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 This paper investigates various techniques used to solve the differential equations governing the free 
vibration of columns. The present work focuses on the study of the free vibration of Euler’s Bernoulli 
column of equal strength in compression, considering its own weight and the axial load in compression 
and tension while subjected to symmetrical boundary conditions. The investigation utilizes the 
differential quadrature method to examine the fifth natural frequency parameters of the column in 
different states of column boundary conditions and varying geometric section shapes, including pin-
pin and clamp-clamp configurations. The results of this work contribute valuable insights for informed 
decisions on selecting the cross-section types and appropriate boundary conditions for ensuring the 
stability of such columns in civil constructions. 
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1. Introduction 

 
     The study of stability and vibration of structures is an area of great interest in civil constructions. Most applications of 
engineering work draw their safety on the strength of the structural elements. Very often these structural elements are 
oversized due to the no uniformity of strength in the structure. This is to guarantee the stability of structural members and 
the structure in general. A structural element model of equal strength ensures more stability of the structure over its entire 
length. This should best reduce its cross-section and increase its strength which remains constant and therefore optimizes 
the use of the material. This model is more important because it finds applications in more field such as: telecommunication, 
Electrical Engineering for telecommunication and electric towers, civil engineering for pillars in building and pillars bridges, 
mechanical engineering for mine shaft traction cable and so on this model of equal strength leads us to a column model of 
variable bending stiffness, thus varying the right section of it while considering the action of gravity on it as the case of the 
Eiffel tower. Hosseini et al. (2014) used numerical method including Neiumero, Calculus of Variation and Finite Differences 
for determining critical load of columns is one of the most important factors for choosing quality type of column, length, 
profile, etc. before determining critical load of column, we need to form a differential equation with some boundary 
conditions. These equations are determined by internal and external moments and boundary conditions in accordance with 
type of support. 
  
     Engineering problems in general lead in their mathematical modelling after several transformations to eigenvalue 
problems which do not have exact solutions. In order to better solve this problem, many advanced numerical methods have 
often been used to propose a solution that best approaches the exact solution. Wen et al. (2017) used Laplace Transform to 
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solve free vibration of continuous beams. Their paper specifies the application method of Laplace Transform in solving the 
free vibration problems of continuous beams, having great significance in the proper use of the transform method. The finite 
element method was used to investigate the vibration characteristics of uniform hanging beams under gravity (Yokoyama, 
1990). They demonstrate that the natural frequencies and the associated mode shapes obtained for the classical Euler’s 
Bernoulli beam, which is a special case of the present model, show good agreement with the available experimental and 
numerical results. Motaghian et al. (2018) employed the combination of Fourier sine and cosine series to develop an 
analytical method to conduct the free vibration analysis of Euler’s Bernoulli beam with varying cross-section. The 
advantages of the Fourier series make this analysis easier and more extensive than any other existing solutions. Okay et al. 
(2010) applied the variational iteration method to determine the buckling loads and mode shapes of heavy columns under 
its own weight. Their study shows efficiency of the method and accuracy of the obtained analytic approximate solution. Lee 
and Schultz (2004) applied the Chebychev pseudospectral method to solve the vibration of Timoshenko beams and Mindlin 
plates. They show that the results from this method agree with those of Euler’s Bernoulli beams and Kirchhoff plates when 
the thickness-to-length (radius) ratio is very small. However these results deviate considerably as the thickness-to-length 
(radius) ratio grows larger. Yagci et al. (2009) used a spectral Chebychev technique to solve linear and nonlinear beam 
equations. They study convergence and accuracy characteristics of the spectral-Chebychev technique by solving eigenvalue 
problems with different boundary conditions. It is found in their study that the convergence is exponential, and a small 
number of polynomials is sufficient to obtain machine-precision accuracy. The differential quadrature method was used to 
investigate the effect of columns on the natural frequencies and mode shapes (Mahmoud et al., 2011). In comparison with 
traditional techniques such as finite element and finite difference, they demonstrated that the quadrature differential method 
is an efficient method in solving the free vibration of non-uniform columns with good accuracy using a considerably small 
number of grid points. Taha and Essam (2013) used the DQM to study the stability behavior and free vibration of axially 
loaded tapered columns with elastic end restraints. The solutions obtained were compared to those obtained from finite 
element methods and found in close agreement. Many others authors used the differential quadrature method and they have 
presented there are effectiveness to determine both frequency parameters and buckling factors. Torabi and Afshari (2016) 
used the DQM for vibration analysis of cantilevered non-uniform trapezoidal thick plates.  

