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 This study investigates the generalized stiffness of laterally functionally graded materials (LFGMs) 
and applies these findings to dynamic beam elements. The generalized stiffnesses of LFGM, coupled 
with material and cross-sectional properties such as flexural and axial rigidity, mass per unit length, 
and mass-moment of inertia, are explicitly formulated. In the context of LFGM, material properties 
depend on an asymmetrical power law function with respect to cross-sectional depth. An example of 
the generalized numerical stiffness of a circular cross-section is provided for various material 
properties. To illustrate the application of generalized stiffness to dynamic beam elements, free 
vibration of LFGM beams with rotary inertia is considered. The dimensionless differential equation 
governing the free vibration of such beams is derived and numerically solved to obtain natural 
frequencies and corresponding mode shapes. Numerical results demonstrate a good consistency with 
the finite element method.  
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Nomenclatures 

𝐴𝐴 = area 

𝐴𝐴𝑅𝑅 = axial rigidity 

𝑎𝑎1, 𝑎𝑎2 = constant 

𝐶𝐶𝑖𝑖 = 𝑖𝑖th frequency parameter 

𝐷𝐷𝑚𝑚 = mass density per unit length 

𝑑𝑑 = diameter of circular cross-section 

𝐸𝐸,𝐸𝐸𝐿𝐿 ,𝐸𝐸𝑈𝑈 = Young’s moduli at any depth, lower and upper sides of cross-section 

𝐹𝐹𝑅𝑅 = flexural rigidity 

ℎ𝑛𝑛 = neutral axis position 

𝐼𝐼 = second moment of inertia 

𝑖𝑖 = integer mode number, 𝑖𝑖 = 1,2,3,⋯ 

𝐼𝐼𝑚𝑚 = mass-density of inertia 
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𝑘𝑘 = exponential index 

𝑙𝑙 = beam length 

𝑀𝑀𝑖𝑖 = internal moment 

𝑚𝑚 = modular ratio 

𝑚𝑚1 = constant (= 𝑚𝑚 − 1) 

𝑠𝑠 = slenderness ratio 

(𝑤𝑤, ℎ) = Cartesian coordinates for representing circular equation 

(𝑥𝑥, 𝑣𝑣) =  Cartesian coordinates to depict mode shape 

𝛼𝛼 = neutral axis position ratio 

𝛤𝛤 = inertia multiplier 

𝜁𝜁 = normalized coordinate (= ℎ 𝑑𝑑⁄ ) 

(𝜉𝜉, 𝜂𝜂) =  nondimensional Cartesian coordinates 

𝜌𝜌,𝜌𝜌𝐿𝐿 ,𝜌𝜌𝑈𝑈 = mass density at any depth, lower and upper sides of cross-section 

𝛹𝛹 = area multiplier 

𝜔𝜔𝑖𝑖 = 𝑖𝑖th angular frequency. 
 

1. Introduction 
      

      Functionally graded materials (FGMs), conceptualized in Japan in 1984, have seen expanding applications in recent years 
due to their excellent mechanical characteristics under harsh environmental and thermal conditions. FGMs are currently used 
in various engineering fields, including architecture, civil engineering, biomedicine, aerospace, and precision mechanical 
engineering (Zaczynska & Kazmierczyk, 2020). FGMs are typically classified based on the direction of material grading: 
axially functionally graded materials (AFGMs) and laterally functionally graded materials (LFGMs) (Javania et al., 2019; 
Czechowski & Kolakowski, 2019). In AFGMs, material properties such as Young’s modulus and mass density vary along the 
axial direction, while properties remain constant laterally across the cross-section. Conversely, in LFGMs, material properties 
are graded laterally, with axial properties remaining unchanged. This paper primarily focuses on LFGMs (Trinh et al., 2016). 
Over the past four decades, numerous studies have addressed AFGMs and LFGMs in structural analysis. Key works related 
to FGMs encompass both AFGM and LFGM, which will be briefly reviewed. 
 
1.1. AFGM Studies 
 

      Representative studies in AFGM include those by Alshorbagy et al. (2011), who derived a system of equations for a beam's 
dynamic properties utilizing the virtual work principle under Euler-Bernoulli beam theory. Horibe and Mori (2015) explored 
the non-linear response of tapered cantilever bend beams subjected to a transverse point load, while Lee and Lee (2019) 
investigated the free vibrations of a circular arch based on dynamic equilibrium principles incorporating a second-degree 
polynomial for material properties. Additional studies by Lee and Lee (2022a) addressed the optimization of buckling loads 
for columns under various end conditions and volume constraints, and another investigation by Lee and Lee (2022b) focused 
on out-of-plane free vibration of horizontal curved beams with rectangular and elliptical cross-sections, assuming a quadratic 
relationship for material properties in the axial direction. 

1.2. LFGM Studies 
 
      Key research focused on LFGMs includes the work of Qatu and Elsharkawy (1993), who employed the Ritz method to 
determine accurate natural frequencies of laminate composite arches. Kang and Li (2009) used large deflection theory to 
analyze the elastica behavior of nonlinear cantilever beams under end forces, while Malekzadeh et al. (2009) studied free 
vibrations of deep circular arches in a thermal environment based on first-order shear deformation theory, assuming 
temperature-dependent material properties. Malekzadeh (2009) also analyzed the free vibration of LFGM thick circular arches 
subjected to thermal prestressing with uniform and variable temperature rises. Other notable studies include those by Yousefi 
and Rastgoo (2011), Zhao et al. (2012), Raki et al. (2012), Liu and Shu (2014), Sitar et al. (2014), and Huynh et al. (2017), 
each contributing to the academic discourse surrounding LFGMs. 

 
As summarized, considerable research has focused on various aspects of AFGMs and LFGMs, including grading types, 

structural member configurations, cross-sectional shapes, modeling approaches, solution methodologies, secondary effects 
influencing FGM behavior, and foundational support types. Despite the diversity of these topics, existing literature has not 
explicitly formulated the coupled cross-sectional and mechanical properties of LFGMs, such as axial rigidity 𝐴𝐴𝑅𝑅, flexural 
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rigidity 𝐹𝐹𝑅𝑅, mass per unit length 𝐷𝐷𝑚𝑚, and mass-moment of inertia 𝐼𝐼𝑚𝑚. 
 
