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 This paper investigates the impact of dual phase latency caused by the reflection of plane waves that 
propagate in a swelling porous thermoelastic medium with an impedance boundary. Two transversal 
waves (SVS, SVF), a thermal wave (T), and two longitudinal waves (Ps and Pf) propagate with distinct 
velocities. Reflection coefficients are determined by the incidence of these waves, and energy ratios 
for reflected waves are calculated and illustrated using these amplitude ratios.  In this particular 
instance, the current model was downsized to an LS model.  It has been noted that the energy ratios 
acquired are significantly influenced by dual phase lag. The results that have been obtained may be 
beneficial in a variety of engineering problems that are related to structure. 
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1. Introduction 
      

      The theory of thermoselasticity, which is characterized by a finite speed for thermal signals, has garnered significant 
attention in recent decades as a result of its potential relevance in the area of aerodynamic engineering and seismology. Lord 
and Shulman (1967) replaced the classical Fourier's law with a new wave type heat equation, which is also referred to as LS 
theory or extended thermoelastic theory. They employed only one thermal relaxation time. The microstructural interface effect 
is associated with the dual-phase lag model (DPL) in the rapid temporary heat process. Chandrasekharaiah (1998) was the 
first to introduce the dual phase lag model in the theory of thermos elasticity. Ramadan and AL-Nimr (2009) employed a dual 
phase lag model to investigate the reflection and transmission phenomena of thermal waves in a two-layer slab with imperfect 
contact. Their findings indicated that the thermal contact resistance should be minimized in order to mitigate thermal stress. 
Abouelregal (2011) examined the influence of dual-phase lag parameters on the reflection of P and SV waves from magneto-
thermoelastic solid half space. He found that the reflection coefficients are considerably affected by the magnetic field, but 
the thermal coupling parameter has the least impact. Singh (2012) obtained reflection coefficients as a result of the motion of 
waves in a dual-phase lag anisotropic thermoelastic solid half-space. Kumar (2012) investigated the reflection of plane waves 
in thermodiffusive elastic half-space with cavities. Sharma et al. (2013) explored the impact of micropolar thermoelastic solid 
with two temperatures on wave propagation, which is surrounded by strata of half spaces of inviscid liquid. Zenkour et al. 
(2013) have observed that dual phase lag has a more significant impact on the reflection of thermoelastic waves from 
isothermal and stress-free and boundaries than other thermoelastic theories.  
 
      Sharma et al. (2013, 2014) considered the reflection and refraction of plane waves in micropolar elastic solids. The 
uniqueness and reciprocal theorems for dual-phase lag thermoelastic theory were established by El-Karamany and Ezzat 
(2014) through the use of Laplace transformation. Kumar and Gupta (2015) proposed a dual phase lag diffusion model and 
augmented classical Fick law to investigate the reflection and refraction of waves at the boundary of thermoelastic and elastic 
diffusion media. Alla et al. (2016) employed a dual phase lag model to derive the expression of amplitude ratios resulting 
from the reflection of waves from the electro-magnetic thermoelastic half space. They then compared the results to those of 
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the LS theory. In the context of a time differential dual phase lag thermoelastic model, Chirita (2017) established the results 
of continuous dependence and uniqueness.  
 
      Deswal et al. (2019) found that the reflection coefficients for the DPL model are modest in comparison to those of the LS 
theory. Kalkal et al. (2019) employed a dual phase lag model to analyse the impact of initial stress and fiber reinforcement on 
the reflection and transmission coefficients. Dahahb et al. (2019) conducted an investigation into the impact of gravity and 
rotation on an electro-magneto-thermoelastic medium. They found that the solutions derived for the LS and DPL models 
exhibit the same tendency along the z-axis. The non-local dual phase lag model (DPL) was introduced by Kumar et al. (2019) 
to investigate the impact of thermomass and thermoelastic properties on nan-scale heat transport. The authors concluded that 
the non-local dual phase lag model is more realistic than the dual phase model. Lata et al. (2020) analyzed the elastic properties 
of waves propagating in a magneto-thermoelastic medium using a dual phase lag model and obtained reflection coefficients. 
Kumar et al. (2021) performed a study on the influence of nonlocal, void, and micropolar parameters on the reflection of 
waves from the thermoelastic half space using a DPL model. They then compared the results to those obtained using the LS 
model.  
 
      Sharma and Khator (2021, 2022) investigated certain issues related to the generation of electricity from renewable sources. 
Sharma et al. (2022) investigated the impact of impedance parameters on the propagation of waves in a micropolar 
thermoelastic medium using a modified Green-Lindsay (GL) theory. Khan and Tanveer (2022) employ a dual phase latency 
model to determine the reflection and transmission coefficient of SV waves that are propagating at the solid-liquid interface. 
Kumar et al. (2023) investigated the influence of non-local dual phase latency and double porosity on the propagation of 
waves at the boundary of a double porous thermoelastic medium and an inviscid liquid half-space. Ma and Liu (2023) 
developed a non-local thermoelastic model and discovered that the deflection parameter of the nanoplate is reduced by the 
nonlocal heat parameter and increased by the nonlocal structural parameter. The impact of nonlocal triclinic micropolar 
thermoelastic medium on the reflection and transmission of the plane wave propagating at the interface with distinct elastic 
properties was obtained by Kumar et al. (2024). Additionally, they conducted a comparison between the phase velocity and 
energy ratios obtained from the DPL model and the LS theory. In order to investigate the influence of hall current and initial 
stress on micropolar thermoelastic theory under dual phase lag, Abouelregal and Rashid (2024) employed higher order time 
derivatives. In their study of the sensitivity of the heating process of thin metal films, Majchrzak and Mochnacki (2024) 
examined that the sensitivity of the temperature field remains high when the metal has a higher mean conductivity. In a 
transversely isotropic exponentially graded thermoelastic medium with cavities, Barak et al. (2024) investigated the impact 
of dual phase lag and non-local lag models. Additional issues concerning the reflection of waves under dual phase latency are 
detailed in (Deswal et al., 2024; Punia et al., 2024; Eraki et al.; 2024). 
 