     In view of these multiple applications in different fields of engineering and the absence of stability and vibration works 
on this type of column of equal strength, we will be interested to investigate its vibrational behavior. We would also see the 
impact of the particularity of equal strength of column with variable cross-section on the vibration analysis by considering 
some different geometric shapes admissible in the constructions. Therefore, in the present work, we use the differential 
quadrature method to determine the vibration modes in the case of free vibration of the column of equal strength in traction 
and compression. In order to verify the accuracy of our calculation code, the case of constant cross-section with only axial 
load is compared with those results known in literature. Then we deal with different following cases: the case of tip force, 
the case of own weight and finally the coupled effect of tip force and self-weight. 

     The paper is organized as follows: in section 2, we present the mathematical modelling of the column concerning the 
variation law of the cross-section, the variation of self-load, the hypothesis of this work and the governing equation using 
Hamilton's principle. In section 3 we present the formulation of the quadrature differential method, where we use this 
approach to discretize the governing equation and the boundary conditions. Section 4 is devoted to the presentation of 
numerical results and discussions and in section 5 we present the conclusion of our work. 

2. Problem formulation and mathematical modelling 

2.1. Equal strength column modelling 

      The equal resistance columns have a particular cross section and quadratic moment, to the point that the law and the 
geometrical forms of their cross-section should be determined. 

2.1.1. Law of variation of the cross-section 

      Let us consider a column of mass density 𝜌 and length 𝑙, of variable section such that its stress 𝜎 is the same along its 
entire column. Arranged vertically along the (𝑜𝑥) axis and loaded axially by a load 𝑝. The hypothesis of equal resistance 
applied to the column allows us to write, 𝜎ሺ𝑥ሻ = 𝑁(𝑥)𝐴(𝑥) (1) 

where 𝑁(𝑥) represents the normal force in the column and 𝐴(𝑥) it's cross sectional area at any altitude x. 

By applying the fundamental principle of statics on the column elemental column of length 𝑑𝑥, we have: 𝑁 + 𝑑𝑁 − 𝑁 + 𝜌𝑔𝐴𝑑𝑥 = 0   (2) 𝑑𝐴𝐴 = −𝜌𝑔𝜎 𝑑𝑥 (3) 
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Fig. 1. Infinitesimal column elemental column. 

      The base section is dimensioned taking into account the axial load, 𝐴଴ representing the section at the base 𝑥 =  0 and 
can still take the form (𝐴଴ = 𝑝 𝜎⁄ ). 

       In the rest of our work we will introduce a parameter m which takes into account the variation of the cross section. For 
this purpose we distinguish two cases, the case where the cross section is variable (𝑚 = 1) and the case where the cross 
section is constant (𝑚 =  0). Under this assumption the law of variation of the cross-sectional area will be written as 
continuation, 𝐴(𝑥) = 𝐴଴𝑒(ିഐ೒೘഑ ௫)    (5) 

      The self-weight of the column per unit length can be written as, 𝑞(𝑥) = 𝑞଴𝑒(ഐ೒೘഑ ௫)   (6) 

where 𝑞଴ represents the weight per unit length at the base of the column at altitude 𝑥 = 0. 
2.1.2. Expression of quadratic moments for different shapes of cross-sections 

     The geometry of the cross-section imposes a law of variation of the quadratic moment. After calculation of quadratic 
moments by considering six usual cases of cross-section shape, we expressed the quadratic moments for different shapes as 
a function of a number 𝑛 which we called here the shape factor. Thus the general form of variation of the quadratic moment 
can be written in the following form, 𝐼(𝑥) = 𝐼଴𝑒(ିഐ೒೙഑ ௫) (7) 

where 𝐼଴ is the basic quadratic moment. The shape factor 𝑛 takes different values depending on the type of cross section. 
For the rectangular cross-section with variable length and constant width (𝑛 =  1), (𝑛 =  3) where the length is constant 
and width variable. The case 𝑛 =  2 is for square, circle cross-section and (𝑛 =  4) for rhomb cross-section. 