In structural engineering, physical parameters often result from the product of two distinct parameters. For example, 

flexural stiffness 𝐹𝐹𝑅𝑅, defined as the product of the area moment of inertia 𝐼𝐼 and Young’s modulus 𝐸𝐸, can be expressed as 𝐹𝐹𝑅𝑅 =
𝐸𝐸𝐼𝐼 (Gere & Timoshenko, 1980), representing a critical quantity in structural analysis. 

 
For AFGMs, 𝐹𝐹𝑅𝑅 is easily determined as 𝐹𝐹𝑅𝑅 = 𝐸𝐸𝐼𝐼 for a given cross-section, as 𝐸𝐸 is uniform along the lateral cross-section 

depth despite variations in the axial direction. In contrast, for LFGMs, expressing 𝐹𝐹𝑅𝑅 as 𝐹𝐹𝑅𝑅 = 𝐸𝐸𝐼𝐼 is inappropriate due to the 
dependence of 𝐸𝐸 on section depth. Therefore, a deterministic explicit expression for LFGM stiffness is required. Additional 
generalized stiffness quantities, such as 𝐴𝐴𝑅𝑅, 𝐷𝐷𝑚𝑚, and 𝐼𝐼𝑚𝑚, also require consideration. 

 
This study consists of two principal components. First, it formulates the generalized stiffnesses of 𝐴𝐴𝑅𝑅, 𝐹𝐹𝑅𝑅, 𝐷𝐷𝑚𝑚, and 𝐼𝐼𝑚𝑚 

for LFGMs. The circular cross-section is chosen for the stiffness formulation.  Second, an application example pertains to 
dynamic beam elements, specifically focusing on bending-related issues in structural mechanics, while the analysis of free 
vibration of beams serves as an application context. Numerical results for (𝐴𝐴𝑅𝑅,𝐹𝐹𝑅𝑅 ,𝐷𝐷𝑚𝑚, 𝐼𝐼𝑚𝑚)  are presented in tabular and 
graphical formats, providing a detailed discussion. The derived ordinary dimensionless differential equation governing free 
vibration in beams with rotary inertia is also presented. This equation is numerically solved to obtain natural frequencies and 
mode shapes, with results extensively analyzed. 

2. Graduation for material properties in LFGM 

        Fig. 1(a) illustrates a circular cross-section composed of LFGM, characterized by a diameter 𝑑𝑑  and represented in 
Cartesian coordinates (𝑤𝑤, ℎ) . The material properties of mass density 𝜌𝜌  and Young’s modulus 𝐸𝐸  exhibit an asymmetrical 
gradient along the vertical coordinate ℎ measured from the origin 𝑜𝑜. Figure 1(b) displays the asymmetric scale profile of 
(𝜌𝜌,𝐸𝐸) as a function of ℎ, with the (𝜌𝜌,𝐸𝐸) axis perpendicular to the sectional plane (𝑤𝑤, ℎ) shown in Fig. 1(a). The cross-section, 
when subjected to external loading, is assumed to remain its plane after deformation. Consequently, the strain distribution 𝜀𝜀 
is linear along ℎ as depicted in Fig. 1(c), where ℎ𝑛𝑛 marks the neutral axis position, and 𝜀𝜀𝐿𝐿 signifies the strain at ℎ = 0. 

 
Fig. 1. (a) LFGM circular cross-sections, (b) Asymmetric scaled profile of material properties (𝜌𝜌,𝐸𝐸), and (c) Distribution of 
strain 𝜀𝜀 due to bending moment. 

The graded function of (𝜌𝜌,𝐸𝐸)  shown in Fig. 1(b) can be expressed arbitrarily; however, for this study, a power-law 
function selected from the literature (Akgoz & Civalek, 2013; Noori et al., 2018) is employed: 

𝜌𝜌 = 𝜌𝜌𝐿𝐿[𝑎𝑎1(ℎ 𝑑𝑑⁄ )𝑘𝑘 + 𝑎𝑎2];  𝐸𝐸 = 𝐸𝐸𝐿𝐿[𝑎𝑎1(ℎ 𝑑𝑑⁄ )𝑘𝑘 + 𝑎𝑎2] for 0 ≤ ℎ 𝑑𝑑⁄ ≤ 1, (1) 
 
where 𝑘𝑘 represents a positive exponential index, and 𝜌𝜌𝐿𝐿 and 𝐸𝐸𝐿𝐿 denote the mass density and Young’s modulus at ℎ 𝑑𝑑⁄ = 0, 
respectively, with constants 𝑎𝑎1 and 𝑎𝑎2 determined by given material properties. It is essential to note that the profile illustrated 
in Eq. (1) is asymmetric concerning the central axis of the circular cross-section, resulting in an unknown position for ℎ𝑛𝑛. 

 

To determine constants 𝑎𝑎1 and 𝑎𝑎2, the modular ratio 𝑚𝑚 is introduced: 

𝑚𝑚 = 𝜌𝜌𝑈𝑈
𝜌𝜌𝐿𝐿

= 
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where 𝜌𝜌𝑈𝑈 and 𝐸𝐸𝑈𝑈 are the mass density and Young’s modulus at ℎ 𝑑𝑑⁄ = 1, respectively. It is assumed that the modulation ratio 
applies uniformly to both (𝜌𝜌,𝐸𝐸) simultaneously (Akgoz & Civalek, 2013; Noori et al., 2018). 

 

Using the two coordinate points (0,𝜌𝜌𝐿𝐿) and (ℎ 𝑑𝑑⁄ ,𝑚𝑚𝜌𝜌𝐿𝐿) depicted as ● in Fig. 1(b), the constants are defined as 𝑎𝑎1 and 
𝑎𝑎2. Consequently, the functions for (𝜌𝜌,𝐸𝐸) in Eq. (1) simplify to: 

𝜌𝜌 = 𝜌𝜌𝐿𝐿(𝑚𝑚1𝜁𝜁𝑘𝑘 + 1);  𝐸𝐸 = 𝐸𝐸𝐿𝐿(𝑚𝑚1𝜁𝜁𝑘𝑘 + 1) for 0≤ 𝜁𝜁 ≤ 1, (3) 

where 𝑚𝑚1 = 𝑚𝑚 − 1 and 𝜁𝜁 is the normalized coordinate defined as 𝜁𝜁 = ℎ 𝑑𝑑⁄ . 
 

