

௄∗ , 𝑐ଵ
ଶ =

ఒାଶఓ

ఘబ
ೞ       k=s,f; i,j=1,2,3,l=1,2,3,4   

      The potentials 𝜙 and 𝜓 are related to the displacement components 𝑢ଵ
௞(𝑥ଵ, 𝑥ଷ, 𝑡), and 𝑢ଷ

௞(𝑥ଵ, 𝑥ଷ, 𝑡)  using the Helmholtz 
decomposition. 
 

𝑢ଵ
௞ =

డథೖ

డ௫భ
−

డటೖ

డ௫య
,  𝑢ଷ

௞ =
డథೖ

డ௫య
+

డటೖ

డ௫భ
  (3.3) 

 
Eqs. (2.1-2.3) with the help of Eqs. (3.1-3.3) becomes 

ቆ∇ଶ − 𝑎ଶ

𝜕

𝜕𝑡
−

𝜕ଶ

𝜕𝑡ଶቇ 𝜙௦ + ൬−𝑎ଵ∇ଶ + 𝑎ଶ

𝜕

𝜕𝑡
൰ 𝜙௙ − 𝑎ଷ𝑇 = 0 

(3.4) 

ቆ−𝛿ଵ
ଶ∇ଶ + 𝑎ଶ

𝜕

𝜕𝑡
+

𝜕ଶ

𝜕𝑡ଶ
ቇ 𝜓௦ − 𝑎ଶ

𝜕

𝜕𝑡
𝜓௙ = 0 

(3.5) 

ቀ−ℎଵ∇ଶ + ℎଷ
డ

డ௧
ቁ 𝜙௦ + ቀ

డ

డ௧
∇ଶ − ℎଶ∇ଶ − ℎଷ

డ

డ௧
− ℎହ

డమ

డ௧మቁ 𝜙௙ − ℎସ𝑇 = 0  (3.6) 

൬−ℎଷ

𝜕

𝜕𝑡
൰ 𝜓௦ + ቆ−𝛿ଶ

ଶ∇ଶ
𝜕

𝜕𝑡
+ ℎଷ

𝜕

𝜕𝑡
+ ℎହ

𝜕ଶ

𝜕𝑡ଶ
ቇ 𝜓௙ = 0 

(3.7) 

(𝑑ଷ𝑖𝜔)𝜙௦ + (𝑑ସ𝑖𝜔)𝜙௙ + (𝑑ଶ + 𝑑ହVଶ)𝑇 = 0 (3.8) 

where 

𝛿ଵ
ଶ =

𝜇

𝜆 + 2𝜇
, 𝑎ଵ =

𝜎௙

𝜆 + 2𝜇
, 𝑎ଶ =

𝜉௙௙

𝜌଴
௦𝜔∗

, 𝑎ସ =
𝜆

𝜆 + 2𝜇
, 𝑎ଷ = (1 − 𝜏௥), 𝜏௥ =

𝛾௙

𝛼଴

 , 
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𝛿ଶ
ଶ =

𝜇௩

𝜆௩ + 2𝜇௩

, ℎଵ =
𝜎௙

𝜔∗(𝜆௩ + 2𝜇௩)
, ℎଶ =

𝜎௙௙

𝜔∗(𝜆௩ + 2𝜇௩)
, ℎଷ =

𝜉௙௙𝑐ଵ
ଶ

𝜔∗ଶ(𝜆௩ + 2𝜇௩)
, 

ℎସ =
(1 + 𝜏ଵ)𝛼௙𝜌଴

௦𝑐ଵ
ଶ

𝜔∗𝛼଴(𝜆௩ + 2𝜇௩)
, ℎହ =

𝜌଴
௙

𝑐ଵ
ଶ

𝜔∗(𝜆௩ + 2𝜇௩)
, 𝜏ଵ =

𝛾௙

𝛼 ௙
, 𝑏ଵ =

𝛼଴𝜁௙

𝛼ଵ𝑇଴(𝜆 + 2𝜇)
, 𝜏ଶ =

𝛼 ௙

𝛼଴

 