2.2. Hypothesis of study 

      We study a free vibration of equal strength Euler’s Bernoulli beam column axially loaded with its own weight and 
concentrically applied tip force. The cross sections chosen are those with various shapes such as rectangular, square, circle 
and rhomb. We are not considering the nonlinear geometry of the cross-section of the beam. The column is straight along 
the longitudinal direction before the axial load is applied. The material used is homogeneous, elastic and isotropic. The axial 
compression is small and neglected and the failure is due to flexural buckling and vibration. 

      The boundary conditions of the column are symmetric, that is both pinned-pinned and both clamped-clamped. 

2.3. Free vibration equation model of beam-column 

      The problem that we want to analyses in this paper is the Free vibration analyse of pinned-pinned and clamped-clamped 
equal strength column under self-weight and tip force using differential quadrature method. The equation motion of the 
beam can be found through the variation principle. 

      The strain energy of this system that we consider is the energy of elastic deformation, 
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𝑈 = 12න𝐸𝐼(𝑥)(𝜕ଶ𝑤𝜕𝑥ଶ )ଶ𝑑𝑥௅
଴  

 

(8) 

where 𝐼(𝑥) the quadratic moment of the cross section along the length is, 𝐸 is Young’s modulus and 𝑤 = 𝑤(𝑥, 𝑡) is the 
dependent deflection of the axial position 𝑥 and of the time 𝑡 
      The work due to the axial load and the self-weight is given by: 

𝑊 = 12න𝑁(𝑥)௅
଴ (𝜕𝑤𝜕𝑥 )ଶ𝑑𝑥 

 

(9) 𝑁(𝑥) Is the normal load in the beam dependent on position 𝑥. 

      The kinetic energy of the system is given by: 

𝑇 = 12න𝜌𝐴(𝑥)(𝜕𝑤𝜕𝑡 )ଶ𝑑𝑥௅
଴  

 

(10) 

where 𝜌 is the mass density and 𝐴(𝑥) is the cross-sectional area depending on the location 𝑥. 

      We can obtained the general equation of the motion using the Hamilton’s principle generalized as: 

න 𝛿(𝑇 − 𝑈 + 𝑊)𝑑𝑡 = 0௧మ
௧భ  

 

(11) 

      Substituting Eqs. (8-10) into Eq. (11), and after mathematical manipulations we obtain the differential equation of motion 
of free vibration Euler’s Bernoulli beam under self-weight and axial load as: డడ௧ ቀ𝜌𝐴(𝑥) డ௪డ௧ ቁ + డమడ௫మ ቀ𝐸𝐼(𝑥) డమ௪డ௫మቁ + డడ௫ ቀ𝑁(𝑥) డ௪డ௫ቁ = 0   (12) 

      For this column the normal strength is expressed as: 

𝑁(𝑥) = 𝑝 + න𝑞(𝑥)𝑑𝑥௅
௫  

 

(13) 

where 𝑝 axial load and 𝑞(𝑥) is represent the weight per volume unit. 𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝜑(𝑡) = 𝑊(𝑥)𝑒௜ఠ௧,     𝐸𝐼(𝑥) = 𝐸𝐼଴𝑙(𝑥) ,    𝑞(𝑥) = 𝑞଴𝑟(𝑥)   (14) 

Introducing Eq. (14), where 𝐸𝐼଴  and 𝐴଴  are the maximum values of flexural rigidity and cross-section area per length 
occurring at the base 𝑥 =  0 and 𝜔 is the vibration frequency. 

𝐸𝐼଴ 𝑑ଶ𝑑𝑥ଶ ቆ𝑙(𝑥)𝑑ଶ𝑊𝑑𝑥ଶ ቇ+ 𝑝(𝑑ଶ𝑊𝑑𝑥ଶ ) + 𝜌𝑔𝐴଴ 𝑑𝑑𝑥 ቎ቌන𝑟(𝑥)𝑑𝑥௅
௫ ቍ𝑑𝑊𝑑𝑥 ቏ = 𝑟(𝑥)𝜔ଶ𝜌𝑔𝐴଴𝑊 

 

(15) 

