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systems.
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1. Introduction

The study of moving objects and their behavior analysis under external factors such as forces and
moments is simply possible by using the triple laws of Newton. However, all of the problems in
mechanical science are not including the concentrated masses. For investigating the behavior of
mechanical structures and fluids motion, it is necessary to consider separately all of the constituent
particles of material. On the other hand, the mathematical model of each particle is considered as a
point and any continuous system includes infinite number of points. Herein, the simplest method that
can be applied is writing of equations of motion for each particle separately. The most important
problem in this way is that, point is a mathematical definition and has no physical interpretation.
Although, the dimensions of each particle is so many infinitesimal, but it cannot be assumed as a
point. Because, a physical particle has mass and occupies a certain volume, while, the point has not
any dimension. So, modeling of a particle as a point seems to be impossible from physical point of

view.
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On the other hand, a continuous system never can be analyzed by writing the equation of motions
for the particles with specified volume. In such case, two major problems will occur. The first is that
in study of continuous systems we investigate all particles in the system. While, a physical particle
has dimensions and is made by smaller particles. So, study of the internal points in considered
particle is impossible. The second problem is arisen from the first one. In such case, the response of
system will be modeled as a discrete function which involving discontinuity in the boundary of
considered particle. Both of mentioned problems have been overcome by the aid of mathematics. If a
particle with specified dimensions be studied, by tending its dimensions to zero the point is achieved.
While as mentioned, the point is a mathematical definition and finding a physical imagination for
point is a complicated matter and has been remained an unresolved issue yet.

In this paper, the governing equations in continuous systems are investigated from a conceptual
point of view. For this, the principle and basics of a simple method has been expressed. Firstly to this
end, it is shown that having a suitable understanding about concept of governing equations in
continuous systems can simplify the investigation of these systems. Thus using intensive properties is
proposed. Finally, the equilibrium equations are derived by using the new method in rectilinear and
curvilinear coordinates systems. Beside simplicity of new method, this method has made possible the
understanding of governing equations concept for any researcher due to its conceptual point of view.
The method has also a general interpretation for point, and is extendable to other equations in
continuous systems. This matter is leaded to a united form be achieved, for extraction of governing
equations in continuous systems from their corresponding model of solid objects.

2. Formulation

For review of the systems which involving concentrated masses (mass-spring), governing
equations are extracted by considering applied forces in free body diagram. While, when we
investigate motion of solid continuous systems, governing equations are versus stress components.
On the other hand, Hook’s law for concentrated masses is the relationship between force and
deformation, while this law for solid continuous systems is the relationship between stresses and
strains.

The note which here we are going to explain is that, in continuous systems equations cannot be
achieved versus forces with unite of “N” (Kg. m/s?). Hook’s law in these systems is not explainable
as a relationship between force and deformation too. Both of these limitations have a common reason
which can be found in the difference of physical element and mathematical point as reviewed in
pervious section. Consider a concentrated force (with unite of “N”) which is applied on a specified
area. To finding effect of this force on mentioned area, this effect should be studied on all of its
constituent points. While force is an extensive property, cannot be applied on a point. But if an
intensive property be accessible, it is simply extensible to all points. Surface force or stress is same as
extensive force which has been converted to an intensive property by writing it per unite area.
Consequently, Hook’s law also in continuous systems is indeed versus forces, which are converted to
intensive properties. Thus, in solid continuous systems there are some extensive forces which are the
potential of stress components. These forces can be defined as: g;; = 0F;; /6A(xkxj). In this equation

i is outward normal unite vector direction of surface 4, j is force direction and x; and xare in-plane
directions of A.