 𝑏ଶ =
𝛼଴𝛼 ௙

𝛼ଵ(𝜆 + 2𝜇)
, 𝑏ଷ =

𝛼଴
ଶ

𝛼ଵ(𝜆 + 2𝜇)
, 𝑒ଵ =

𝜎௙௙

𝜆 + 2𝜇
, 𝑒ଶ =

𝜆௩𝜔∗

𝜆 + 2𝜇
, 𝑒ଷ =

𝜇௩

𝜆 + 2𝜇
, 

𝑑ଵ = 1 − 𝜏௤𝑖𝜔 −
𝜏௤

ଶ

2!
𝜔ଶ, 𝑑ଶ = 1 − 𝜏்𝑖𝜔 , 𝑑ଷ = 𝑑ଵ𝑏ଷ + 𝑏ଵ, 𝑑ସ = 𝑑ଵ𝑏ଶ + 𝑏ଵ, 𝑑ହ =

−𝑖𝑑ଵ

𝜔
 

∇ଶ= ቆ
𝜕ଶ

𝜕𝑥ଵ
ଶ +

𝜕ଶ

𝜕𝑥ଷ
ଶቇ 

 
We presume that the motion is time-harmonic and that  
 

(𝜙௦, 𝜙௙ , 𝑇, 𝜓௦ , 𝜓௙) = (𝜙ത ௦, 𝜙ത௙ , 𝑇ത, 𝜓ത௦, 𝜓ത௙)𝑒௜{௞(௫భ௦௜௡ఏି௫య௖௢௦ఏ)ିఠ௧} (3.9) 
 
where 𝜃 is the angle of inclination, k is wave number 

 

Fig. 1. Geometry of the problem depicting incident and reflected waves in swelling porous thermoelastic half-space 

     Using Eq. (3.9) in Eqs. (3.4) -(3.8), we can calculate the following: 

𝐴𝑣଺ + 𝐵𝑣ସ + 𝐶𝑣ଶ + 𝐷 = 0 (3.10) 

𝐴ଵ𝑣ସ + 𝐵ଵ𝑣ଶ + 𝐶ଵ = 0 (3.11) 

where the roots of Eq. (3.10) correspond to the velocity of the Ps-wave, Pf-wave, and T-wave, while the roots of Eq. (3.11) 
give the velocity of the SVS-wave and SVF-wave. 

𝐴 = 𝜏ଵଵ𝑙ଶ + 𝜏ଵସ𝑙ସ, 𝐵 = −𝑙ଶ𝜏ଶସ + 𝑙ଵ𝜏ଵଵ − 𝑎ଵ𝑙ସ + 𝑙ଷ𝜏ଵସ −
𝑎ଷ

𝜔ଶ
𝑙଺, , 𝐷 = −𝜏ଵଶ𝑑ଶ − 𝑎ଵℎଵ𝑑ଶ, 

𝐶 = −𝑙ଵ + 𝑑ଶ𝜏ଵଵ𝜏ଵଶ − 𝑎ଵ𝑙ଷ + ℎଵ𝑑ଶ𝜏ଵସ −
௔య

ఠమ 𝑙ହ, 𝐴ଵ = 𝜏ଵଵ𝜏ଵ଺ − 𝜏ଵହ𝜏ଵସ, 𝐵ଵ = 𝜏ଵଵ𝛿ଶ
ଶ𝑖𝜔 − 𝜏ଵ଺𝛿ଵ

ଶ, 𝐶ଵ = −𝛿ଵ
ଶ𝛿ଶ

ଶ𝑖𝜔, 𝜏ଵଶ = 𝑖𝜔 +

ℎଶ, 𝜏ଵଷ = 𝜏ଵହ + ℎହ, 𝜏ଵସ =
௜௔మ

ఠ
, 𝜏ଵଵ = 1 + 𝜏ଵସ, 𝜏ଵହ =

௜௛య

ఠ
,   

𝜏ଵ଺ = 𝜏ଵହ − ℎହ,𝑙ଵ = 𝜏ଵଶ𝑑ହ + 𝜏ଵଷ𝑑ଶ +
௜ௗర௛ర

ఠ
, 𝑙ଶ = 𝜏ଵଷ𝑑ହ, 𝑙ଷ = ℎଵ𝑑ହ − 𝜏ଵହ𝑑ଶ +

௜ௗయ௛ర

ఠ
,  

𝑙ସ = −𝜏ଵହ𝑑ହ, 𝑙ହ = (ℎଵ𝑑ସ − 𝜏ଵଶ𝑑ଷ)𝑖𝜔, 𝑙଺ = −(𝜏ଵହ𝑑ସ + 𝜏ଵଷ𝑑ଷ)𝑖𝜔 

𝜃଴ 

𝑥ଵ 

𝑥ଷ ≥ 0 𝐴ଵ 𝐴ଶ 
𝐴ଷ 

𝐵ସ 

𝐵ହ 

O 

𝜃ଶ 

𝜃ଷ 
𝜃ସ 𝜃ହ 

  