      In the current study, the reflection of plane waves from the half space of a swelling porous thermoelastic medium with 
impedance boundary conditions under dual phase lag is studied. There are two longitudinal waves, a thermal wave, and two 
transversal waves that propagate at varying speeds. The numerical computation of reflection coefficients and energy ratios 
resulting from the incidence of each wave. The energy ratios in dual phase lag (DP) and LS model are compared numerically 
and presented through a graphical representation. 
 

2. Fundamental Equations 

     Fundamental equations in swelling porous thermoelastic medium when body forces are ignored is given as Eringen 
(1994) 

𝜇𝜇𝑢𝑢𝑖𝑖,𝑗𝑗𝑗𝑗𝑠𝑠 + (𝜆𝜆 + 𝜇𝜇)𝑢𝑢𝑗𝑗,𝑗𝑗𝑖𝑖
𝑠𝑠 − 𝜎𝜎𝑓𝑓𝑢𝑢𝑗𝑗,𝑗𝑗𝑖𝑖

𝑓𝑓 + 𝜉𝜉𝑓𝑓𝑓𝑓��̇�𝑢𝑖𝑖
𝑓𝑓 − �̇�𝑢𝑖𝑖𝑠𝑠� + (𝛾𝛾𝑓𝑓 − 𝛼𝛼0)∇𝑇𝑇 = 𝜌𝜌0𝑠𝑠�̈�𝑢𝑖𝑖𝑠𝑠 (2.1) 

𝜇𝜇𝑣𝑣�̇�𝑢𝑖𝑖,𝑗𝑗𝑗𝑗
𝑓𝑓 + (𝜆𝜆𝑣𝑣 + 𝜇𝜇𝑣𝑣)�̇�𝑢𝑗𝑗,𝑗𝑗𝑖𝑖

𝑓𝑓 − 𝜎𝜎𝑓𝑓𝑢𝑢𝑗𝑗,𝑗𝑗𝑖𝑖
𝑠𝑠 − 𝜎𝜎𝑓𝑓𝑓𝑓𝑢𝑢𝑗𝑗,𝑗𝑗𝑖𝑖

𝑓𝑓 − 𝜉𝜉𝑓𝑓𝑓𝑓��̇�𝑢𝑖𝑖
𝑓𝑓 − �̇�𝑢𝑖𝑖𝑠𝑠� − (𝛾𝛾𝑓𝑓+𝛼𝛼𝑓𝑓)∇𝑇𝑇 = 𝜌𝜌0

𝑓𝑓�̈�𝑢𝑖𝑖
𝑓𝑓 (2.2) 

𝐾𝐾∗ �1 + 𝜏𝜏𝑇𝑇
𝜕𝜕
𝜕𝜕𝜕𝜕
� ∇2𝑇𝑇 = �1 + 𝜏𝜏𝑞𝑞

𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜏𝜏𝑞𝑞2

2!
𝜕𝜕2

𝜕𝜕𝜕𝜕2
� �𝑇𝑇0𝛼𝛼𝑓𝑓∇. �̇�𝑢𝑓𝑓 + 𝛼𝛼0𝑇𝑇0∇. �̇�𝑢𝑠𝑠 + 𝛼𝛼1𝑇𝑇0�̇�𝑇� + 𝜁𝜁𝑓𝑓(∇. �̇�𝑢𝑓𝑓 + ∇. �̇�𝑢𝑠𝑠) 

(2.3) 

𝜕𝜕𝑖𝑖𝑗𝑗𝑠𝑠 = �−𝛼𝛼0𝑇𝑇 − 𝜎𝜎𝑓𝑓𝑢𝑢𝑟𝑟,𝑟𝑟
𝑓𝑓 + 𝜆𝜆𝑢𝑢𝑟𝑟,𝑟𝑟

𝑠𝑠 �𝛿𝛿𝑖𝑖𝑗𝑗 + 𝜇𝜇(𝑢𝑢𝑖𝑖,𝑗𝑗𝑠𝑠 + 𝑢𝑢𝑗𝑗,𝑖𝑖
𝑠𝑠 ) (2.4) 

𝜕𝜕𝑖𝑖𝑗𝑗
𝑓𝑓 = �−𝛼𝛼𝑓𝑓𝑇𝑇 − 𝜎𝜎𝑓𝑓𝑢𝑢𝑟𝑟,𝑟𝑟

𝑠𝑠 − 𝜎𝜎𝑓𝑓𝑓𝑓∇.𝑢𝑢𝑓𝑓 + 𝜆𝜆𝑣𝑣�̇�𝑢𝑟𝑟,𝑟𝑟
𝑓𝑓 �𝛿𝛿𝑖𝑖𝑗𝑗 + 𝜇𝜇𝑣𝑣(𝑢𝑢𝑖𝑖,𝑗𝑗

𝑓𝑓 + 𝑢𝑢𝑗𝑗,𝑖𝑖
𝑓𝑓 ) (2.5) 