Normalizing all length by L so that 𝜉 = 𝑥 𝐿⁄  Eq. (15) becomes: 𝑑ଶ𝑑𝜉ଶ ቆ𝑙(𝜉)𝑑ଶ𝑊𝑑𝜉ଶ ቇ + 𝑃 ቆ𝑑ଶ𝑊𝑑𝜉ଶ ቇ + 𝑄 𝑑𝑑𝜉 ቎ቌන𝑟(𝑧)𝑑𝑧ଵ
క ቍ𝑑𝑊𝑑𝜉 ቏ − 𝑟(𝜉)Ωଶ𝑊 = 0 

 

(16) 

Ωଶ = 𝜔ଶ𝜌𝐴଴𝐿ସ𝐸𝐼଴  ,   𝑃 = 𝑝𝐿ଶ𝐸𝐼଴  ,   𝑄 = 𝑞଴𝐿𝐸𝐼଴  
(17) 

      For the beam of equal strain along the beam column that we are study here 𝑙(𝜉) = 𝑒ି(ഐ೒೙ಽ഑ క) , 𝑟(𝜉) = 𝑒ି(ഐ೒೘ಽ഑ క) (18) 

where 𝑛 and 𝑚 are called respectively the geometry factor who depend on geometry section and variation cross-section 
factor. 
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Fig. 2. Symmetric boundary ends conditions of the studied columns. 

      The boundary conditions are represented as follows: 

       For a pinned-pinned supports (P-P) 𝑊 = 𝑑ଶ𝑊𝑑𝜉ଶ = 0,    𝑎𝑡  𝜉 = 0 
(19) 

𝑊 = 𝑑ଶ𝑊𝑑𝜉ଶ = 0,   𝑎𝑡  𝜉 = 1 
(20) 

      For a clamped-clamped supports (C-C) 𝑊 = 𝑑𝑊𝑑𝜉 = 0,   𝑎𝑡  𝜉 = 0 (21) 

𝑊 = 𝑑𝑊𝑑𝜉 = 0,   𝑎𝑡  𝜉 = 1 (22) 

 

      Eq. (16) will be solved considering the boundary conditions presented by Eqs. (19) to (22) for different values of 𝑛 and 𝑚. 
3. Method of resolution and numerical discretization 

3.1. Formulation of differential quadrature method 

      The differential quadrature method is a numerical discretization technique for the approximation of derivatives. Bellman 
et al. (1972) suggested that the first order derivative of the function 𝑓(𝑥) with respect to 𝑥 at a grid point 𝑥௜ is approximated 
by a linear sum of all the functional values in the whole domain that is, 𝑓௫(𝑥௜) = 𝑓(ଵ)(𝑥௜) = ∑ 𝑎௜௝𝑓൫𝑥௝൯,       𝑓𝑜𝑟  𝑖 = 1:𝑁ே௝ୀଵ     (23) 

where 𝑎௜௝ represent the weighting coefficients, and 𝑁 is the number of grid points in the whole domain. Eq. (23) can be 
generalize for the 𝑟th-order derivative of 𝑓(𝑥) at the 𝑥௜ point to the form, 

𝑓(௥)(𝑥௜) = ෍𝑎௜௝(௥)𝑓൫𝑥௝൯,        𝑓𝑜𝑟  𝑖 = 1:𝑁ே
௝ୀଵ  

 

(24) 

where 𝑎௜௝(௥) are the weighting coefficients of the 𝑟th-order derivative of the functions 𝑓(𝑥) at the grid point 𝑥௜. 
     To improve the Bellman et al. (1972) approaches in computing the weighting coefficients, many attempts have been 
made by researchers, but in this work we will choose the approach of Quan and Chang (2000) who used the following 
Lagrange interpolation polynomials as the test functions, 



 274 𝑙௝(𝑥) = 𝑀(𝑥)(𝑥 − 𝑥௝)𝑀(ଵ)(𝑥௝)  ,      𝑗 = 1:𝑁 
(25) 

where 

𝑀(𝑥) = ෑ(𝑥 − 𝑥௠)ே
௠ୀଵ  

(26) 

𝑀(ଵ)(𝑥) = ෑ (𝑥௝ − 𝑥௠)ே
௠ୀଵ,௠ஷ௝  

(27) 