𝜃ଵ 
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Making use of Eqs. (3.1-3.3) in Eqs. (2.4-2.5) we obtain 

𝑡ଷଷ
௦ = −𝑎ଵ ቆ

𝜕ଶ𝜙௙

𝜕𝑥ଵ
ଶ +

𝜕ଶ𝜙௙

𝜕𝑥ଷ
ଶ ቇ + 𝑎ସ ቆ

𝜕ଶ𝜙௦

𝜕𝑥ଵ
ଶ +

𝜕ଶ𝜙௦

𝜕𝑥ଷ
ଶ ቇ + 2𝛿ଵ

ଶ ቆ
𝜕ଶ𝜙௦

𝜕𝑥ଷ
ଶ +

𝜕ଶ𝜓௦

𝜕𝑥ଷ𝜕𝑥ଵ
ቇ − 𝑇 

(3.12) 

𝑡ଷଵ
௦ = 𝛿ଵ

ଶ ቆ2
𝜕ଶ𝜙௦

𝜕𝑥ଷ𝜕𝑥ଵ

+
𝜕ଶ𝜓௦

𝜕𝑥ଵ
ଶ −

𝜕ଶ𝜓௦

𝜕𝑥ଷ
ଶ ቇ 

(3.13) 

𝑡ଷଷ
௙

= −𝑎ଵ ቀ
డమథೞ

డ௫భ
మ +

డమథೞ

డ௫య
మ ቁ − 𝑒ଵ ቀ

డమథ೑

డ௫భ
మ +

డమథ೑

డ௫య
మ ቁ + 𝑒ଶ ቀ

డమథ̇೑

డ௫భ
మ +

డమథ̇೑

డ௫య
మ ቁ + 2𝑒ଷ𝜔∗ ቀ

డమథ̇೑

డ௫య
మ +

డమట̇೑

డ௫యడ௫భ
ቁ −𝜏ଶ𝑇  (3.14) 

𝑡ଷଵ
௙

= 𝑒ଷ𝜔∗ ቆ2
𝜕ଶ𝜙̇௙

𝜕𝑥ଷ𝜕𝑥ଵ

+
𝜕ଶ𝜓̇௙

𝜕𝑥ଵ
ଶ −

𝜕ଶ𝜓̇௙

𝜕𝑥ଷ
ଶ ቇ 

(3.15) 

4. Boundary Conditions 

    The boundary conditions at surface 𝑥ଷ = 0 are 

(i) 𝑡ଷଷ
௦ + 𝜔𝑧ଵ𝑢ଷ

௦ = 0  (ii) 𝑡ଷଵ
௦ + 𝜔𝑧ଶ𝑢ଵ

௦ = 0 (iii) 𝑡ଷଷ
௙

+ 𝜔𝑧ଷ𝑢ଷ
௙

= 0 

(iv) 𝑡ଷଵ
௙

+ 𝜔𝑧ସ𝑢ଵ
௙

= 0  (v) 𝐾∗ డ்

డ௫య
+ 𝜔𝑧ହ𝑇 = 0 

(4.1) 

 

where 𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ are impedance parameters having dimension 
ே௦

௠య.  𝑧ହ is impedance parameter having dimension 
ே

௠௄
.  We 

assume the values of 𝜙௦, 𝜙௙, 𝑇, 𝜓௦ , 𝜓௙as: 

𝜙௦ = ෍ 𝐴଴௠𝑒௜{௞(௫భ௦௜௡ఏబି௫య௖௢௦ఏబ)ିఠ௧} + 𝐴௠𝑒௜{௞(௫భ௦௜௡ఏ೘ା௫య௖௢௦ఏ೘)ିఠ௧} (4.2) 

𝜙௙ = ෍ 𝛼௠(𝐴଴௠𝑒௜{௞(௫భ௦௜௡ఏబି௫య௖௢௦ఏబ)ିఠ௧} + 𝐴௠𝑒௜{௞(௫భ௦௜௡ఏ೘ା௫య௖௢௦ఏ೘)ିఠ௧}) (4.3) 