2.1 Nomenclature 

𝜆𝜆, 𝜇𝜇    = lame’s parameters (N/m2) 
𝜌𝜌0𝑠𝑠, 𝜌𝜌0

𝑓𝑓   = mass density in solid and fluid in natural state (Ns2/m4) 
𝜎𝜎𝑓𝑓, 𝜎𝜎𝑓𝑓𝑓𝑓                = dissipation constant (N/m2) 
𝜉𝜉𝑓𝑓𝑓𝑓   = coupling coefficient (Ns/m4) 
𝜆𝜆𝑣𝑣, 𝜇𝜇𝑣𝑣   = viscosity coefficient (Ns/m2) 
T   = temperature (K) 
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T0   = uniform temperature (K) 
𝐾𝐾∗   = thermal conductivity (N/sK) 
𝛼𝛼𝑓𝑓, 𝛼𝛼0, 𝛾𝛾𝑓𝑓  = material constants (N/m2K) 
𝛼𝛼1   = material constant (N/m2K2) 
𝜏𝜏𝑇𝑇   = phase lag parameter of temperature gradient (s) 
𝜏𝜏𝑞𝑞   = phase lag parameter of heat flux (s) 
𝜁𝜁𝑓𝑓   = material constant related to liquid (N/m2) 
t   = time (s) 
𝑢𝑢𝑠𝑠,𝑢𝑢𝑓𝑓   = displacement in solid and liquid (m) 
𝜕𝜕𝑖𝑖𝑗𝑗𝑠𝑠 , 𝜕𝜕𝑖𝑖𝑗𝑗

𝑓𝑓    = components of stress tensor in solid and liquid (N/m2) 
𝜔𝜔   = angular frequency(rad/s) 
k   = wave number (m-1) 
𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, 𝑧𝑧4  = impedance parameters (Ns/m3)  
𝑧𝑧5   = impedance parameter (N/mK)  
𝛿𝛿𝑖𝑖𝑗𝑗   = Kronecker delta function (dimensionless) 
 
3. Problem formation and resolution 

     A homogeneous, isotropic swelling porous thermoelastic half-space has been taken into account. The origin of the 
rectangular cartesian coordinate system (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)  is located at the boundary  𝑥𝑥3 = 0, with the  𝑥𝑥3-axis pointing ordinarily 
into the medium. The intersection of the plane wavefront and the plane surface is represented by the 𝑥𝑥2-axis. We limit our 
analysis to the plane strain problem that is parallel to the 𝑥𝑥1 − 𝑥𝑥3  plane. We employ the following approach for two-
dimensional problems:  
 
𝑢𝑢𝑘𝑘 = (𝑢𝑢1𝑘𝑘, 0,𝑢𝑢3𝑘𝑘) ; k=s,f  (3.1) 

 

     Define dimensionless quantities as: 

𝑥𝑥𝑖𝑖′ = 𝜔𝜔∗

𝑐𝑐1
𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑖𝑖𝑘𝑘

′ = 𝜌𝜌0
𝑠𝑠𝜔𝜔∗𝑐𝑐1
𝛼𝛼0𝑇𝑇0

𝑢𝑢𝑖𝑖𝑘𝑘 , 𝜕𝜕𝑖𝑖𝑗𝑗𝑘𝑘
′ =

𝑡𝑡𝑖𝑖𝑖𝑖
𝑘𝑘

𝛼𝛼0𝑇𝑇0
,𝑇𝑇′ = 𝑇𝑇

𝑇𝑇0
, 𝜕𝜕′ = 𝜔𝜔∗𝜕𝜕, 𝜏𝜏𝑇𝑇′ = 𝜔𝜔∗𝜏𝜏𝑇𝑇 , 𝜏𝜏𝑞𝑞′ = 𝜔𝜔∗𝜏𝜏𝑞𝑞 ,𝜔𝜔′ = 𝜔𝜔

𝜔𝜔∗,   

𝑧𝑧𝑙𝑙′ =
𝑧𝑧𝑙𝑙
𝜌𝜌0𝑠𝑠𝑐𝑐1

, 𝑧𝑧5′ =
𝑐𝑐1
𝐾𝐾∗ 𝑧𝑧5  

(3.2) 

where  𝜔𝜔∗ = 𝛼𝛼1𝑇𝑇0𝑐𝑐1
2

𝐾𝐾∗
, 𝑐𝑐12 = 𝜆𝜆+2𝜇𝜇

𝜌𝜌0
𝑠𝑠       k=s,f; i,j=1,2,3,l=1,2,3,4   

      The potentials 𝜙𝜙 and 𝜓𝜓 are related to the displacement components 𝑢𝑢1𝑘𝑘(𝑥𝑥1, 𝑥𝑥3, 𝜕𝜕), and 𝑢𝑢3𝑘𝑘(𝑥𝑥1, 𝑥𝑥3, 𝜕𝜕)  using the Helmholtz 
decomposition. 
 
𝑢𝑢1𝑘𝑘 = 𝜕𝜕𝜙𝜙𝑘𝑘

𝜕𝜕𝑥𝑥1
− 𝜕𝜕𝜓𝜓𝑘𝑘

𝜕𝜕𝑥𝑥3
,  𝑢𝑢3𝑘𝑘 = 𝜕𝜕𝜙𝜙𝑘𝑘

𝜕𝜕𝑥𝑥3
+ 𝜕𝜕𝜓𝜓𝑘𝑘

𝜕𝜕𝑥𝑥1
  (3.3) 

 
Eqs. (2.1-2.3) with the help of Eqs. (3.1-3.3) becomes 

�∇2 − 𝑎𝑎2
𝜕𝜕
𝜕𝜕𝜕𝜕
−
𝜕𝜕2

𝜕𝜕𝜕𝜕2
�𝜙𝜙𝑠𝑠 + �−𝑎𝑎1∇2 + 𝑎𝑎2

𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜙𝜙𝑓𝑓 − 𝑎𝑎3𝑇𝑇 = 0 

(3.4) 

�−𝛿𝛿12∇2 + 𝑎𝑎2
𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕2

𝜕𝜕𝜕𝜕2
�𝜓𝜓𝑠𝑠 − 𝑎𝑎2

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓𝑓𝑓 = 0 

(3.5) 

�−ℎ1∇2 + ℎ3
𝜕𝜕
𝜕𝜕𝑡𝑡
�𝜙𝜙𝑠𝑠 + � 𝜕𝜕

𝜕𝜕𝑡𝑡
∇2 − ℎ2∇2 − ℎ3

𝜕𝜕
𝜕𝜕𝑡𝑡
− ℎ5

𝜕𝜕2

𝜕𝜕𝑡𝑡2
�𝜙𝜙𝑓𝑓 − ℎ4𝑇𝑇 = 0  (3.6) 