      The weighting coefficients for the first-order derivative can be obtained using the Lagrange polynomial as follows: 𝑎௜௝(ଵ) = 𝑑𝑙௝(𝑥)𝑑𝑥 ቤ௫ୀ௫೔ = 𝑀(ଵ)(𝑥௜)(𝑥௜ − 𝑥௝)𝑀(ଵ)  ,       𝑗 = 1:𝑁, 𝑖 ≠ 𝑗 (28) 

𝑎௜௜(ଵ) = ௗ௟೔(௫)ௗ௫ ቚ௫ୀ௫೔ = −∑ 𝑎௜௝(ଵ)ே௝ୀଵ,௝ஷ௜  ,      𝑖 = 1:𝑁   (29) 

      By using the sampling points as: 𝑥௜ = 12 ൤1 − cos ൬ 𝑖 − 1𝑁 − 1൰൨   ,      𝑖 = 1:𝑁 (30) 

and these coefficients give the matrix as, 

ൣ𝐴(ଵ)൧ = ⎣⎢⎢
⎢⎡𝑎ଵଵ(ଵ) 𝑎ଵଶ(ଵ) … 𝑎ଵே(ଵ)𝑎ଶଵ(ଵ)⋮𝑎ேଵ(ଵ)

𝑎ଶଶ(ଵ)⋮𝑎ேଶ(ଵ) … 𝑎ଶே(ଵ)⋮𝑎ேே(ଵ)⎦⎥⎥
⎥⎤  

(31) 

       In a similar manner we can evaluate the weighting coefficients of the 𝑟th-order derivative as, 

𝑎௜௝(௥) = 𝑑௥𝑙௝(𝑥)𝑑𝑥௥ ቤ௫ୀ௫೔ = 𝑟 ൭𝑎௜௜(௥ିଵ)𝑎௜௝(ଵ) − 𝑎௜௝(௥ିଵ)𝑥௜ − 𝑥௝൱ ,     𝑖, 𝑗 = 1:𝑁,   𝑖 ≠ 𝑗 ,   𝑟 ≥ 2 
(32) 

𝑎௜௜(௥) = ௗೝ௟೔(௫)ௗ௫ೝ ቚ௫ୀ௫೔ = −∑ 𝑎௜௝(௥)ே௝ୀଵ,௝ஷ௜ ,     𝑖, 𝑗 = 1:𝑁 ,   𝑖 ≠ 𝑗 ,   𝑟 ≥ 2   (33) 

        This give the matrix 𝐴(௥) which can be write as, 

ൣ𝐴(௥)൧ = ⎣⎢⎢
⎢⎡𝑎ଵଵ(௥) 𝑎ଵଶ(௥) … 𝑎ଵே(௥)𝑎ଶଵ(௥) 𝑎ଶଶ(௥) … 𝑎ଶே(௥)⋮𝑎ேଵ(௥) ⋮𝑎ேଶ(௥) ⋮… ⋮𝑎ேே(௥) ⎦⎥⎥

⎥⎤  

(34) 

      The weighting coefficients of the different order derivative have a relation between them such that we have, 

𝑎௜௝(௥) = ෍𝑎௜௞(௥ିଵ)𝑎௞௝(ଵ)ே
௞ୀଵ ,    𝑖, 𝑗 = 1:𝑁 ,   𝑖 ≠ 𝑗 ,   𝑟 ≥ 2 

(35) 

       We can also build a matrix from Eq. (35), ൣ𝐴(௥)൧ = ൣ𝐴(௥ିଵ)൧ൣ𝐴(ଵ)൧ = ൣ𝐴(ଵ)൧ൣ𝐴(௥ିଵ)൧ (36) 

3.2. LDQM Formulation of the governing differential equation 

Eq. (16) can be written as, ௗమௗకమ ቀ𝑙(𝜉) ௗమௐௗకమ ቁ + 𝑃 ቀௗమௐௗకమ ቁ + 𝑄 ௗௗక ቂቀ׬ 𝑟(𝑧)𝑑𝑧ଵక ቁ ௗௐௗక ቃ − 𝑟(𝜉)Ωଶ𝑊 = 0   (37) 