𝑇 = ∑ 𝛽௠(𝐴଴௠𝑒௜{௞(௫భ௦௜௡ఏబି௫య௖௢௦ఏబ)ିఠ௧} + 𝐴௠𝑒௜{௞(௫భ௦௜௡ఏ೘ା௫య௖௢௦ఏ೘)ିఠ௧})   (4.4) 

𝜓௦ = ෍ 𝐵଴௡𝑒௜{௞(௫భ௦௜௡ఏబି௫య௖௢௦ఏబ)ିఠ௧} + 𝐵௡𝑒௜{௞(௫భ௦௜௡ఏ೙ା௫య௖௢௦ఏ೙)ିఠ௧} (4.5) 

𝜓௙ = ∑ 𝛾௡(𝐵଴௡𝑒௜{௞(௫భ௦௜௡ఏబି௫య௖௢௦ఏబ)ିఠ௧} + 𝐵௡𝑒௜{௞(௫భ௦௜௡ఏ೙ା௫య௖௢௦ఏ೙)ିఠ௧})  (4.6) 

where  𝛼௠ =
ቀ

೓ర
ഘమቁ௏మ൫ିଵାఛభభ௏మ൯ିቀ

ೌయ
ഘమቁ௏మ൫௛భିఛభఱ௏మ൯

(௔భିఛభర௏మ)ቀ
ష೓ర
ഘమ ቁ௏మାቀ

ೌయ
ഘమቁ௏మ(ఛభమାఛభయ௏మ)

, 

 𝛽௠ =
(ିଵାఛభభ௏మ)൫ఛభమାఛభయ௏మ൯ି(௔భିఛభర௏మ)൫௛భିఛభఱ௏మ൯

(௔భିఛభర௏మ)ቀ
ష೓ర
ഘమ ቁ௏మାቀ

ೌయ
ഘమቁ௏మ(ఛభమାఛభయ௏మ)

, 𝛾௡ =
ఋభ

మିఛభభ௏మ

ିఛభర௏మ   (m=1,2,3; n=3,4) 

where 𝐴଴௠(𝑚 = 1,2,3) denote amplitude of incident Ps-wave, Pf-wave and T-wave 𝐴௠(𝑚 = 1,2,3)correspond to reflected 
Ps-wave, Pf-wave and T-wave, 𝐵଴௡(𝑛 = 3,4)  signify amplitude of incident SVS-wave and SVF-wave and 𝐵௡(𝑛 = 3,4) 
associate with the reflected SVS-wave and SVF-wave. 

     Snell’s Law is denoted as 
௦௜௡ఏబ

௩బ
=

௦௜௡ ೔

௩೔
 (i=1,2,3,4,5) 

where 𝑘ଵ𝑣ଵ = 𝑘ଶ𝑣ଶ = 𝑘ଷ𝑣ଷ = 𝑘ସ𝑣ସ = 𝑘ହ𝑣ହ = 𝜔 

The following relation coefficients (or amplitude ratios) are obtained by applying boundary conditions (4.1) to Eq. (3.3), 
Eqs. (3.12-3.15). 

∑ 𝑎௣௝𝑍௝ = 𝑔௣, (p,j=1,2,3,4,5) (4.7) 

𝑎ଵ௜ = ቆ𝛼௜𝑎ଵ − 𝑎ସ − 2𝛿ଵ
ଶ ቆ1 − ൬

𝑣௜

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ቇ −
𝛽௜

𝑘௜
ଶቇ ൬

𝑣ଵ

𝑣௜
൰

ଶ

+
𝑣ଵ

ଶ

𝑣௜

𝑧ଵඨ1 − ൬
𝑣௜

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ 

𝑔ଵ =  (−𝛼ଵ𝑎ଵ + 𝑎ସ + 2𝛿ଵ
ଶ𝑐𝑜𝑠ଶ𝜃଴) +

𝛽ଵ

𝑘ଵ
ଶ + 𝑣ଵ𝑧ଵ𝑖𝑐𝑜𝑠𝜃଴ 
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𝑎ଵ௝ = −2𝛿ଵ
ଶ𝑠𝑖𝑛𝜃଴ඨ1 − ൬