As illustrative examples of scaled profiles as expressed in Eq. (3), Fig. 2 showcases the asymmetric scaled profiles of the 
dimensionless curves (𝜌𝜌 𝜌𝜌𝐿𝐿⁄ ) and (𝐸𝐸 𝐸𝐸𝐿𝐿⁄ ) along ℎ 𝑑𝑑⁄  for selected values 𝑘𝑘 = 0.5, 1, 2 and 𝑚𝑚 = 0.5, 1, 2. Profile curves with 
larger exponent indices 𝑘𝑘 are positioned further from bottom to top at ℎ 𝑑𝑑⁄ = 0, where the profile curve is nonlinear for 𝑘𝑘 ≠
1  and linear for 𝑘𝑘 = 1 , regardless of 𝑚𝑚 . For 𝑚𝑚 = 1 , the scaled profiles exhibit uniform distribution, i.e., 𝜌𝜌 𝜌𝜌𝐿𝐿 = 1⁄   and 
𝐸𝐸 𝐸𝐸𝐿𝐿 = 1⁄ , consistent with the characteristics of a conventional homogeneous material cross-section. 
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Fig. 2. Examples of scaled profiles of (𝜌𝜌 𝜌𝜌𝐿𝐿⁄ ) and (𝐸𝐸 𝐸𝐸𝐿𝐿⁄ ) along ℎ 𝑑𝑑⁄  for given values of 𝑘𝑘 and 𝑚𝑚. 

 
3. Generalized stiffness coupled with material and cross-sectional properties of LFGM 

3.1. Position of neutral axis of LFGM cross-section 

      In structural analysis involving bending, identifying the position of the neutral axis is crucial, as this is where the bending 
strain/stress equals zero. With the rotated cross-section assumed to remain planar after deformation, the distribution of strain 
𝜀𝜀 is linear along ℎ, as illustrated in Fig. 1(c), with the unknown ℎ𝑛𝑛 marking the neutral axis’s position. 
 

      The neutral position ratio 𝛼𝛼 of the LFGM cross-section can be defined as: 

𝛼𝛼 = ℎ𝑛𝑛
𝑑𝑑

  for 0 < 𝛼𝛼 < 1,   (4) 

where ℎ𝑛𝑛 can be expressed as ℎ𝑛𝑛 = 𝛼𝛼𝑑𝑑. 
 

Given that 𝜀𝜀 = 0 at ℎ = ℎ𝑛𝑛, the linear equation for 𝜀𝜀 concerning ℎ or the normalized coordinate 𝜁𝜁(= ℎ 𝑑𝑑⁄ ) with 𝜀𝜀𝐿𝐿 =
𝜀𝜀ℎ=0 can be derived as: 

𝜀𝜀 = 𝜀𝜀𝐿𝐿[ℎ (𝛼𝛼𝑑𝑑)⁄ − 1] = 𝜀𝜀𝐿𝐿(𝜁𝜁 𝛼𝛼⁄ − 1). (5) 
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The resulting bending stress 𝜎𝜎 at 𝜁𝜁 can then be expressed using Hooke’s Law: 

𝜎𝜎 = 𝐸𝐸𝜀𝜀 = 𝐸𝐸𝜀𝜀𝐿𝐿(𝜁𝜁 𝛼𝛼⁄ − 1), (6) 

noting that while 𝜀𝜀 is linear, 𝜎𝜎 is nonlinear due to the nonlinearity of 𝐸𝐸. 
 

In Fig. 1(a), the internal moment 𝑑𝑑𝑀𝑀𝑖𝑖 generated in the infinitesimal gray shaded area 𝑑𝑑𝐴𝐴 by the external bending 
moment can be expressed as: 

𝑑𝑑𝑀𝑀𝑖𝑖 = (𝜎𝜎𝑑𝑑𝐴𝐴)|ℎ − ℎ𝑛𝑛|, (7) 

with |ℎ − ℎ𝑛𝑛| representing the distance between the neutral axis and area 𝑑𝑑𝐴𝐴 as indicated in Fig. 1(c). 
 

To satisfy moment equilibrium, the total internal moment 𝑀𝑀𝑖𝑖 across the entire area 𝐴𝐴 must equal zero: 

𝑀𝑀𝑖𝑖 = ∫𝑑𝑑𝑀𝑀𝑖𝑖 = ∫𝜎𝜎|ℎ − ℎ𝑛𝑛|𝑑𝑑𝐴𝐴 = 0. (8) 

The unknown 𝛼𝛼 of the circular cross-section can now be determined. The circular cross-section, with diameter 𝑑𝑑 as 
shown in Fig. 1(a), is defined by: 

𝑤𝑤2 + (ℎ − 𝑑𝑑 2⁄ )2 = (𝑑𝑑 2⁄ )2.   (9) 

From Eq. (9), the coordinate 𝑤𝑤 corresponding to 𝑑𝑑𝐴𝐴 at ℎ can be expressed as: 

𝑤𝑤 = 𝑑𝑑
2
�1 − (2ℎ 𝑑𝑑⁄ − 1)2. (10) 

The area 𝑑𝑑𝐴𝐴 at height ℎ is defined using the normalized coordinate 𝜁𝜁(= ℎ 𝑑𝑑⁄ ): 

𝑑𝑑𝐴𝐴 = (2𝑤𝑤)𝑑𝑑ℎ = 𝑑𝑑2�1 − (2𝜁𝜁 − 1)2𝑑𝑑𝜁𝜁.  (11) 

By substituting Eqs. (3), (4), (6), (10), and (11) into Eq. (8), a nonlinear equation involving the unknown 𝛼𝛼  for 
predetermined 𝑘𝑘 and 𝑚𝑚1(= 𝑚𝑚 − 1) can be derived: 

∫ �(𝑚𝑚1𝜁𝜁𝑘𝑘 + 1)(𝜁𝜁 𝛼𝛼⁄ − 1)�1 − (2𝜁𝜁 − 1)2|𝜁𝜁 − 𝛼𝛼|�1
0 𝑑𝑑𝜁𝜁 = 0,   (12) 

when to solve for the unknown 𝛼𝛼, the trapezoidal rule (Burden et al., 2016) is employed for numerical integration of Eq. (12), 
while the bisection method (Burden et al., 2016), a numerical solution approach for nonlinear equations, is utilized to ascertain 
𝛼𝛼. 