A. Kazemi et al.  / Engineering Solid Mechanics12(2024) 
 

275

       We can discretize Eq. (37) using the (LDQM) as ௟(క೔)௥(క೔)∑ 𝑎௜௝(ସ)𝑊(𝜉௝)ே௞ୀଵ + ଶ௥(క) ௗ௟(క)ௗక ቚకୀక೔ ∑ 𝑎௜௝(ଷ)𝑊(𝜉௝)ே௞ୀଵ + ቀ ଵ௥(క) ௗమ௟(క)ௗకమ + ௉௥(క) +ொ௥(క) ׬) 𝑟(𝑧)𝑑𝑧ଵక )కୀక೔ቁ∑ 𝑎௜௝(ଶ)𝑊(𝜉௝)ே௞ୀଵ − 𝑄∑ 𝑎௜௝(ଵ)𝑊൫𝜉௝൯ே௞ୀଵ − Ωଶ𝑊(𝜉௜) = 0 ,     𝑖 = 1:𝑁   

 

(38) 

     We can also discretize the boundary conditions given by Eqs. (19) to (22) as, 

     Clamped-Clamped support (C-C): 𝑊(𝜉ଵ) = 𝑊(𝜉ே) = 0 , ∑ 𝑎ଵ௝(ଵ)𝑊(𝜉௝)ே௞ୀଵ = ∑ 𝑎ே௝(ଵ)𝑊(𝜉௝)ே௞ୀଵ = 0                            (39) 

      Pinned-Pinned support (P-P): 𝑊(𝜉ଵ) = 𝑊(𝜉ே) = 0 , ∑ 𝑎ଵ௝(ଶ)𝑊(𝜉௝)ே௞ୀଵ = ∑ 𝑎ே௝(ଶ)𝑊(𝜉௝)ே௞ୀଵ = 0   (40) 

4. Numerical results and discussions 

       In this section we will use the LDQM to investigate the vibration of non-uniform columns under tip force and self-
weight. First of all free vibration of homogeneous uniform columns who have an exact solution is investigated to show the 
effectiveness of the method. 

     Then the effect of the cross-section is investigated in different boundary conditions. 

4.1. Uniform homogeneous column 

     For this case Eq. (16) takes the simple form, ௗరௐௗకర + 𝑃 ௗమௐௗకమ − Ωଶ𝑊 = 0   (41) 

      The exact solution can be solved taking 𝑊(𝜉) = 𝐴𝑒ఒక  by substituting this expression in Eq. (41), we obtain the 
characteristic equation 𝜆ସ + 𝑃𝜆ଶ − Ωଶ = 0 (42) 

     The solution of this ordinary differential equation is presented as 𝑊(𝜉) = 𝐴ଵ cosh(𝛼𝜉) + 𝐴ଶ sinh(𝛼𝜉) + 𝐴ଷ cos(𝛽𝜉) + 𝐴ସ sin(𝛽𝜉)        (43) 

where 𝛼 and 𝛽 are given by: 

𝛼 = ඨ√𝑃ଶ + 4Ωଶ − 𝑃2   , 𝛽 = ඨ√𝑃ଶ + 4Ωଶ + 𝑃2  
 

(44) 

       Then the constants 𝐴ଵ,𝐴ଶ,𝐴ଷ,𝐴ସ can be determined using the boundary conditions. 

4.1.1. Exact frequencies parameters 

        For the case of pinned-pinned boundary conditions we will use Eq. (19) and Eq. (20) to have the following system: 

⎩⎨
⎧𝐴ଵ + 𝐴ଷ = 0                                                                                       𝛼ଶ𝐴ଵ − 𝛽ଶ𝐴ଷ = 0                                                                             𝐴ଵ cosh𝛼 + 𝐴ଶ sinh𝛼 + 𝐴ଷ cos𝛽 + 𝐴ସ sin𝛽 = 0                   𝛼ଶ𝐴ଵ cosh𝛼 + 𝛼ଶ𝐴ଶ sinh𝛼 − 𝛽ଶ𝐴ଷ cos𝛽 − 𝛽ଶ𝐴ସ sin𝛽 = 0 

 

(45) 

     We can put the above systems of Eqs. (45) in the matrix form as: ൤ sinh𝛼 sin𝛽𝛼ଶ sinh𝛼 −𝛽ଶ sin𝛽൨ ൜𝐴ଶ𝐴ସൠ = ቄ00ቅ    (46) 

which is simply ሾ𝑀ሿሼ𝐴ሽ = {0}   (47) 
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       The trivial solution of this homogeneous system of Eq. (46) permit us to compute 𝑑𝑒𝑡(𝑀) = 0 −(𝛼ଶ + 𝛽ଶ) sinh𝛼 sin𝛽 = 0 (48) 