𝑣௝

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ ቆ
𝑣ଵ

𝑣௝
ቇ + 𝑖𝑧ଵ𝑣ଵ𝑠𝑖𝑛𝜃଴ 

𝑎ଶ௜ = −2𝛿ଵ
ଶ𝑠𝑖𝑛𝜃଴ඨ1 − ൬

𝑣௝

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴  ൬
𝑣ଵ

𝑣௜
൰ + 𝑖𝑧ଶ𝑣ଵ𝑠𝑖𝑛𝜃଴ 

𝑎ଶ௝ = 𝛿ଵ
ଶ ൭− ൬

𝑣௝

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ + ቆ1 − ൬
𝑣௝

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ቇ൱ ቆ
𝑣ଵ

𝑣௝
ቇ

ଶ

−
𝑣ଵ

ଶ

𝑣௝

𝑖𝑧ଶඨ1 − ൬
𝑣௝

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ 

𝑔ଶ = (−2𝛿ଵ
ଶ𝑠𝑖𝑛𝜃଴𝑐𝑜𝑠𝜃଴) − 𝑖𝑧ଶ𝑣ଵ𝑠𝑖𝑛𝜃଴ 

𝑎ଷ௜ = ቆ𝑎ଵ + 𝑒ଵ𝛼௜ + 𝑖𝑘௜𝑣௜𝛼௜ ൭𝑒ଶ + 2𝑒ଷ𝜔∗ ቆ1 − ൬
𝑣௜

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ቇ൱ −
𝜏ଶ𝛽௜

𝑘௜
ଶ ቇ ൬

𝑣ଵ

𝑣௜
൰

ଶ

+ 𝑖𝛼௜𝑧ଷ

𝑣ଵ
ଶ

𝑣௜

ඨ1 − ൬
𝑣௜

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ 

𝑔ଷ =  −(𝑎ଵ + 𝑒ଵ𝛼ଵ + 𝑖𝑘ଵ𝑣ଵ𝛼ଵ(𝑒ଶ + 2𝑒ଷ𝜔∗𝑐𝑜𝑠ଶ𝜃଴)) +
𝜏ଶ𝛽௜

𝑘ଵ
ଶ + 𝑣ଵ𝑧ଷ𝛼ଵ𝑖𝑐𝑜𝑠𝜃଴ 

𝑎ଷ௝ = 𝑖𝑘௝𝛾௝2𝑒ଷ𝜔∗𝑣ଵ𝑠𝑖𝑛𝜃଴ඨ1 − ൬
𝑣௝

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ + 𝑖𝑧ଷ𝛾௝𝑣ଵ𝑠𝑖𝑛𝜃଴ 

𝑎ସ௜ = 𝑖𝑘௜𝛼௜2𝑒ଷ𝜔∗𝑣ଵ𝑠𝑖𝑛𝜃଴ඨ1 − ൬
𝑣௜

𝑣ଵ
൰

ଶ

𝑠𝑖𝑛ଶ𝜃଴ + 𝑖
𝑣ଵ

ଶ

𝑣௜

𝑧ସ𝛼௜𝑠𝑖𝑛𝜃଴ 

𝑔ସ = 𝑖𝑘ଵ𝛼ଵ2𝑒ଷ𝜔∗𝑣ଵ𝑠𝑖𝑛𝜃଴𝑐𝑜𝑠𝜃଴ − 𝑖𝑣ଵ𝑧ସ𝛼ଵ𝑠𝑖𝑛𝜃଴ 

𝑎ସ௝ = 𝑒ଷ𝜔∗ ቆ𝑖𝑘௝𝛾௝𝑣௝𝑠𝑖𝑛ଶ𝜃଴ + ൬1 − ቀ
௩ೕ

௩భ
ቁ

ଶ

𝑠𝑖𝑛ଶ𝜃଴൰ ൬−𝑖𝑘௝𝛾௝
௩భ

మ

௩ೕ
൰ቇ − 𝑖𝑧ସ𝛾௝

௩భ
మ

௩ೕ
ට1 − ቀ

௩ೕ

௩భ
ቁ

ଶ

𝑠𝑖𝑛ଶ𝜃଴, 𝑔ହ = 𝑖
ఉభ

௞భ
𝑐𝑜𝑠𝜃଴ − 𝑧ହ

ఉభ

௞భ
𝑣ଵ 

𝑎ହ௜ = 𝑖
ఉ೔

௞೔
ቀ

௩భ

௩೔
ቁ

ଶ
ට1 − ቀ

௩೔

௩భ
ቁ

ଶ

𝑠𝑖𝑛ଶ𝜃଴ + 𝑧ହ
ఉ೔

௞೔

௩భ
మ

௩೔
, , 𝑎ହସ = 𝑎ହହ = 0 

The amplitude ratios of reflected Ps, Pf, T, and SVS, SVF waves for an incident Ps wave are denoted by 𝑍௜ =
஺೔