�−ℎ3
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜓𝜓𝑠𝑠 + �−𝛿𝛿22∇2

𝜕𝜕
𝜕𝜕𝜕𝜕

+ ℎ3
𝜕𝜕
𝜕𝜕𝜕𝜕

+ ℎ5
𝜕𝜕2

𝜕𝜕𝜕𝜕2
�𝜓𝜓𝑓𝑓 = 0 

(3.7) 

(𝑑𝑑3𝑖𝑖𝜔𝜔)𝜙𝜙𝑠𝑠 + (𝑑𝑑4𝑖𝑖𝜔𝜔)𝜙𝜙𝑓𝑓 + (𝑑𝑑2 + 𝑑𝑑5V2)𝑇𝑇 = 0 (3.8) 

where 

𝛿𝛿12 =
𝜇𝜇

𝜆𝜆 + 2𝜇𝜇
, 𝑎𝑎1 =

𝜎𝜎𝑓𝑓

𝜆𝜆 + 2𝜇𝜇
, 𝑎𝑎2 =

𝜉𝜉𝑓𝑓𝑓𝑓

𝜌𝜌0𝑠𝑠𝜔𝜔∗ , 𝑎𝑎4 =
𝜆𝜆

𝜆𝜆 + 2𝜇𝜇
, 𝑎𝑎3 = (1 − 𝜏𝜏𝑟𝑟), 𝜏𝜏𝑟𝑟 =

𝛾𝛾𝑓𝑓

𝛼𝛼0
 , 
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𝛿𝛿22 =
𝜇𝜇𝑣𝑣

𝜆𝜆𝑣𝑣 + 2𝜇𝜇𝑣𝑣
, ℎ1 =

𝜎𝜎𝑓𝑓

𝜔𝜔∗(𝜆𝜆𝑣𝑣 + 2𝜇𝜇𝑣𝑣)
, ℎ2 =

𝜎𝜎𝑓𝑓𝑓𝑓

𝜔𝜔∗(𝜆𝜆𝑣𝑣 + 2𝜇𝜇𝑣𝑣)
, ℎ3 =

𝜉𝜉𝑓𝑓𝑓𝑓𝑐𝑐12

𝜔𝜔∗2(𝜆𝜆𝑣𝑣 + 2𝜇𝜇𝑣𝑣)
, 

ℎ4 =
(1 + 𝜏𝜏1)𝛼𝛼𝑓𝑓𝜌𝜌0𝑠𝑠𝑐𝑐12

𝜔𝜔∗𝛼𝛼0(𝜆𝜆𝑣𝑣 + 2𝜇𝜇𝑣𝑣)
, ℎ5 =

𝜌𝜌0
𝑓𝑓𝑐𝑐12

𝜔𝜔∗(𝜆𝜆𝑣𝑣 + 2𝜇𝜇𝑣𝑣)
, 𝜏𝜏1 =

𝛾𝛾𝑓𝑓

𝛼𝛼𝑓𝑓
, 𝑏𝑏1 =

𝛼𝛼0𝜁𝜁𝑓𝑓

𝛼𝛼1𝑇𝑇0(𝜆𝜆 + 2𝜇𝜇)
, 𝜏𝜏2 =

𝛼𝛼𝑓𝑓

𝛼𝛼0
 

 𝑏𝑏2 =
𝛼𝛼0𝛼𝛼𝑓𝑓

𝛼𝛼1(𝜆𝜆 + 2𝜇𝜇)
, 𝑏𝑏3 =

𝛼𝛼02

𝛼𝛼1(𝜆𝜆 + 2𝜇𝜇)
, 𝑒𝑒1 =

𝜎𝜎𝑓𝑓𝑓𝑓

𝜆𝜆 + 2𝜇𝜇
, 𝑒𝑒2 =

𝜆𝜆𝑣𝑣𝜔𝜔∗

𝜆𝜆 + 2𝜇𝜇
, 𝑒𝑒3 =

𝜇𝜇𝑣𝑣
𝜆𝜆 + 2𝜇𝜇

, 

𝑑𝑑1 = 1 − 𝜏𝜏𝑞𝑞𝑖𝑖𝜔𝜔 −
𝜏𝜏𝑞𝑞2

2!
𝜔𝜔2,𝑑𝑑2 = 1 − 𝜏𝜏𝑇𝑇𝑖𝑖𝜔𝜔 ,𝑑𝑑3 = 𝑑𝑑1𝑏𝑏3 + 𝑏𝑏1,𝑑𝑑4 = 𝑑𝑑1𝑏𝑏2 + 𝑏𝑏1,𝑑𝑑5 =

−𝑖𝑖𝑑𝑑1
𝜔𝜔

 

∇2= �
𝜕𝜕2

𝜕𝜕𝑥𝑥12
+

𝜕𝜕2

𝜕𝜕𝑥𝑥32
� 

 
We presume that the motion is time-harmonic and that  
 

(𝜙𝜙𝑠𝑠,𝜙𝜙𝑓𝑓 ,𝑇𝑇,𝜓𝜓𝑠𝑠 ,𝜓𝜓𝑓𝑓) = (𝜙𝜙�𝑠𝑠,𝜙𝜙�𝑓𝑓 ,𝑇𝑇� ,𝜓𝜓�𝑠𝑠,𝜓𝜓�𝑓𝑓)𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠−𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠)−𝜔𝜔𝑡𝑡} (3.9) 
 
where 𝜃𝜃 is the angle of inclination, k is wave number 

 

Fig. 1. Geometry of the problem depicting incident and reflected waves in swelling porous thermoelastic half-space 