 

As illustrative examples for the computation of the unknown 𝛼𝛼 based on specific values of (𝑘𝑘,𝑚𝑚), Fig. 3(a) shows the 
curve of 𝛼𝛼  versus 𝑘𝑘  for selected values of  𝑚𝑚 = 0.5, 1  and 2 , while Fig. 3(b) depicts the curve of 𝛼𝛼  versus 𝑚𝑚  for 𝑘𝑘 =
0.5, 1 and 2. In Fig. 3(a), a homogeneous material characterized by 𝑚𝑚 = 1 yields a constant 𝛼𝛼 = 0.5. For 𝑚𝑚 > 1, 𝛼𝛼 increases 
with rising 𝑘𝑘 , peaks, and subsequently decreases; conversely, for 𝑚𝑚 < 1 , the opposite trend is observed. In Fig. 3(b), 𝛼𝛼 
consistently increases with increasing 𝑚𝑚, irrespective of  𝑘𝑘. For  𝑚𝑚 = 1, all 𝛼𝛼 values converge at 𝛼𝛼 = 0.5. 
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Fig. 3. (a) Curve of 𝛼𝛼 - 𝑘𝑘 for the selected 𝑚𝑚 values; (b) Curve of 𝛼𝛼 - 𝑚𝑚 for the selected 𝑘𝑘 values. 

To visually represent the influence of (𝑘𝑘,𝑚𝑚)  on 𝛼𝛼 , Fig. 4 presents a three-dimensional surface map illustrating the 
relationship among (𝛼𝛼, 𝑘𝑘,𝑚𝑚). This surface map effectively conveys the impact of (𝑘𝑘,𝑚𝑚) on 𝛼𝛼, as established in Fig. 3(a) and 
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Fig. 3(b). 

 
Fig. 4. Three-dimensional surface map of (𝛼𝛼, 𝑘𝑘,𝑚𝑚). 

3.2. Generalized stiffness of LFGM 

     The primary objective of this study is to formulate four generalized stiffnesses: axial rigidity 𝐴𝐴𝑅𝑅, flexural rigidity 𝐹𝐹𝑅𝑅, mass 
per unit length 𝐷𝐷𝑚𝑚, and mass-moment of inertia 𝐼𝐼𝑚𝑚 for the LFGM circular cross-section. 

 

By definition, the axial rigidity 𝐴𝐴𝑅𝑅 is the product of Young’s modulus 𝐸𝐸 and area 𝐴𝐴; thus, the infinitesimal axial rigidity 
𝑑𝑑𝐴𝐴𝑅𝑅 of 𝑑𝑑𝐴𝐴 indicates the gray-shaded area depicted in Fig. 1(a): 

𝐴𝐴𝑅𝑅 = ∫𝐸𝐸𝑑𝑑𝐴𝐴 = 𝐸𝐸𝐿𝐿𝑑𝑑2 ∫ (𝑚𝑚1𝜁𝜁𝑘𝑘 + 1)�1 − (2𝜁𝜁 − 1)2𝑑𝑑𝜁𝜁 = 𝛹𝛹𝐸𝐸𝐿𝐿𝐴𝐴
1
0 , (13a) 

𝛹𝛹 = 4
𝜋𝜋 ∫ (𝑚𝑚1𝜁𝜁𝑘𝑘 + 1)�1 − (2𝜁𝜁 − 1)2𝑑𝑑𝜁𝜁1

0 , (13b) 

where 𝐴𝐴 = 𝜋𝜋𝑑𝑑2 4⁄   represents the area of the circular cross-section. For known material properties  (𝑘𝑘,𝑚𝑚,𝐸𝐸𝐿𝐿) and cross-
sectional area 𝐴𝐴 of the LFGM, 𝐴𝐴𝑅𝑅 can be derived using Eq. (13). Importantly, the neutral position ratio 𝛼𝛼 is not a factor in 
calculating 𝛹𝛹, referred to hereafter as an area multiplier. 

 

Flexural rigidity 𝐹𝐹𝑅𝑅  is defined as the product of Young’s modulus 𝐸𝐸  and the second moment of area 𝐼𝐼 . Hence, the 
infinitesimal 𝑑𝑑𝐹𝐹𝑅𝑅 of 𝑑𝑑𝐴𝐴 is represented as 𝑑𝑑𝐹𝐹𝑅𝑅 = 𝐸𝐸𝑑𝑑𝐼𝐼. The infinitesimal 𝑑𝑑𝐼𝐼 about the neutral axis ℎ = ℎ𝑛𝑛 can be expressed as: 

𝑑𝑑𝐼𝐼 = (ℎ𝑛𝑛 − ℎ)2𝑑𝑑𝐴𝐴 = 𝑑𝑑4(𝛼𝛼 − 𝜁𝜁)2�1 − (2𝜁𝜁 − 1)2𝑑𝑑𝜁𝜁. (14) 

Consequently, 𝐹𝐹𝑅𝑅 is computed as: 

𝐹𝐹𝑅𝑅 = ∫𝐸𝐸𝑑𝑑𝐼𝐼 = 𝐸𝐸𝐿𝐿𝑑𝑑4 ∫ (𝑚𝑚1𝜁𝜁𝑘𝑘 + 1)(𝛼𝛼 − 𝜁𝜁)2�1 − (2𝜁𝜁 − 1)2𝑑𝑑𝜁𝜁1
0  = 𝛤𝛤𝐸𝐸𝐿𝐿𝐼𝐼,    (15a) 

𝛤𝛤 = 64
𝜋𝜋

 ∫ (𝑚𝑚1𝜁𝜁𝑘𝑘 + 1)(𝛼𝛼 − 𝜁𝜁)2�1 − (2𝜁𝜁 − 1)2𝑑𝑑𝜁𝜁1
0 , (15b) 

where 𝐼𝐼 = 𝜋𝜋𝑑𝑑4 64⁄  represents the moment of inertia of the circular cross-section. Based on known values (𝑘𝑘, 𝑚𝑚, 𝐸𝐸𝐿𝐿 , 𝐼𝐼) with 
previously determined 𝛼𝛼,  𝛤𝛤 referred to as an inertia multiplier can be accordingly calculated. 