஺బభ
 (i=1,2,3) 

and 𝑍௝ =
஻ೕ

஺బభ
 (𝑗 = 4,5).  In the same way, the amplitude ratios of reflected waves can be determined for the incident Pf, T, 

SVS, or SVF waves. 

5. Energy ratios of reflected waves 

     This section calculates the dissemination of energy amongst reflected waves.  In accordance with (Achenbach, 1973), the 
rate at which energy is transmitted per unit surface area per unit time is presented as 

𝑃௘ =
1

2
෍ ℜ((𝑡ଷଷ

௞ )𝑢ത̇ଷ
௞))

௞ୀ௦,௙
+

1

2
෍ ℜ((𝑡ଷଵ

௞ )𝑢ത̇ଵ
௞))

௞ୀ௦,௙
 

(5.1) 

The average reflected wave energy at 𝑥ଷ = 0 is given by 

|𝐸௜| = − ൬
𝐴௜

𝐴଴ଵ
൰

ଶ ቀ
௩భ

௩೔
ቁ

ଶ
ට1 − ቀ

௩೔

௩భ
ቁ

ଶ

𝑠𝑖𝑛ଶ𝜃଴ ൤(𝛼௜𝑎ଵ − 𝑎ସ − 2𝛿ଵ
ଶ) −

ఉ೔

௞೔
మ + 𝑟௜൨

𝑐𝑜𝑠𝜃଴ ቂ(𝛼ଵ𝑎ଵ − 𝑎ସ − 2𝛿ଵ
ଶ) −

ఉభ

௞భ
మ + 𝑟ଵቃ

 

(5.2) 

ห𝐸௝ห = − ൬
𝐵௝

𝐴଴ଵ
൰

ଶ ൬
௩భ

௩ೕ
൰

ଶ

ට1 − ቀ
௩ೕ

௩భ
ቁ

ଶ

𝑠𝑖𝑛ଶ𝜃଴ ൫(−𝛿ଵ
ଶ + 𝑖𝜔𝑒ଷ𝜔∗𝛾௝

ଶ)൯

𝑐𝑜𝑠𝜃଴ ቂ(𝛼ଵ𝑎ଵ − 𝑎ସ − 2𝛿ଵ
ଶ) −

ఉభ

௞భ
మ + 𝑟ଵቃ

 

 

(5.3) 

     

where, 𝑟௜ = 𝛼௜(𝑎ଵ + 𝑒ଵ𝛼௜ + 𝑖𝑘௜𝛼௜𝑣௜𝑒ଶ + 2𝑖𝑒ଷ𝜔∗𝑘௜𝛼௜) −
ఛమఉ೔

௞೔
మ        (i=1,2,3; j=4,5) 
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6. Discussion and numerical outcomes 

     The following data is used to demonstrate the consequence of the impedance parameter on the energy ratios of reflected 
Ps, Pf, T, SVS, and SVF waves (Tomar & Goyal, 2013). 

Symbol Value Unit Symbol Value Unit 
𝜆 6.0× 10ଽ N/m2 𝛼௙ 0.152× 10଺ N/m2 K 
𝜇 9.0× 10ଽ N/m2  𝛼଴ 0.015× 10଺ N/m2 K 
𝜆௩ 1.002× 10ିଷ Ns/m2 𝛾௙ 1.656× 10଺ N/m2 K 
𝜇௩ 8.88× 10ିସ Ns/m2 T 298 K 
𝜎௙ 0.03× 10଺ N/m2 𝜌଴

௦ 2.65× 10ଷ Ns2/m4 
𝜎௙௙ 0.291× 10ହ N/m2 𝜌଴

௙ 9.90× 10ଶ Ns2/m4 

𝜉௙௙ 0.0250× 10଺ Ns/m4 𝐾∗ 0.498× 10ଶ N/sK 
𝛼ଵ 0.03831× 10ଶ N/m2 K2 𝜁௙ 2.15× 10଺ N/m2 

 

      Energy ratios for reflected Ps-wave, Pf-wave, T-wave, SVS-wave, and SVF-wave are obtained and presented graphically 
in Figs. 2(a-e) to 6(a-e) using the aforementioned numerical data for 𝜏் = 0.3 s  and 𝜏௤ = 0.4 𝑠 and impedance parameters 

z1= 10, z2= 20, z3= 30, z4= 40, z5= 50.  The energy ratios ห𝐸௣ห (𝑝 = 1, . . ,5) of these waves are plotted against the angle of 
incidence. 

