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 The linear governing equations of a micropolar thermoelastic medium without energy 
dissipation are solved for surface wave solutions. The appropriate solutions satisfying the 
radiation conditions are applied to the required boundary conditions at the free surface of the 
half-space of the medium. A frequency equation is obtained for Rayleigh wave in the medium. 
The non-dimensional speed of the propagation of Rayleigh wave is computed for a specific 
model of the material and are shown graphically against frequency and non-dimensional 
parameter. 
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1. Introduction 
 

The dynamical theory of thermoelasticity investigates the interaction between thermal and 
mechanical fields in solid bodies and plays important role in various engineering fields. The generalized 
theories of thermoelasticity which admit a finite speed of thermal signals (second sound) have aroused 
much interest during last four decades. For instance, Lord and Shulman (1967), by incorporating a flux-
rate term into Fourier’s law of heat conduction, formulated a generalized theory which involves a 
hyperbolic heat transport equation admitting finite speed for thermal signals. Green and Lindsay 
(1972), by including temperature rate among the constitutive variables, developed a temperature-rate-
dependent thermoelasticity that does not violate the classical Fourier law of heat conduction, when the 
body under consideration has a centre of symmetry and this theory also predicts a finite speed for heat 
propagation. Chandrasekharaiah (1986) referred to this wave-like thermal disturbance as ‘second 
sound’. Green and Naghdi (1977) established a new thermo-mechanical theory of deformable media 
that uses a general entropy balance as postulated in Green and Naghdi (1991). The theory is explained 
in detail in the context of flow of heat in a rigid solid, with particular reference to the propagation of 
themal waves at finite speed.  A theory of thermoelasticity for nonpolar bodies, based on the new 
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procedure, was discussed by Green and Naghdi (1993). This theory permits the flow of heat as themal 
waves at finite speed, and the heat flow does not involve energy dissipation. 

       The linear theory of micropolar thermoelasticity was developed by extending the theory of 
micropolar continua to include thermal effects by Eringen (1970) and Nowacki (1986). A generalized 
theory of linear micropolar thermoelasticity was developed by Boschi and Iesan (1973). Following 
Green and Lindsay (1972), Dost and Tabarrok (1978) developed a theory of micropolar generalized 
thermoelasticity. The theory of micropolar thermoelasticity without energy dissipation was developed 
by Ciarletta (1999), which also admits the finite speed of heat propagation. Singh and Kumar (1998) 
and Singh (2000) studied some problems on wave propagation in micropolar thermoelasticity in the 
context of the Lord and Shulman (1967) and Green and Lindsay (1972) theories. Singh (2007) obtained 
the plane wave solutions of the linear governing equations of a micropolar thermoelastic medium 
without energy dissipation to show the existence of four plane waves in a two-dimensional model. The 
expressions for velocities, reflection coefficients, energy ratios of these plane waves are also obtained. 
The present paper is motivated by the theory of micropolar thermoelasticity formulated by Ciarletta 
(1999). The surface wave solutions of the linear governing equations for an isotropic micropolar 
thermoelastic body without energy dissipation are obtained. The particular solutions in the half-space 
satisfy the radiation conditions and the boundary conditions. The frequency equation of the Rayleigh 
wave in the half-space is derived. For a particular example of the material, the non-dimensional speed 
of the Rayleigh wave is computed against the given range of the frequency and non-dimensional 
parameter. 

2. Governing equations and solution 

A homogeneous, isotropic, micropolar thermoelastic solid occupying the half–space is considered in 
an undisturbed state, which is initially at uniform temperature . The rectangular Cartesian coordinates 
are introduced, having the origin on the surface z = 0 and the z-axis is chosen in the direction of 
increasing depth. A two- dimensional problem (in the x-z-plane) is being discussed with the wave front 
parallel to the y-axis. Following Green and Naghdi (1993), Eringen (1970) and Ciarletta (1999), the 
constitutive and the field equations for an isotropic micropolar thermoelastic medium without energy 
dissipation and in the absence of body forces and couples become 