     Using Eq. (3.9) in Eqs. (3.4) -(3.8), we can calculate the following: 

𝐴𝐴𝑣𝑣6 + 𝐵𝐵𝑣𝑣4 + 𝐶𝐶𝑣𝑣2 + 𝐷𝐷 = 0 (3.10) 

𝐴𝐴1𝑣𝑣4 + 𝐵𝐵1𝑣𝑣2 + 𝐶𝐶1 = 0 (3.11) 

where the roots of Eq. (3.10) correspond to the velocity of the Ps-wave, Pf-wave, and T-wave, while the roots of Eq. (3.11) 
give the velocity of the SVS-wave and SVF-wave. 
𝐴𝐴 = 𝜏𝜏11𝑙𝑙2 + 𝜏𝜏14𝑙𝑙4,𝐵𝐵 = −𝑙𝑙2𝜏𝜏24 + 𝑙𝑙1𝜏𝜏11 − 𝑎𝑎1𝑙𝑙4 + 𝑙𝑙3𝜏𝜏14 −

𝑎𝑎3
𝜔𝜔2 𝑙𝑙6, ,𝐷𝐷 = −𝜏𝜏12𝑑𝑑2 − 𝑎𝑎1ℎ1𝑑𝑑2, 

𝐶𝐶 = −𝑙𝑙1 + 𝑑𝑑2𝜏𝜏11𝜏𝜏12 − 𝑎𝑎1𝑙𝑙3 + ℎ1𝑑𝑑2𝜏𝜏14 −
𝑎𝑎3
𝜔𝜔2 𝑙𝑙5, 𝐴𝐴1 = 𝜏𝜏11𝜏𝜏16 − 𝜏𝜏15𝜏𝜏14,𝐵𝐵1 = 𝜏𝜏11𝛿𝛿22𝑖𝑖𝜔𝜔 − 𝜏𝜏16𝛿𝛿12, 𝐶𝐶1 = −𝛿𝛿12𝛿𝛿22𝑖𝑖𝜔𝜔, 𝜏𝜏12 = 𝑖𝑖𝜔𝜔 +

ℎ2, 𝜏𝜏13 = 𝜏𝜏15 + ℎ5, 𝜏𝜏14 = 𝑖𝑖𝑎𝑎2
𝜔𝜔

, 𝜏𝜏11 = 1 + 𝜏𝜏14, 𝜏𝜏15 = 𝑖𝑖ℎ3
𝜔𝜔

,   

𝜏𝜏16 = 𝜏𝜏15 − ℎ5,𝑙𝑙1 = 𝜏𝜏12𝑑𝑑5 + 𝜏𝜏13𝑑𝑑2 + 𝑖𝑖𝑑𝑑4ℎ4
𝜔𝜔

, 𝑙𝑙2 = 𝜏𝜏13𝑑𝑑5, 𝑙𝑙3 = ℎ1𝑑𝑑5 − 𝜏𝜏15𝑑𝑑2 + 𝑖𝑖𝑑𝑑3ℎ4
𝜔𝜔

,  

𝑙𝑙4 = −𝜏𝜏15𝑑𝑑5, 𝑙𝑙5 = (ℎ1𝑑𝑑4 − 𝜏𝜏12𝑑𝑑3)𝑖𝑖𝜔𝜔, 𝑙𝑙6 = −(𝜏𝜏15𝑑𝑑4 + 𝜏𝜏13𝑑𝑑3)𝑖𝑖𝜔𝜔 

𝜃𝜃0 

𝑥𝑥1 

𝑥𝑥3 ≥ 0 𝐴𝐴1 𝐴𝐴2 
𝐴𝐴3 

𝐵𝐵4 
𝐵𝐵5 

O 

𝜃𝜃2 
 𝜃𝜃3 

  
𝜃𝜃4 
  

𝜃𝜃5 
  

𝜃𝜃1 
  



R. Kumar et al.  / Engineering Solid Mechanics 13(2025) 
 

85 

Making use of Eqs. (3.1-3.3) in Eqs. (2.4-2.5) we obtain 

𝜕𝜕33𝑠𝑠 = −𝑎𝑎1 �
𝜕𝜕2𝜙𝜙𝑓𝑓

𝜕𝜕𝑥𝑥12
+
𝜕𝜕2𝜙𝜙𝑓𝑓

𝜕𝜕𝑥𝑥32
� + 𝑎𝑎4 �

𝜕𝜕2𝜙𝜙𝑠𝑠

𝜕𝜕𝑥𝑥12
+
𝜕𝜕2𝜙𝜙𝑠𝑠

𝜕𝜕𝑥𝑥32
� + 2𝛿𝛿12 �

𝜕𝜕2𝜙𝜙𝑠𝑠

𝜕𝜕𝑥𝑥32
+

𝜕𝜕2𝜓𝜓𝑠𝑠

𝜕𝜕𝑥𝑥3𝜕𝜕𝑥𝑥1
� − 𝑇𝑇 

(3.12) 

𝜕𝜕31𝑠𝑠 = 𝛿𝛿12 �2
𝜕𝜕2𝜙𝜙𝑠𝑠

𝜕𝜕𝑥𝑥3𝜕𝜕𝑥𝑥1
+
𝜕𝜕2𝜓𝜓𝑠𝑠

𝜕𝜕𝑥𝑥12
−
𝜕𝜕2𝜓𝜓𝑠𝑠

𝜕𝜕𝑥𝑥32
� 

(3.13) 