 

In a similar process, the mass per unit length 𝐷𝐷𝑚𝑚, defined as the product of mass density 𝜌𝜌 and the area 𝐴𝐴 (Chopra, 2001), 
can be characterized as: 

𝐷𝐷𝑚𝑚 = ∫ 𝜌𝜌𝑑𝑑𝐴𝐴 = 𝜌𝜌𝐿𝐿𝑑𝑑2 ∫ (𝑚𝑚1𝜁𝜁𝑘𝑘 + 1)�1 − (2𝜁𝜁 − 1)2𝑑𝑑𝜁𝜁 =1
0 𝛹𝛹𝜌𝜌𝐿𝐿𝐴𝐴, (16) 
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with 𝛹𝛹 following from the equation already defined in Eq. (13b). 
 
The mass-moment of inertia 𝐼𝐼𝑚𝑚, defined as the product of 𝜌𝜌 and 𝐼𝐼 (Chopra, 2001), is expressed as: 

 
𝐼𝐼𝑚𝑚 = ∫ 𝜌𝜌𝑑𝑑𝐼𝐼 = 𝜌𝜌𝐿𝐿𝑑𝑑4 ∫ (𝑚𝑚1𝜁𝜁𝑘𝑘 + 1)(𝛼𝛼 − 𝜁𝜁)2�1 − (2𝜁𝜁 − 1)2𝑑𝑑𝜁𝜁1

0 = 𝛤𝛤𝜌𝜌𝐿𝐿𝐼𝐼,   (17) 
 
where 𝛤𝛤 is the same expression described in Eq. (15b). 

 

To compute the multipliers (𝛹𝛹,𝛤𝛤) expressed in Eqs. (13b) and (15b), respectively, the numerical integration methods 
(Burden et al., 2016) such as the Improved Euler method, Trapezoidal rule, and Runge-Kutta method may be employed. In 
this study, the Trapezoidal rule was chosen. 

3.3. Numerical experiments of generalized stiffness 

      The previously defined multipliers (𝛹𝛹,𝛤𝛤) for calculating the generalized stiffnesses (𝐴𝐴𝑅𝑅 ,𝐹𝐹𝑅𝑅,𝐷𝐷𝑚𝑚 , 𝐼𝐼𝑚𝑚) have been explicitly 
formulated in the preceding sections. As a numerical experiment, relationships depicting 𝛹𝛹 and 𝛤𝛤 in relation to the exponential 
index 𝑘𝑘 and the modular ratio 𝑚𝑚 are illustrated in Fig. 5: (a) 𝛹𝛹 versus 𝑘𝑘 curve, (b) 𝛹𝛹 versus 𝑚𝑚 curve, (c) 𝛤𝛤 versus 𝑘𝑘 curve, 
and (d) 𝛤𝛤 versus 𝑚𝑚 curve. In Fig. 5(a), at  𝑚𝑚 = 1, corresponding to a homogeneous material, 𝛹𝛹 remains constant at  𝛹𝛹 = 1. 
For  𝑚𝑚 > 1 , 𝛹𝛹  decreases as 𝑘𝑘  increases, while for 𝑚𝑚 < 1 , 𝛹𝛹  increases with rising 𝑘𝑘 . In Fig. 5(b), 𝛹𝛹  consistently shows 
growth with increasing 𝑘𝑘, independent of  𝑚𝑚. When 𝑚𝑚 = 1, all instances yield 𝛹𝛹 = 1 as depicted earlier in Fig. 5(a). The  𝛤𝛤 
values in Fig. 5(c) and Fig. 5(d) exhibit similar trends to 𝛹𝛹, although the 𝛤𝛤 versus 𝑚𝑚 curves in Fig. 5(d) reveal a nonlinear 
rather than linear relationship. 
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Fig. 5. (a) 𝛹𝛹 versus 𝑘𝑘 curve, (b) 𝛹𝛹 versus 𝑚𝑚 curve,  (c) 𝛤𝛤 versus 𝑘𝑘 curve, and (d) 𝛤𝛤 versus 𝑚𝑚 curve 

In order to visualize the effects of 𝑘𝑘 and 𝑚𝑚 on 𝛹𝛹 and 𝛤𝛤, three-dimensional surface maps are displayed in Fig. 6: (a) 
(𝛹𝛹, 𝑘𝑘,𝑚𝑚) and (b) (𝛤𝛤, 𝑘𝑘,𝑚𝑚). These surface maps effectively illuminate the impact of  (𝑘𝑘,𝑚𝑚)  on (𝛹𝛹,𝛤𝛤), reflecting observations 
made in Fig. 5(a) and Fig. 5(b). 
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Fig. 6. Three-dimensional surface maps: (𝛹𝛹, 𝑘𝑘,𝑚𝑚) and (b) (𝛤𝛤, 𝑘𝑘,𝑚𝑚) 

As a numerical example, the dimensional generalized stiffnesses (𝐴𝐴𝑅𝑅,𝐹𝐹𝑅𝑅,𝐷𝐷𝑚𝑚 , 𝐼𝐼𝑚𝑚) for LFGMs, incorporating the neutral 
position ℎ𝑛𝑛, are reported in Table 1 based on the given values of (𝑘𝑘,𝑚𝑚). The circular cross-section features a diameter 𝑑𝑑 =
0.1 m with an are 𝐴𝐴 = 7.854 × 10−3 m² and moment of inertia 𝐼𝐼 = 4.909 × 10−6 m⁴. The material properties of LFGM at 
ℎ = 0  are specified as 𝜌𝜌𝐿𝐿 = 2700 kg/m³ and 𝐸𝐸𝐿𝐿 = 70 GPa. For each value of 𝑘𝑘, (𝐴𝐴𝑅𝑅,𝐹𝐹𝑅𝑅,𝐷𝐷𝑚𝑚 , 𝐼𝐼𝑚𝑚) increase as 𝑚𝑚 increases; 
similarly, for each value of 𝑚𝑚, (𝐴𝐴𝑅𝑅,𝐹𝐹𝑅𝑅,𝐷𝐷𝑚𝑚 , 𝐼𝐼𝑚𝑚) rise as 𝑘𝑘 increases. For 𝑚𝑚 = 1, the quantities (𝐴𝐴𝑅𝑅,𝐹𝐹𝑅𝑅,𝐷𝐷𝑚𝑚 , 𝐼𝐼𝑚𝑚) remain constant 
irrespective of the 𝑘𝑘 value. For instance, when  𝑚𝑚 = 1, 𝐴𝐴𝑅𝑅 equals 𝐴𝐴𝑅𝑅 = 549.8 MN across all cases where 𝑘𝑘 = 0.5, 1 and 2. A 
distinct advantage arising from the explicit calculation of generalized stiffness presented in this study is its direct applicability 
to structural analysis without the iterative internal calculations required by finite element methods. 