   , , , , ,ij r r ij i j j i j i ijr r iju u u u T               (1) 

, , , ,ij r r ij i j j im        (2) 

      2. ,u u T u                 
    (3) 

     . 2 ,u j                    
     (4) 

2
0 ,K T T u C T     
   (5) 

 

where  , , , , ,         are material constants,    is the density, j  is the microinertia,   

 3 2 ,t t          is the coefficient of linear thermal expansion,  C   is the specific  heat at 

constant strain and   2 / 4K C       is a material constant characteristic of theory. Here  , ,T x y t

is the temperature change above the uniform reference temperature 0 ,T u


  is the displacement vector, 




 is the microrotation vector, ij are the components of force stress and ijm  are the components of 

couple stress. The superposed dots denote the time derivatives. For the two-dimensional problem, let   

   1 3 2,0, 0, ,0 ,u u u and  


 (6) 
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where the displacement components  1u and 3u  are written in terms of the potential functions  , ,q x y t  

and  , ,x y t  as 

1 3, ,
q q

u u
x z z x

    
   
   

 
(7) 

and with the help of Eq. (6) and Eq. (7), Eq. (3-5) are reduced to 

  22 ,q T q           (8) 

2 2
0 ,K T T q C T        (9) 

  2
2 ,          (10) 

2 2
2 2 22 j            

. 
(11) 

Eq. (8) and Eq. (9) and are coupled in q and T, whereas Eq. (10) and Eq. (11) are coupled in   and .  

The solutions of Eq. (8) and Eq. (9) are now sought in the form of the harmonic travelling wave 

        , , ,ik x ctq T q z T z e   (12) 

Using Eq. (12) in the Eq. (8) and Eq. (9), we obtain two homogeneous equations in ( ), ( )q z T z , which 
have non-trivial solution if  

* 4 2 * 2 2 4 2
0 0( ) ( ) 0,K D k M LK c T Q D k LM c T Q        (13) 

2
2 * *where 1, , .

2 2

c
L M c C K Q

 
     

    
     

 

The general solutions of Eq. (13) are written as  

 1 2 1 2
1 2 3 4 )( ,z z z x cz tikm m m mq A e A e A e A e e       (14) 

 1 2 1 2
1 1 2 2 1 3 2 4 ) ,( cz z tz xz ikm m m mT A e A e A e A e e         (15) 

where 

       

* 2 2
2 2 2 2 2 40 0
1 2 1 2* *

[ ], [ ],
M LK c T Q LM c T Q

m m k m m k
K K

   
   

 

        

 
2

2 2 1
22 1

, ( 1, 2).i

m
k c

k
i

   




  
     

                      

The solutions of Eq. (10) and Eq. (11) are now sought in the form of the harmonic travelling wave 

        
2 2, , ,ik x ctz z e      (16) 

Using Eq. (16) in the Eq. (10) and Eq. (11), we obtain two homogeneous equations in 2 ( ), ( )z z  , 

which have non-trivial solution if  
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4 2 2 4
2 2

( ) ( ) 0,
R R

D k P N D k NP
k k

         
(17) 

2
2

2

2
where , 1, .

c
N jc P R

k

   
   

     
    

The general solutions of Eq. (17) are written as  

 3 34 4
2 1 2 3 4 )( ,z z x tz cz ikm mm mB e B e B e B e e       (18) 

 3 34 4
43 1 2 3 3 4 4 ) ,( xz z ctzz ikm mm mB B B Be e e e e          (19) 

where 

2 2
2 2 2 2 2 4
3 4 3 4[ ], [ ],

R R
P N NP

k km m k m m k

 

 

  
   

2
2

2 2

2

2

2 1

, ( 3, 4).