𝜕𝜕33
𝑓𝑓 = −𝑎𝑎1 �

𝜕𝜕2𝜙𝜙𝑠𝑠

𝜕𝜕𝑥𝑥1
2 + 𝜕𝜕2𝜙𝜙𝑠𝑠

𝜕𝜕𝑥𝑥3
2 � − 𝑒𝑒1 �

𝜕𝜕2𝜙𝜙𝑓𝑓

𝜕𝜕𝑥𝑥1
2 + 𝜕𝜕2𝜙𝜙𝑓𝑓

𝜕𝜕𝑥𝑥3
2 � + 𝑒𝑒2 �

𝜕𝜕2�̇�𝜙𝑓𝑓

𝜕𝜕𝑥𝑥1
2 + 𝜕𝜕2�̇�𝜙𝑓𝑓

𝜕𝜕𝑥𝑥3
2 � + 2𝑒𝑒3𝜔𝜔∗ �𝜕𝜕

2�̇�𝜙𝑓𝑓

𝜕𝜕𝑥𝑥3
2 + 𝜕𝜕2�̇�𝜓𝑓𝑓

𝜕𝜕𝑥𝑥3𝜕𝜕𝑥𝑥1
�−𝜏𝜏2𝑇𝑇  (3.14) 

𝜕𝜕31
𝑓𝑓 = 𝑒𝑒3𝜔𝜔∗ �2

𝜕𝜕2�̇�𝜙𝑓𝑓

𝜕𝜕𝑥𝑥3𝜕𝜕𝑥𝑥1
+
𝜕𝜕2�̇�𝜓𝑓𝑓

𝜕𝜕𝑥𝑥12
−
𝜕𝜕2�̇�𝜓𝑓𝑓

𝜕𝜕𝑥𝑥32
� 

(3.15) 

4. Boundary Conditions 

    The boundary conditions at surface 𝑥𝑥3 = 0 are 

(i) 𝜕𝜕33𝑠𝑠 + 𝜔𝜔𝑧𝑧1𝑢𝑢3𝑠𝑠 = 0  (ii) 𝜕𝜕31𝑠𝑠 + 𝜔𝜔𝑧𝑧2𝑢𝑢1𝑠𝑠 = 0 (iii) 𝜕𝜕33
𝑓𝑓 + 𝜔𝜔𝑧𝑧3𝑢𝑢3

𝑓𝑓 = 0 
(iv) 𝜕𝜕31

𝑓𝑓 + 𝜔𝜔𝑧𝑧4𝑢𝑢1
𝑓𝑓 = 0  (v) 𝐾𝐾∗ 𝜕𝜕𝑇𝑇

𝜕𝜕𝑥𝑥3
+ 𝜔𝜔𝑧𝑧5𝑇𝑇 = 0 

(4.1) 

 

where 𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, 𝑧𝑧4 are impedance parameters having dimension 𝑁𝑁𝑠𝑠
𝑚𝑚3.  𝑧𝑧5 is impedance parameter having dimension 𝑁𝑁

𝑚𝑚𝐾𝐾
.  We 

assume the values of 𝜙𝜙𝑠𝑠,𝜙𝜙𝑓𝑓 ,𝑇𝑇,𝜓𝜓𝑠𝑠 ,𝜓𝜓𝑓𝑓as: 

𝜙𝜙𝑠𝑠 = �𝐴𝐴0𝑚𝑚𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠0−𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠0)−𝜔𝜔𝑡𝑡} + 𝐴𝐴𝑚𝑚𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑚𝑚+𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑚𝑚)−𝜔𝜔𝑡𝑡} (4.2) 

𝜙𝜙𝑓𝑓 = �𝛼𝛼𝑚𝑚(𝐴𝐴0𝑚𝑚𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠0−𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠0)−𝜔𝜔𝑡𝑡} + 𝐴𝐴𝑚𝑚𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑚𝑚+𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑚𝑚)−𝜔𝜔𝑡𝑡}) (4.3) 

𝑇𝑇 = ∑𝛽𝛽𝑚𝑚(𝐴𝐴0𝑚𝑚𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠0−𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠0)−𝜔𝜔𝑡𝑡} + 𝐴𝐴𝑚𝑚𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑚𝑚+𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑚𝑚)−𝜔𝜔𝑡𝑡})   (4.4) 

𝜓𝜓𝑠𝑠 = �𝐵𝐵0𝑠𝑠𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠0−𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠0)−𝜔𝜔𝑡𝑡} + 𝐵𝐵𝑠𝑠𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑛𝑛+𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛)−𝜔𝜔𝑡𝑡} (4.5) 

𝜓𝜓𝑓𝑓 = ∑𝛾𝛾𝑠𝑠(𝐵𝐵0𝑠𝑠𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠0−𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠0)−𝜔𝜔𝑡𝑡} + 𝐵𝐵𝑠𝑠𝑒𝑒𝑖𝑖{𝑘𝑘(𝑥𝑥1𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑛𝑛+𝑥𝑥3𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑛𝑛)−𝜔𝜔𝑡𝑡})  (4.6) 

where  𝛼𝛼𝑚𝑚 =
�ℎ4
𝜔𝜔2

�𝑉𝑉2�−1+𝜏𝜏11𝑉𝑉2�−�
𝑎𝑎3
𝜔𝜔2

�𝑉𝑉2�ℎ1−𝜏𝜏15𝑉𝑉2�

(𝑎𝑎1−𝜏𝜏14𝑉𝑉2)�−ℎ4
𝜔𝜔2

�𝑉𝑉2+�𝑎𝑎3
𝜔𝜔2

�𝑉𝑉2(𝜏𝜏12+𝜏𝜏13𝑉𝑉2)
, 

 𝛽𝛽𝑚𝑚 = (−1+𝜏𝜏11𝑉𝑉2)�𝜏𝜏12+𝜏𝜏13𝑉𝑉2�−(𝑎𝑎1−𝜏𝜏14𝑉𝑉2)�ℎ1−𝜏𝜏15𝑉𝑉2�

(𝑎𝑎1−𝜏𝜏14𝑉𝑉2)�−ℎ4
𝜔𝜔2

�𝑉𝑉2+�𝑎𝑎3
𝜔𝜔2

�𝑉𝑉2(𝜏𝜏12+𝜏𝜏13𝑉𝑉2)
, 𝛾𝛾𝑠𝑠 = 𝛿𝛿1

2−𝜏𝜏11𝑉𝑉2

−𝜏𝜏14𝑉𝑉2
  (m=1,2,3; n=3,4) 

where 𝐴𝐴0𝑚𝑚(𝑚𝑚 = 1,2,3) denote amplitude of incident Ps-wave, Pf-wave and T-wave 𝐴𝐴𝑚𝑚(𝑚𝑚 = 1,2,3)correspond to reflected 
Ps-wave, Pf-wave and T-wave, 𝐵𝐵0𝑠𝑠(𝑛𝑛 = 3,4)  signify amplitude of incident SVS-wave and SVF-wave and 𝐵𝐵𝑠𝑠(𝑛𝑛 = 3,4) 
associate with the reflected SVS-wave and SVF-wave. 