Regarding to above context, our propose is that, for deriving motion equations in continuous
systems, the most appropriate way is using from intensive properties. As any extensive property
depends on dimensions but each point has no dimension; so, extensive properties and point are
inconsistent with each other. Thus, using from intensive properties lead to overcoming the problem.
In order to achieving equations versus intensive properties, they can be written per unit volume.
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Consider the Newton’s second law as a governing equation versus extensive properties which is a
function of dimensions: Y F —ma = G(V) = 0. To converting this equation versus intensive
properties it can be divided per volume and for generalizing it to each arbitrary point, the considered
volume should approaches to zero:

AW _d6W) _ (1)
W AV av

where AG(V) is same as G(V) which describes the motion of a particle with dimensions AV. For
converting governing equations to functions versus intensive properties it is sufficient that extensive
properties be differentiated with respect to triple orthogonal directions in any arbitrary coordinates
system. In Cartesian coordinates systems, derivative with respect to orthogonal directions is equal to
volume derivative as is shown in Eq. (1). But in curvilinear coordinates systems, dV = ydx;dx;dxy,

where, 1 is equal by r and 2 sin @ in polar and spherical coordinates, respectively.

Here our purpose is the review of equilibrium equations, so G (V) is the second law of Newton.
Eqg. (1) can cover other governing equations in continuous systems too. We note that, in a solid
continuous system, existent forces are resultant of body forces due to acceleration and potential forces
which give the stress components(Z F=F;+ Fj). Thus Newton’s second law can be replaced in Eq.
(1) which gives:

Fijrji + Fjji —pap =0 )

where, as mentioned F;; are the available forces in any arbitrary point of solid continuous systems
which give the components of o;;. p is density, a is acceleration and F; are body forces. The
components of i, j and k are the orthogonal directions in any arbitrary coordinates system. As in Eq.
(2) is seen, derivative with respect to direction of i (direction of surface normal unite vector) should
be the last one operator which is applied. Because, available governing equations are versus stress
components (Saad, 2005), for verifying the method; Eq. (2) should be arranged in a way that give the
governing equations versus stress components too. Thus, the derivative operator should be applied in
that way which, the components of F;; can be converted to stress components, then the third operator
be applied. Whereas Eq. (2) itself is the general form of governing equations in solid continuous
systems. No matter to be either as a function of stress components or potential forces. In Eq. (2)
available forces in each point are converted to body forces and their effects is proportional by extent
of considered body. So, their effects on each point are exactly proportional with its dimensionless
nature.

3. Derivation of governing equations in continuous systems

In this section for verifying Eqg. (2), the governing equations of solid continuous systems in
Cartesian, polar and spherical coordinates will be derived.

3.1 Equilibrium equations in Cartesian coordinates system

Stress component in Cartesian coordinates systems, which are induced by applied potential forces
are as following (Fig. 1):

_ 02F,, _ 9%F,, %K, %K,
Tox = dyoz v = Bxdz Ozx = dyox fe = 0x0ydz
_o%E, _ 9%F,, _9%E,, 0%, 3)

Pxy = dyoz vy = Gxdz Ozy = dyox Iy = 0x0y0z
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aZsz aZFyz aZFZZ 63Fz

Oxz = dyoz %z = Gxoz Ozz = dyox f: = 0x0ydz

By considering Fig. 1, the equilibrium equations in three directions based on Newton’s first law
are:

Fig. 1. The operator potential forces of solid continuous systems in Cartesian coordinates systems

0=Fy+Fy+Fy+F=0

0=F, +E,+F,+E =0 (4)

M
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0=FK,+E,+FE,+F=0

The important note in Eq. (4) is that, the components of F;; are the available forces in any
arbitrary point as a function of volume. This equation is indeed arranged for review of a point.
Consequently, due to dimensionless nature of a point, it is unnecessary to be considered operating
forces in all six faces of element for applying Newton’s first law. Eq. (4) describes the relative motion
of volume IV with respect to its environment. But the analysis of its internal points by this equation is
impossible due to extensive nature of this equation. Hence, by replacing it in Eq. (2), the governing
equations for all points are achieved:

(05 (0] 20 ()

dx \ 0yoz dy \ 0x0z 0z \ 0xdy 0x0y0z

0 (0°Fy d (0°F,, d (0°F,, 0%F, _ 0 (5)
ﬂ(@y@z) + @(69«32) + E(@xay) + <0x6y02) -

d (0°E, d (0°F, 0 (0%F, 0°F, '\ _ 0

&(ayaz> * @(am) oz <6x6y> * <6x6yaz> =

By inserting Eg. (3) into Eq. (5), the equilibrium equations in Cartesian coordinates system is
achieved:
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0x oy + 9z th=0
00yy 00y, Oy (6)
0x dy 6_+fy B
00y, 00y, 0y
~zz =0
ox "oy "ozt