Table 1. Dimensional generalized stiffness of LFGM* with varying (𝑘𝑘,𝑚𝑚) 
Parameters       Dimensional generalized stiffness of LFGM 
𝑘𝑘 𝑚𝑚   ℎ𝑛𝑛(m) 𝐴𝐴𝑅𝑅(MN) 𝐹𝐹𝑅𝑅(kN∙m2) 𝐷𝐷𝑚𝑚(kg/m) 𝐼𝐼𝑚𝑚(kg∙m) 
0.5 0.5 0.04704 363.1 227.8 14.01 0.00879 
 1 0.05 549.8 343.6 21.21 0.01325 
 2 0.05239 923.1 558.4 35.61 0.02154 
1 0.5 

1 
2 

0.04664 
0.05 
0.05336 

412.3 
549.8 
824.7 

250.8 
346.3 
501.6 

15.90 
21.21 
31.81 

0.00967 
0.01325 
0.01935 

2 0.5 0.04695 463.9 273.0 17.89 0.01053 
 1 0.05 549.8 343.6 21.21 0.01325 
 2 0.05374 721.6 456.8 27.83 0.01762 

* Refer to the text for material and cross-sectional properties. 
 

4. Application of generalized stiffness to dynamic beam element 

     The explicit formulation of generalized stiffness (𝐴𝐴𝑅𝑅,𝐹𝐹𝑅𝑅,𝐷𝐷𝑚𝑚 , 𝐼𝐼𝑚𝑚) derives potential applications within structural analysis. 
Various structural behavior topics, including bending analysis for static and dynamic applications, involve parameters such as 
deflection, strain/stress analysis, stability assessment, and natural frequency evaluation. Within this context, the free vibration 
of beams is addressed as a representative problem associated with generalized stiffness. However, the applicability of 
generalized stiffness is not limited to free vibrations and can extend to all structural behavior analyses involving static and 
dynamic beam elements. 

4.1. Governing differential equation 

     To apply the coupled properties of (𝐴𝐴𝑅𝑅 ,𝐹𝐹𝑅𝑅,𝐷𝐷𝑚𝑚 , 𝐼𝐼𝑚𝑚), consideration is given to the free vibrations of beams, which exemplify 
typical problems related to these coupled properties. The straight dashed line in Fig. 7 represents the undeformed static beam 
fabricated from LFGM, characterized by length 𝑙𝑙 and defined by either hinged, fixed, or free ends. The beam features a circular 
cross-section with diameter 𝑑𝑑, while its coupled properties, including the neutral position ℎ𝑛𝑛, have been previously established. 
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Fig. 7. Configuration of vibrating beam and its parameters 

As the beam undergoes free vibration excitation, the dynamic transverse deflection is denoted by 𝑣𝑣(𝑥𝑥, 𝑡𝑡) in Fig. 7, where 
𝑥𝑥 is the axial coordinate and 𝑡𝑡 signifies time. For this study, the transverse free vibration is assumed to exhibit harmonic 
motion, leading to the expression: 

𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣 sin(𝜔𝜔𝑖𝑖𝑡𝑡), (18) 

where 𝑣𝑣 = 𝑣𝑣(𝑥𝑥) represents the amplitude at coordinate  𝑥𝑥, and 𝜔𝜔𝑖𝑖 denotes the natural frequency with integer mode number  
𝑖𝑖 = 1, 2, 3,⋯. 

 

The partial differential equation governing the transverse free vibration of the beam can be referenced from Chopra 
(2001): 

𝜌𝜌𝐴𝐴 𝜕𝜕2𝑣𝑣(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝐸𝐸𝐼𝐼 𝜕𝜕
4𝑣𝑣(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

− 𝜌𝜌𝐼𝐼 𝜕𝜕
4𝑣𝑣(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

= 0,   (19) 

where (𝜌𝜌𝐴𝐴,𝐸𝐸𝐼𝐼,𝜌𝜌𝐼𝐼)  correspond to the mass per unit length, flexural rigidity, and mass-moment of inertia, respectively, 
applicable to homogeneous material beams. Notably, the three partial derivative terms with 𝜌𝜌𝐴𝐴, 𝐸𝐸𝐼𝐼 and 𝜌𝜌𝐼𝐼 in Eq. (19) describe 
dynamic components representing bending moment, transverse inertia, and rotary inertia. 

 

To adapt Eq. (19) for the LFGM beam, terms (𝜌𝜌𝐴𝐴,𝐸𝐸𝐼𝐼,𝜌𝜌𝐼𝐼) are replaced with (𝐷𝐷𝑚𝑚 ,𝐹𝐹𝑅𝑅, 𝐼𝐼𝑚𝑚) of LFGM beams, resulting in 
the equation: 

𝐷𝐷𝑚𝑚
𝜕𝜕2𝑣𝑣(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝐹𝐹𝑅𝑅
𝜕𝜕4𝑣𝑣(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

− 𝐼𝐼𝑚𝑚
𝜕𝜕4𝑣𝑣(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

= 0.   (20) 

Applying Eq. (18), the relevant partial derivatives are derived as follows: 

𝜕𝜕2𝑣𝑣(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= −𝜔𝜔𝑖𝑖
2 sin(𝜔𝜔𝑖𝑖𝑡𝑡) 𝑣𝑣;  𝜕𝜕

4𝑣𝑣(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

= sin(𝜔𝜔𝑖𝑖𝑡𝑡)
𝑑𝑑4𝑣𝑣
𝑑𝑑𝑥𝑥4

;  𝜕𝜕
4𝑣𝑣(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

= −𝜔𝜔𝑖𝑖
2 sin(𝜔𝜔𝑖𝑖𝑡𝑡)

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2

.          (21a)–(21c) 

Substituting these relationships into Eq. (20) yields the ordinary differential equation governing transverse free vibration 
of the LFGM beam: 

𝑑𝑑4𝑣𝑣
𝑑𝑑𝑥𝑥4

= −𝜌𝜌𝐿𝐿
𝐸𝐸𝐿𝐿
𝜔𝜔𝑖𝑖
2 �𝑑𝑑

2𝑣𝑣
𝑑𝑑𝑥𝑥2

− 𝛹𝛹
𝛤𝛤
𝐴𝐴
𝐼𝐼
𝑣𝑣� for 0 ≤ 𝑥𝑥 ≤ 𝑙𝑙   (22) 