     Snell’s Law is denoted as 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠0
𝑣𝑣0

= 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖
𝑣𝑣𝑖𝑖

 (i=1,2,3,4,5) 

where 𝑘𝑘1𝑣𝑣1 = 𝑘𝑘2𝑣𝑣2 = 𝑘𝑘3𝑣𝑣3 = 𝑘𝑘4𝑣𝑣4 = 𝑘𝑘5𝑣𝑣5 = 𝜔𝜔 

The following relation coefficients (or amplitude ratios) are obtained by applying boundary conditions (4.1) to Eq. (3.3), 
Eqs. (3.12-3.15). 

∑𝑎𝑎𝑝𝑝𝑗𝑗𝑍𝑍𝑗𝑗 = 𝑔𝑔𝑝𝑝, (p,j=1,2,3,4,5) (4.7) 

𝑎𝑎1𝑖𝑖 = �𝛼𝛼𝑖𝑖𝑎𝑎1 − 𝑎𝑎4 − 2𝛿𝛿12 �1 − �
𝑣𝑣𝑖𝑖
𝑣𝑣1
�
2
𝑠𝑠𝑖𝑖𝑛𝑛2𝜃𝜃0� −

𝛽𝛽𝑖𝑖
𝑘𝑘𝑖𝑖2
� �
𝑣𝑣1
𝑣𝑣𝑖𝑖
�
2

+
𝑣𝑣12

𝑣𝑣𝑖𝑖
𝑧𝑧1�1 − �

𝑣𝑣𝑖𝑖
𝑣𝑣1
�
2
𝑠𝑠𝑖𝑖𝑛𝑛2𝜃𝜃0 

𝑔𝑔1 =  (−𝛼𝛼1𝑎𝑎1 + 𝑎𝑎4 + 2𝛿𝛿12𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃0) +
𝛽𝛽1
𝑘𝑘12

+ 𝑣𝑣1𝑧𝑧1𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃0 
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𝑎𝑎1𝑗𝑗 = −2𝛿𝛿12𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃0�1 − �
𝑣𝑣𝑗𝑗
𝑣𝑣1
�
2
𝑠𝑠𝑖𝑖𝑛𝑛2𝜃𝜃0 �

𝑣𝑣1
𝑣𝑣𝑗𝑗
� + 𝑖𝑖𝑧𝑧1𝑣𝑣1𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃0 

𝑎𝑎2𝑖𝑖 = −2𝛿𝛿12𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃0�1 − �
𝑣𝑣𝑗𝑗
𝑣𝑣1
�
2
𝑠𝑠𝑖𝑖𝑛𝑛2𝜃𝜃0  �

𝑣𝑣1
𝑣𝑣𝑖𝑖
� + 𝑖𝑖𝑧𝑧2𝑣𝑣1𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃0 

𝑎𝑎2𝑗𝑗 = 𝛿𝛿12 �−�
𝑣𝑣𝑗𝑗
𝑣𝑣1
�
2
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, , 𝑎𝑎54 = 𝑎𝑎55 = 0 

The amplitude ratios of reflected Ps, Pf, T, and SVS, SVF waves for an incident Ps wave are denoted by 𝑍𝑍𝑖𝑖 = 𝐴𝐴𝑖𝑖
𝐴𝐴01

 (i=1,2,3) 

and 𝑍𝑍𝑗𝑗 =
𝐵𝐵𝑖𝑖
𝐴𝐴01

 (𝑗𝑗 = 4,5).  In the same way, the amplitude ratios of reflected waves can be determined for the incident Pf, T, 
SVS, or SVF waves. 

5. Energy ratios of reflected waves 

     This section calculates the dissemination of energy amongst reflected waves.  In accordance with (Achenbach, 1973), the 
rate at which energy is transmitted per unit surface area per unit time is presented as 

𝑃𝑃𝑒𝑒 =
1
2
� ℜ((𝜕𝜕33𝑘𝑘 )𝑢𝑢�̇3𝑘𝑘))

𝑘𝑘=𝑠𝑠,𝑓𝑓
+

1
2
� ℜ((𝜕𝜕31𝑘𝑘 )𝑢𝑢�̇1𝑘𝑘))

𝑘𝑘=𝑠𝑠,𝑓𝑓
 (5.1) 

The average reflected wave energy at 𝑥𝑥3 = 0 is given by 
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(5.2) 
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(5.3) 

     

where, 𝑟𝑟𝑖𝑖 = 𝛼𝛼𝑖𝑖(𝑎𝑎1 + 𝑒𝑒1𝛼𝛼𝑖𝑖 + 𝑖𝑖𝑘𝑘𝑖𝑖𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖𝑒𝑒2 + 2𝑖𝑖𝑒𝑒3𝜔𝜔∗𝑘𝑘𝑖𝑖𝛼𝛼𝑖𝑖) −
𝜏𝜏2𝛽𝛽𝑖𝑖
𝑘𝑘𝑖𝑖
2        (i=1,2,3; j=4,5) 
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6. Discussion and numerical outcomes 

     The following data is used to demonstrate the consequence of the impedance parameter on the energy ratios of reflected 
Ps, Pf, T, SVS, and SVF waves (Tomar & Goyal, 2013). 