3.2 Equilibrium equation in polar coordinates system

The stress components in polar coordinates as depicted in Fig. 2 are as follows:

_ aZF;”r _ azFHr _ azer _ 6315;”

Orr = 1900z %r = Broz % = La00r fr = r 0rd00z
S 0Frg S 0Fyg o = 0%Fyg £ = 0°Fy ()

rg = 00 = A A 720 = 0= A anas
rd60z 0roz rd@or r 0r000z

azF;‘Z azFez aZFZZ 63FZ
Orz = Ogz = O0zz = fz = A AanA.
1000z 0rdz rd0@0r r 0rd8oz

Z

dz

Fig. 2. The operator forces of solid continuous systems in polar coordinates systems

By considering Fig. 2 the equilibrium equations are:

A

- dé
D B = 0=yl + Forby + Fyby + Fog =2 + F, = 0

— N R . dé, (8)
ZPQ =0 :>Fr9€9 + Fgeee + Fzgeg + Fgra—e + Fg =0
ZFz)z():)E‘zéz-l'FBzéz-l_Fzzéz_*'Fz =0

The terms as Fgy(0€4/060) and Fy,.(0é,./00) in this equation are due to the relationship between

orthogonal directions in polar coordinates (i.e. dé,/00 = —é, and dé,./060 = éy). By eliminatingé,,
ég and é, from Eq. (8), we have:

B+ For+F —Fgg+FE =0
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Fr@ + Fgg + FZQ + FGT + Fg - 0 (9)
F,+Fo, +F,+F, =0

Using Eq. (9) in Eq. (2) leads to following equations be achieved:

d aZFrr 4 0 62F9r N d azer 62F99 N 63Fr —0

or\ 000z 00\ 0roz 0z \ 000r 0roz orofoz

d [0°F 0 [0°F, d [0%F 0°F, 03F, 10
- ré +— 06 + = z0 + or + 0 =0 ( )
dr\ 0680z 200\ 0roz 0z \ 000r 0roz 0rd6oz

d E)ZFrZ N d OZFGZ 4 d GZFZZ 4 (’)3FZ —0

or\a0dz/] 00\ oroz | 0z\o06dr) 0ro6oz

Inserting Eq. (7) into Eq. (10) results:

a(r 0 a(r
( Urr) (Ger) + ( er) — Ogg +T'f;« -0

d(ro d(o d(ro 11
0 60 z60 | f 0 ( )

a(ar ) a((’)@ )8 0z )
70y 09z 702z _
ar T a0 tTay "0

By applying derivative operator and some algebraic operations Eq. (11) is converted to below:

do,, 100y, 1 do,,
aar ;1668 + ;Z(O-rr _60-69) + Dz + f;‘ =0 ( )
Org 096 0z _ 12
aar +{ 06 ‘|1‘5<Tra+aaz o =0
Orz 06z Ozz _
or +rar2+r 26 0z /=0

3.3 Equilibrium equations in spherical coordinates system

The stress components in spherical coordinates with referring to Fig. 3 are:

1 0%F, 1 0%Fp, _10%F,, 1 03E,
o = i 2sing 000¢ %0r = L sing ordg Tor = ¥ ora0 " r2sin@ drofdep
1 0%F, 1 03%F, _ 10%F,, 1 9°F (13)
o0 T 12sin0 9609  %° T rsin6 ardgp  C?° " r arde 9 " r2sin6 aravde
1 0%F, 1 0%Fyg 10%F g 1 0°F,

90 = YZsing 960¢ 906 = sing drde %00 = L ara0 To = r2sin6 0rofog

Equilibrium equations of spherical coordinates in three orthogonal directions are achieved by
considering Fig. 3.