To facilitate the numerical analysis within this study, the following dimensionless beam parameters are defined: 

𝜉𝜉 = 𝑥𝑥
𝑙𝑙
,  𝜂𝜂 = 𝑣𝑣

𝑙𝑙
,  𝑠𝑠 = 𝑙𝑙

�𝐼𝐼 𝐴𝐴⁄
,  𝐶𝐶𝑖𝑖 = 𝜔𝜔𝑖𝑖𝑙𝑙�

𝜌𝜌𝐿𝐿
𝐸𝐸𝐿𝐿

, (23a)–(23d) 

where, (𝜉𝜉, 𝜂𝜂) depicts normalized coordinates, 𝑠𝑠 represents slenderness, and 𝐶𝐶𝑖𝑖 denotes the frequency parameter for integer 
mode number 𝑖𝑖 = 1, 2, 3,⋯. 

 

Considering Eqs. (22) and (23), the governing non-dimensional differential equation can be expressed as: 

x

Neutral axis
Beam made of LFGM

hinged/clamped free/hinged/
clamped

v(x,t)=v(x)sin( t)
hn
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𝑑𝑑4𝜂𝜂
𝑑𝑑𝜉𝜉4

= −𝐶𝐶𝑖𝑖2 �
𝑑𝑑2𝜂𝜂
𝑑𝑑𝜉𝜉2

− 𝛹𝛹
𝛤𝛤
𝑠𝑠2𝜂𝜂� for 0 ≤ 𝜉𝜉 ≤ 1 (24) 

Next, boundary conditions must be elucidated. At the hinged end (𝑥𝑥 = 0 or 𝑥𝑥 = 𝑙𝑙), the deflection 𝑣𝑣 and bending moment 
𝑀𝑀(= 𝐹𝐹𝑅𝑅 𝑑𝑑2𝑣𝑣 𝑑𝑑𝑥𝑥2⁄ ) are zero, leading to dimensionless conditions: 

Hinged end (𝜉𝜉 = 0 or 𝜉𝜉 = 1):  𝜂𝜂 = 0;  𝑑𝑑
2𝜂𝜂

𝑑𝑑𝜉𝜉2
= 0.   (25) 

At the clamped end (𝑥𝑥 = 0 or 𝑥𝑥 = 𝑙𝑙), both 𝑣𝑣 and rotation 𝜃𝜃(= 𝑑𝑑𝑣𝑣 𝑑𝑑𝑥𝑥⁄ ) are zero, resulting in dimensionless forms: 

Clamped end (𝜉𝜉 = 0 or  𝜉𝜉 = 1):  𝜂𝜂 = 0;  𝑑𝑑𝜂𝜂
𝑑𝑑𝜉𝜉

= 0.   (26) 

At the free end (𝑥𝑥 = 0  or 𝑥𝑥 = 𝑙𝑙 ), both 𝑀𝑀  and shear force 𝑄𝑄(= 𝐹𝐹𝑅𝑅 𝑑𝑑3𝑣𝑣 𝑑𝑑𝑥𝑥3⁄ )  equal zero, resulting in dimensionless 
conditions: 

Free end (𝜉𝜉 = 0 or 𝜉𝜉 = 1):  𝑑𝑑
2𝜂𝜂

𝑑𝑑𝜉𝜉2
 = 0;  𝑑𝑑

3𝜂𝜂
𝑑𝑑𝜉𝜉3

= 0. (27) 

4.2. Numerical solution method and validation 

     To solve the differential Eq. (24), beam parameters encompassing various end conditions such as hinged–hinged, hinged–
clamped, clamped–clamped, and clamped–free must be defined, along with the beam length 𝑙𝑙, diameter 𝑑𝑑 of circular cross-
section, and material properties (𝑘𝑘,𝑚𝑚) and (𝜌𝜌𝐿𝐿 ,𝐸𝐸𝐿𝐿). Based on these parameters, (𝛹𝛹,𝛤𝛤, 𝑠𝑠) can be computed and applied to Eq. 
(24). The numerical integration method, specifically the Runge-Kutta method (Burden et al., 2016), will then be utilized to 
compute (𝜉𝜉, 𝜂𝜂)𝑖𝑖 , adhering to the boundary conditions delineated by Eqs. (25)–(27). 

 
The determinant search approach, combined with the bisection method, one of the nonlinear equation solution methods, 

is employed to identify the eigenvalue  𝐶𝐶𝑖𝑖. This method for initial and boundary value problem solutions featuring eigenvalues 
has been extensively utilized in existing literature (Lee and Lee, 2022), with comprehensive coding performed in the 
FORTRAN programming language to facilitate calculations for coupled properties (𝛼𝛼,𝛹𝛹,𝛤𝛤). Calculations are conducted on 
a PC equipped with graphical support. 

 
The initial numerical experiment involves comparing natural frequencies 𝜔𝜔𝑖𝑖 obtained from the finite element method 

(FEM) with frequencies derived in this study to validate both the theoretical framework and numerical methods employed. 
The results are summarized in Table 2. Parameters used for the beam include 𝑘𝑘 = 2 , 𝑙𝑙 = 2  m, 𝑑𝑑 = 0.1  m with 𝐴𝐴 =
7.854 × 10−3 m2 and 𝐼𝐼 = 4.909 × 10−6m4, (𝜌𝜌𝐿𝐿 = 2700 kg/m3, 𝐸𝐸𝐿𝐿 = 70 GPa) at ℎ = 0 and (𝜌𝜌𝑈𝑈 = 5400 kg/m3, 𝐸𝐸𝑈𝑈 = 140 
GPa) at ℎ(= 𝑑𝑑) = 0.1 m. This study derives a remaining parameter of modular ratio 𝑚𝑚 = 2 alongside the slenderness ratio 
𝑠𝑠 = 80(= 𝑙𝑙 �𝐼𝐼 𝐴𝐴⁄⁄ ). The frequency parameter 𝐶𝐶𝑖𝑖, obtained through this study, translates to 𝜔𝜔𝑖𝑖 = 2545.9𝐶𝐶𝑖𝑖 rad/s using Eq. 
(23d). The ADINA software is employed to provide the FEM solution modeling the LFGM cross-section as 20 stepped-thick 
layers with varying material properties (𝜌𝜌,𝐸𝐸) characterized in Eq. (3). Comparisons of the first three natural frequencies 
𝜔𝜔𝑖𝑖=1,2,3 in rad/s show strong agreement between the two methods, with an average error of 1.98% and a maximum error of 
3.86%. The results presented in Table 2 affirm the theoretical framework and numerical approaches undertaken, inclusive of 
coupled properties of LFGM used in this study. 