Symbol Value Unit Symbol Value Unit 
𝜆𝜆 6.0× 109 N/m2 𝛼𝛼𝑓𝑓 0.152× 106 N/m2 K 
𝜇𝜇 9.0× 109 N/m2  𝛼𝛼0 0.015× 106 N/m2 K 
𝜆𝜆𝑣𝑣 1.002× 10−3 Ns/m2 𝛾𝛾𝑓𝑓 1.656× 106 N/m2 K 
𝜇𝜇𝑣𝑣 8.88× 10−4 Ns/m2 T 298 K 
𝜎𝜎𝑓𝑓 0.03× 106 N/m2 𝜌𝜌0𝑠𝑠 2.65× 103 Ns2/m4 
𝜎𝜎𝑓𝑓𝑓𝑓 0.291× 105 N/m2 𝜌𝜌0

𝑓𝑓 9.90× 102 Ns2/m4 
𝜉𝜉𝑓𝑓𝑓𝑓 0.0250× 106 Ns/m4 𝐾𝐾∗ 0.498× 102 N/sK 
𝛼𝛼1 0.03831× 102 N/m2 K2 𝜁𝜁𝑓𝑓 2.15× 106 N/m2 

 

      Energy ratios for reflected Ps-wave, Pf-wave, T-wave, SVS-wave, and SVF-wave are obtained and presented graphically 
in Figs. 2(a-e) to 6(a-e) using the aforementioned numerical data for 𝜏𝜏𝑇𝑇 = 0.3 s  and 𝜏𝜏𝑞𝑞 = 0.4 𝑠𝑠 and impedance parameters 
z1= 10, z2= 20, z3= 30, z4= 40, z5= 50.  The energy ratios �𝐸𝐸𝑝𝑝� (𝑝𝑝 = 1, . . ,5) of these waves are plotted against the angle of 
incidence. 

7. Specific Situation 

       For the case in which 𝜏𝜏𝑇𝑇 = 0, 𝜏𝜏𝑞𝑞 ≠ 0 and 𝜏𝜏𝑞𝑞2 = 0 the LS-model is used to reduce the results that have been obtained. 

The change in energy ratios of reflected waves in the DP (dual phase lag model) and LS model when the Ps wave is incident 
is illustrated in Fig. 2(a-e). It is noted that the energy ratios of all reflected waves diminish as the angle of incidence increases.  
For each angle of incidence, the approximate value of E1 remains unity for both the DP and LS models.  Except for E4, the 
DP model's reflected energy ratios are lower than those of the LS model. 

 

 

 
Fig. 2(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a Ps wave is 

incident. 
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     Fig. 3(a-e) illustrates the reflected energy ratios that result from the incidence of the Pf wave.  It is observed that the values 
of E2, E3, and E4 diminish as the angle of incidence increases, while E1 increases in both the DP and LS models.  The energy 
ratios for E5 initially decline and then begin to rise as the angle of incidence changes.  Additionally, the initial values of E5 for 
the DP model are lower than those of the LS model; however, the reverse behaviour is observed later.  It is also detected that 
the energy ratios in the DP model are lower than those in the LS model, with the exception of E5. 

 

 

 

Fig. 3(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a Pf wave is 
incident. 

     Fig. 4(a-e) illustrates the variation in reflected energy ratios as a result of the incidence of the T wave.  Energy ratios in the 
DP model decrease as the angle of incidence rise, with the exception of E5.  The energy ratios of the LS model exhibit 
oscillatory behaviour. In the DP model, energy ratios diminish as the angle of incidence changes, whereas in the LS model, 
they oscillate in response to the angle of incidence.  The energy ratio E2 in the LS model is lower than the results acquired for 
the DP model. However, the energy ratio E3 is greater than the DP model throughout the entire spectrum. 
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Fig. 4(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a T wave is 
incident. 

      The energy ratios of reflected waves for the DP and LS models diminish as the angle of incidence increases when the SVS 
wave is incident, as illustrated in Fig 5(a-e). The energy ratios in the LS model are still lower than the outcomes achieved in 
the DP model at each angle of occurrence.  Also, the values of E4 for both the DP and LS models decrease and converge to 
one. 
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Fig. 5(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a SVS wave 
is incident. 

     The energy ratios of the reflected wave are illustrated in Fig 6(a-e) when an SVF wave is incident.  It has been noted that 
the energy ratios for the DP model are higher than those obtained for the LS model.  The maximal value of E1, E2, E3, and E4 
is achieved at 𝜃𝜃 = 450 in both models.  The energy ratio E5 increases with the angle of incidence, and its values remain 
relatively close to one at each angle of incidence. 
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Fig. 6(a-e) illustrates the variation of energy ratios of reflected waves in relation to the angle of incidence when a SVF wave 
is incident. 

8. In Conclusion 

      The investigation focuses on the reflection of plane waves from a porous thermoelastic medium that is enlarging and has 
a dual phase lag, which is subject to an impedance boundary.  There are two longitudinal waves, a thermal wave, and two 
transversal waves.  Amplitude ratios and energy ratios for the dual phase lag model and LS model are compared based on the 
incidence of each wave.  It has been noted that the sum of the energy ratio at each angle of incidence is approximately one, 
which demonstrates the preservation of the law of conservation of energy.  It is also detected that the energy ratios for reflected 
waves in the DP model are lower than the values obtained for the LS model when Ps, Pf, and T waves are incident. Conversely, 
the reverse behaviour is observed when transversal waves are incident.  Additionally, the energy ratios reach their maximal 
value at 𝜃𝜃 = 450 in both the DP and LS models when the SVF wave is incident.  These findings may prove advantageous in 
the investigation of numerous seismological issues. 
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