— . . . déy aé,
ZP,« =0 :>Erer +F9rer +F(prer +F99%+F¢¢%+F} =0

— ) ) ) dé, 0é, (14)
ZPQ =0 ﬁFrQEQ +F99€9 +F<pg€g +F9r%+F(p(p%+Fg =0
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n

_ de, déq
Zpgo :O:>F;¢+F9¢+F¢¢+F¢r—+F¢9%+F¢ =0

op

Rxdq_gxh“m
Fig. 3. The potential forces of solid continuous systems in spherical coordinates systems

The variations of unit vectors in spherical coordinates system with respect to other directions are:
(i.e. dé, = (é9d0 +sinbeé,dp), dég=(—é,df +cosfé,dp) and dé, = (—sinbeé.dyp —
cos 0 égdg)). Eliminating é,, &, and é,,, from Eq. (14) gives:

FTT‘ +F97" +F(p1" —Fgg —F(p(psine +E,- =0
FT'G + Fgg + F(pg + FHT‘ - F(p(p cos 6 + Fg =0 (15)
Ey + Fgp + Fpp + Fprsin@ + Fygcos6 + F, =0

Replacing Eqg. (15) into (2) these equations become:

a 0°%E,, +i 02Fy, +i 0%Fy, _azFeg _OZFW “ing + 03E. — 0o

dr \d60d¢ 00 \ 0rde do \ 0roo drde  0rdd drdfogp

i azFre +i azFeg +i 62F<p9 +62F9r_62F(p<p cos 8 + 63];'9 _{ (16)
dr \0600¢ 26 \ drdgp do \ droé drdep  0rdd 0rdfogp

0 (0%F.,\ 0 (02Fa,\ 0 [(0%F,,\ 0%F,  0%F, 9%F,

E(aeaq;) +%<ara<p 39\ arao ) 906 ™ * 500 5% * 510609 ~ °

By using Eq. (13) in Eq. (16), results as following:

0 0
E(r2 sin 6 0,,.) +%(rsin9 ogr) + %(ra(pr) —1sinf ggg —rsinf gy, + r?sinf f. =0
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d d d 17
E(rz sin 0 g,¢) +%(rsin9099) +%(ra¢g) +175sin6 op, — 1 c0s 0 0y, +1r%sinb fp = 0 (10
E(r smeaﬂp) +%(rsm9c;’9(p) +%(ro}p(p) +7rsinf g, +1rcosbo,e +1r°sinb f,

=0
Finally, by simplification of Eq. (17) equilibrium equations in spherical coordinates system are as
following:

aUrr 1 60'97« 1 aO'q,T 1
— ~(2 _ _ _
07‘ + r ae + r Sin 9 a(p + r ( O—TT 0-99 O—(p(p + 0-97- cot 9) + f;,. O

60}3 1 60'99 1 0094, 1 _ (18)
or +; 390 +T'Sil’19 a(p +;(30'r9+(0'99 O'(p(p)COtB)+f9 =0

00, N laag(p 1 <60(p(p> 1

or r 060 +rsin9 10 +r( Org + 406 CO )+f<p

where, exact agreement can be seen in the results of method (Saad 2005). Based on new method and
for more clarity of the concept, derivations of heat equation are given in the appendix.

4. Nonlinear case

In this section general form of nonlinear governing equations in Cartesian coordinates is derived.
In the linear conditions, each surface of element involves only one component of stress in each
direction. For example in a surface with the normal unite vector of x, only o,, applies in the z
direction.While for the nonlinear conditions, because of large slopes, there are three components of
stresses in each direction. This issue is shown in Fig. (4). As can be observed o,,0w/dx +
0xyOW/0y + 0y, are the stress components in z direction.

This matter can be reviewed by comparing Euler and Lagrange configurations in Fig. (4). Origin
of coordinates system in the Euler and Lagrange views are x*,y*,z*and x, y, z, respectively and are
coincided on each other before deformation. As the Lagrangian coordinates is the original one, so the
stress field of moving points should be explained based on its variables, too. Amabili (2008) extracted
the  relationship  between  Lagrangian and  Eulerian  stress  components  versus
u; (u,v,win x,y and z directions respectively) the deformations of continuous systems and their
derivatives. Thus, for nonlinear case the potential forces F;;, can be defined versus a combination of
linear and nonlinear terms, as following:

4 A
z z A z4 : 270
4 /S
z | ! Oxz |
| | 1 |
| ) | el ——
I 4 = O.ydw/dy
Ly . I :
Ors < -~
Oy b ¥ A y
. Opx x / . 0, dw/dx
x' ’_ X ’, /
r
x
o comdist N
hear condion s large deformation Non linear condition

Fig. 4. Effect of g,; components in z direction in the linear and nonlinear case



M. Asadi Dalir and R. Seifi / Engineering Solid Mechanics 2 (2014) 329

0%F,, ou ou 0°F,  0v ov

0ydz :O-xx+0'xy@+o'ng 9ydz —Gxxa+o-xy+o-xz£

0°F,  ow N ow N _ 0°F,

dydz Txx g T Ty dy Tz fe= 0x0y0z

0%F,y ou ou 0%F,, ov ov (19)
oxdz T gy T2y, oxdz v ox T T vz,

62Fy2=a a—W+a a—W+a fy= 63Fy

oxoz *ox Yoy Y 0xdyoz

0%F,, ou ou 0%F,, ov ov
ayax:azx-l'o-zya_-l'o-zza_ dydx =sza +O—zy+0-zza

dyox Zox 70 i Z 0x0yoz

Result of inserting Eq. (19) in Eq. (5) is as below:

9] ou ou 9] ou ou 9] ou ou
—<0xx + axy@+ o. ) +—(ny + ayy@+ ay25> +—<sz + azy@+ O'ZZ£>

ox ?0z) oy 0z

+f£=0
d ov ov 0 ov ov d ov ov (20)
I <0xx % + Oyy + Oy, 5) + @ (ny I + 0yy + 0y, &) + 37 (sz I + 0zy + 0y, a)

+£,=0
6( 6W+ 6W+ )+6( 6W+ 6W+ )+6( 6W+ 6w+ )
9x \ 7 gy T Oxy dy Oxz oy Ovigx Ty oy Ovz) T3z \%x gy T 2y oy 02z

+f,=0.

Last equation has not been expanded for abbreviation. In this equation if slope of deformations in
x and y directions (slopes of u and v) be ignored, governing equations of transverse vibration in
mechanical structures will be achieved. Because, du/dx; and dv/dx; are negligible in comparison
with dw/dx; for transverse deformation of mechanical structures. While Eq. (20) has a general form
and is extendable to any arbitrary problem.

5. Conclusion

The concept of governing equations in continuous systems was reviewed. It was shown that, for
continuous systems the motions equations should be expandable to all points of system. Because a
physical particle cannot be a mathematical point, so there is a challenge in the concept of governing
equations in continuous systems which guided us toward a fundamental investigation about these
systems. So, it was shown that using from intensive properties generalizes the governing equations of
a particle with specified dimensions to any internal dimensionless point of it. Basics of a simple
method were established for deriving the governing equations in continuous systems based on
applying intensive properties. By extraction of equilibrium equations in Cartesian, polar and spherical
coordinates systems, the method is verified and exact agreement was observed. The new method is
more efficient in comparison with old methods such as Hamiltonian and classic methods due to its
simplicity. Other methods contain a hard task in their solution process and needs more time.
Moreover of saving time in new method, it has made possible to be realized concept of governing
equations in continuous systems for researchers. Direct method is also extensible to other equations
and a united procedure has been offered for extracting the governing equations in continuous systems.
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Appendix

For derivation of heat equation for a homogenous material as a solid continuous system, direct
method is used as follows:

First law of thermodynamics:

Q:Qx+Qy+QZ:mCa_T (Al)

) _ Jt
Fourier equations:

dydz = 0x 0xdz  dyodxdy 0z

0°Q; _ o7 9%Q,  9Ta?Q, T (A.2)

Direct method:

0 (0%Q:\, 0 (0°Q,\ 9 (9%Q,\_ 9 oT (A.3)
ox\ayaz) " ay\axaz) " az\oxay) " av " ar

Inserting Eq. (A.2) in (A.3) results heat equation as following:

9%T N 9%T N 0°T _ pcdT (A.4)
dx2  dy? 0z K ot