Table 2. Comparison* of natural frequency 𝜔𝜔𝑖𝑖 between FEM** and this study 
End 
constraint 

Data 
source 

Natural frequency 𝜔𝜔𝑖𝑖 (rad/s) 
𝑖𝑖 = 1 𝑖𝑖 = 2 𝑖𝑖 = 3 

Hinged-hinged FEM 312.78 1243.21 2749.99 
This study 315.87 1260.54 2825.27 

Hinged-clamped FEM 489.26 1562.87 3221.22 
This study 493.39 1594.94 3314.42 

Clamped-clamped FEM 711.89 1921.97 3707.31 
This study 715.91 1968.18 3842.51 

Clamped-free FEM 111.10 698.20 1895.73 
This study 112.62 705.01 1968.99 

* Refer to the text for beam parameters. 
** ADINA 

4.3. Numerical experiments 

     A parametric study investigating definitions of beam parameters (𝑘𝑘,𝑚𝑚, 𝑠𝑠) in relation to frequency parameters 𝐶𝐶𝑖𝑖=1,2,3 is 
presented in Figs. 8(a)–8(b). Fig. 8(a) illustrates the moderate effect of exponential index 𝑘𝑘 upon 𝐶𝐶𝑖𝑖, indicating negligible 
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variability. Conversely, Fig. 8(b) demonstrates that 𝐶𝐶𝑖𝑖 escalates in response to increasing modular ratio  𝑚𝑚, though this effect 
becomes negligible for 𝑚𝑚 > 1 . Furthermore, Fig. 8(c) depicts a declining trend for 𝐶𝐶𝑖𝑖  as slenderness ratio 𝑠𝑠  increases, 
indicating enhanced sensitivity with smaller values of 𝑠𝑠. 
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Fig. 8. Frequency curves of  𝐶𝐶𝑖𝑖 as a function of (𝑘𝑘,𝑚𝑚, 𝑠𝑠): (a) Hinged–hinged for 𝑘𝑘, (b) Hinged–clamped for 𝑚𝑚, (c) Clamped–
clamped for 𝑠𝑠. 

Fig. 9 illustrates the effects of 𝑘𝑘  and 𝑚𝑚  on the lowest frequency parameter 𝐶𝐶1  (i.e., 𝑖𝑖 = 1 ) using surface maps, 
encapsulating the previously discussed frequency trends. The frequency curves demonstrated earlier are consolidated into a 
singular curve depicted in this surface map. The coupling of effects originating from (𝑘𝑘,𝑚𝑚) on 𝐶𝐶1 is readily apparent from 
these surface maps. 

   

    
Fig. 9. Surface maps of (𝐶𝐶1, 𝑘𝑘,𝑚𝑚)  for 𝑠𝑠 = 80 : (a) Hinged–hinged, (b) Hinged–clamped, (c) Clamped–clamped and (d) 
Clamped–free end. 
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The typical mode shapes (𝜉𝜉, 𝜂𝜂)𝑖𝑖  associated with corresponding 𝐶𝐶𝑖𝑖 of the free-vibrating LFGM beam are exhibited in Fig. 
10. The boundary conditions depicted by Eqs. (25)–(27) are effectively represented at both ends of the beam in the mode 
shapes demonstrated in Fig. 10. To mitigate resonance issues stemming from external dynamic excitation through mechanical 
devices, these mode shape outcomes furnish essential data for LFGM beam design, illustrating relative amplitude, peak 
amplitude positions, and locations of nodal points (where amplitude equals zero). 
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Fig. 10. Examples of mode shape for 𝑘𝑘 = 2, 𝑚𝑚 = 2, 𝑠𝑠 = 80: (a) Hinged–hinged, (b) Hinged–clamped, (c) Clamped–clamped 
and (d) Clamped–free end. 
 
5. Concluding remarks 

      This paper has investigated the generalized stiffness of laterally functionally graded materials (LFGMs) alongside its 
application to dynamic beam elements within the realm of structural mechanics. The primary focus of this study encompasses 
two key components. 

 
Initially, the research formulates generalized stiffnesses for axial rigidity 𝐴𝐴𝑅𝑅, flexural rigidity 𝐹𝐹𝑅𝑅, mass per unit length 

𝐷𝐷𝑚𝑚, and mass-moment of inertia 𝐼𝐼𝑚𝑚 for the circular cross-section of LFGMs in an explicit manner. The material properties 
(𝜌𝜌,𝐸𝐸) are graded asymmetrically with respect to the centroidal axis of the circular cross-section, employing a power-law 
function for the graded profile. Numerical experiments yield results for coupled properties (𝐴𝐴𝑅𝑅 ,𝐹𝐹𝑅𝑅,𝐷𝐷𝑚𝑚 , 𝐼𝐼𝑚𝑚) presented through 
comprehensive tables and graphical charts reflecting a variety of modular ratios and exponential power indices. 

 
In the subsequent portion of the research, relevant properties (𝐹𝐹𝑅𝑅 ,𝐷𝐷𝑚𝑚, 𝐼𝐼𝑚𝑚) derived from the principal formulation are 

applied to bending problems, specifically analyzing the free vibration phenomena in beams. An ordinary differential equation, 
inclusive of rotational inertia effects and associated boundary conditions, governs the free vibration dynamics of the LFGM 
beam, with the governing equation being numerically solved to extract eigenvalues (natural frequencies) and mode shapes. 
Strong correlations in natural frequencies between results derived from the finite element method and those originating from 
this study validate approach efficacy. Numerical investigations elucidate the relationships among natural frequencies and 
differing beam parameters. 

 
The generalized stiffness established herein holds significant potential for broader applications beyond the free vibration 

of beams addressed in this study, including analyses of various structural behaviors characterized by static and dynamic beam 
elements. Further research endeavors should focus on exploiting generalized stiffness to examine additional structural 
behaviors, including strain/stress, deflection, and nonlinear behavior pertaining to both linear and curved beam structures. 
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