7. Specific Situation 

       For the case in which 𝜏் = 0, 𝜏௤ ≠ 0 and 𝜏௤
ଶ = 0 the LS-model is used to reduce the results that have been obtained. 

The change in energy ratios of reflected waves in the DP (dual phase lag model) and LS model when the Ps wave is incident 
is illustrated in Fig. 2(a-e). It is noted that the energy ratios of all reflected waves diminish as the angle of incidence increases.  
For each angle of incidence, the approximate value of E1 remains unity for both the DP and LS models.  Except for E4, the 
DP model's reflected energy ratios are lower than those of the LS model. 

 

 

 
Fig. 2(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a Ps wave is 

incident. 
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     Fig. 3(a-e) illustrates the reflected energy ratios that result from the incidence of the Pf wave.  It is observed that the values 
of E2, E3, and E4 diminish as the angle of incidence increases, while E1 increases in both the DP and LS models.  The energy 
ratios for E5 initially decline and then begin to rise as the angle of incidence changes.  Additionally, the initial values of E5 for 
the DP model are lower than those of the LS model; however, the reverse behaviour is observed later.  It is also detected that 
the energy ratios in the DP model are lower than those in the LS model, with the exception of E5. 

 

 

 

Fig. 3(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a Pf wave is 
incident. 

     Fig. 4(a-e) illustrates the variation in reflected energy ratios as a result of the incidence of the T wave.  Energy ratios in the 
DP model decrease as the angle of incidence rise, with the exception of E5.  The energy ratios of the LS model exhibit 
oscillatory behaviour. In the DP model, energy ratios diminish as the angle of incidence changes, whereas in the LS model, 
they oscillate in response to the angle of incidence.  The energy ratio E2 in the LS model is lower than the results acquired for 
the DP model. However, the energy ratio E3 is greater than the DP model throughout the entire spectrum. 
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Fig. 4(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a T wave is 
incident. 

      The energy ratios of reflected waves for the DP and LS models diminish as the angle of incidence increases when the SVS 
wave is incident, as illustrated in Fig 5(a-e). The energy ratios in the LS model are still lower than the outcomes achieved in 
the DP model at each angle of occurrence.  Also, the values of E4 for both the DP and LS models decrease and converge to 
one. 
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Fig. 5(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a SVS wave 
is incident. 

     The energy ratios of the reflected wave are illustrated in Fig 6(a-e) when an SVF wave is incident.  It has been noted that 
the energy ratios for the DP model are higher than those obtained for the LS model.  The maximal value of E1, E2, E3, and E4 
is achieved at 𝜃 = 45଴ in both models.  The energy ratio E5 increases with the angle of incidence, and its values remain 
relatively close to one at each angle of incidence. 
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Fig. 6(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a SVF wave 
is incident. 

8. In Conclusion 

      The investigation focuses on the reflection of plane waves from a porous thermoelastic medium that is enlarging and has 
a dual phase lag, which is subject to an impedance boundary.  There are two longitudinal waves, a thermal wave, and two 
transversal waves.  Amplitude ratios and energy ratios for the dual phase lag model and LS model are compared based on the 
incidence of each wave.  It has been noted that the sum of the energy ratio at each angle of incidence is approximately one, 
which demonstrates the preservation of the law of conservation of energy.  It is also detected that the energy ratios for reflected 
waves in the DP model are lower than the values obtained for the LS model when Ps, Pf, and T waves are incident. Conversely, 
the reverse behaviour is observed when transversal waves are incident.  Additionally, the energy ratios reach their maximal 
value at 𝜃 = 45଴ in both the DP and LS models when the SVF wave is incident.  These findings may prove advantageous in 
the investigation of numerous seismological issues. 
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