1

j

j

j

m
jc

k k
j

m

k

 





  
          

 
  

 

 

The particular solutions in half-space (z > 0), which satisfy the radiation conditions  

2 0, 0 are0, 0, as zq T     
  

 1 2
1 2 )( ,x ctz z ikm mq A e A e e     

(20) 

 1 2
1 1 2 2 ) ,( z x ctz ikm mT A e A e e      

(21) 

 3 4
2 1 2 )( ,z x ctz ikm mB e B e e     

(22) 

 3 4
3 1 4 2 ) .( xz z ctikm mB Be e e       

(23) 

 3. Boundary conditions 

The mechanical boundary conditions at z = 0 are   

0, 0, 0, 0,zz zx yz

T
m

z
  

   


 
(24) 

where  

1,1 3,3 ( 2 ) ,zz u u T           (25) 

 3,1 1,3
2

2 ,  .zx yzu u m
z

      
    


                                                                                               

The solutions (20) to (23) satisfy the boundary conditions (24) at z = 0 and we obtain the following 
frequency equation  

   

   

3 32 4 2 2 2 1 4 1 1 1
1 1 1 2 2 1 2 22 2 2 2

2 23 31 2 4 2 1 2 4 1
3 32 2

2 23 31 2 4 2 1 2 4 1
4 42 2

2 2

2 2 0,

m mm m m m m m
a b a b a b a b

k k k k k k k k k k k k
m mm m m m m m

k k k k k k k k k k
m mm m m m m m

k k k k k k k k k k

   

      

      

   

   

    

 

 

 

(25) 
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where

  

 

2

2 2

2

2 2

2 , ( 1, 2)

, ( 1, 3; 2, 4).

i i
i

k
i k

m
a i

k k

m
b i k i k

k k

    

   

 
      
 

 
        

 

 

The frequency Eq. (25) reduces for isotropic micropolar case if we take thermal parameter  = 0.  The 
frequency Eq. (25) can be reduced for isotropic thermoelastic case if we put microrotation parameters 
 =  =  =  = 0. 

4. Numerical results and discussion 

Following Gauthier (1982), the physical constants for a micropolar thermoelastic solid are considered 
as 

11 2 11 2 11 2

11 2 3 2

7.59 10 / , 1.89 10 / , 0.0149 10 / ,

0.268 10 , 0.23 / , 0.05, 0.0196 , 2.19 / , 0.1

dyne cm dyne cm dyne cm

dyne C cal g C j cm gm cm jk

  

  

     

      
 

With the help of above material constants, the non-dimensional speed 
2c

 
of the Rayleigh wave is 

computed for a particular range of the frequency (). The non-dimensional speed of the Rayleigh wave 
decreases very sharply as we increase the value of frequency in low frequency range, whereas it 
decreases slowly for higher frequency range. The variation of the non-dimensional speed is shown 
graphically against the frequency by solid line in Fig. 1, where the dotted line corresponds to the 
isotropic micropolar case. The comparison of solid and dotted lines in Fig. 1 shows the thermal effects 
on the speed of Rayleigh wave at different values of frequency.  
 

Fig. 1. Variation of the non-dimensional speed 
2c

 
of the Rayleigh wave against the frequency 

():  (a) Solid line – Micropolar thermoelastic case  
(b) Dotted line – Micropolar elastic case 

Fig. 2. Variation of the non-dimensional speed 
2c

 
of the Rayleigh wave against the non-dimensional 

constant .
2


   
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The non-dimensional speed 
2c

 
of the Rayleigh wave is also computed against the non-dimensional 

parameter .
2


   

 It increases sharply with the increase in value of the non-dimensional constant 

.
2


   

The variation of the non-dimensional speed is shown graphically against the non-

dimensional constant in Fig. 2.  

5. Conclusion 

     The governing equations of the linear, isotropic and homogeneous micropolar thermoelastic 
medium have been solved for surface wave solutions. The solutions satisfying radiation conditions at 
the free surface of the half-space are applied to required boundary conditions to obtain the frequency 
equation. For numerical purpose, the frequency equation of the Rayleigh wave is solved numerically 
to obtain the values of the non-dimensional speed of the Rayleigh wave for a given range of the 
frequency and non-dimensional constant. From theory and numerical analysis, it is observed that the 
non-dimensional speed of the Rayleigh wave depends upon material parameters and the frequency.   
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