       Since sinh(𝛼) ≥ 0 for all values of, the only roots to this equation are, sin𝛽 = 0 → 𝛽 = 𝑘𝜋, 𝑘 = {0,1, … ,𝑛} (49) 

       The general frequencies parameters for free vibration beam column under self-weight given is Eq. (50), where 𝑘 is the 
vibration mode: Ωଶ = −𝑃ଶ4 + (2𝑘ଶ𝜋ଶ − 𝑃)ଶ4  ,   𝑘 = {0,1, … ,𝑛} 

(50) 

Table 1. Vibration mode of beam column with Pinned-Pinned condition. 
P -10 -5 0 5 9.8696  

Ω LDQM Exact LDQM Exact LDQM Exact LDQM Exact LDQM Exact 
Ω1 14.004 14.004 12.114 12.114 9.8696 9.8696 6.9326 6.9326 0.0064 0.0064 
Ω2 44.196 44.196 41.904 41.904 39.478 39.478 36.894 36.894 34.189 34.189 
Ω3 93.693 93.693 91.292 91.292 88.826 88.826 86.29 86.29 83.746 83.746 
Ω4 16.28 16.28 160.39 160.39 157.91 157.91 155.39 155.39 152.9 152.9 
Ω5 251.69 251.69 249.23 249.23 246.74 246.74 244.23 244.23 241.75 241.75 

 

     For clamped-clamped boundary condition we can also use relations (46), to get: 

൞𝐴ଵ + 𝐴ଷ = 0                                                                                       𝛼𝐴ଶ + 𝛽𝐴ସ = 0                                                                                 𝐴ଵ cosh𝛼 + 𝐴ଶ sinh𝛼 + 𝐴ଷ cos𝛽 + 𝐴ସ sin𝛽 = 0                   𝛼𝐴ଵ sinh𝛼 + 𝛼𝐴ଶ cosh𝛼 − 𝛽𝐴ଷ sin𝛽 + 𝛽𝐴ସ cos𝛽 = 0         
 

(51) 

     This help us to build the homogeneous system as follow: ൤𝛽(𝑐𝑜𝑠ℎ𝛼 − 𝑐𝑜𝑠𝛽) 𝛽𝑠𝑖𝑛ℎ𝛼 − 𝛼𝑠𝑖𝑛𝛽𝛼𝑠𝑖𝑛ℎ𝛼 + 𝛽𝑠𝑖𝑛𝛽 𝛼(𝑐𝑜𝑠ℎ𝛼 − 𝑐𝑜𝑠𝛽)൨ ൜𝐴ଵ𝐴ଶൠ = ቄ00ቅ    (52) 

     The determinant of the new system (52) that gives the relation (53) can be solved numerically. detሾ𝑀ሿ = 0 → 2𝛼𝛽(1 − 𝑐𝑜𝑠𝛽. 𝑐𝑜𝑠ℎ𝛼) + (𝛼ଶ − 𝛽ଶ)𝑠𝑖𝑛𝛽. 𝑠𝑖𝑛ℎ𝛼 = 0   (53) 

      We note that for traction and compression cases corresponding respectively to the negative and positive axial load values 
and for the pinned-pinned and clamped-clamped boundary conditions, the differential quadrature method gives the same 
results as the exacts results respectively for pinned-pinned and clamped-clamped boundary conditions showed in Table 1, 
and Table 2, respectively. As shown previously, for very small iterations which shows the effectiveness of the results and 
the convergence of the method in solving this problem. 

Table 2. Vibration mode of beam column with Clamped-Clamped condition. 

P -40 -20 0 20      39.478  

Ω LDQM Exact LDQM Exact LDQM Exact LDQM Exact LDQM Exact 
Ω1 31.347 31.347 27.274 27.274 22.373 22.373 15.848 15.848 0 0 
Ω2 75.040 75.040 68.708 68.708 61.672 61.672 53.65 53.65 44.364 44.364 
Ω3 136.26 136.26 128.82 128.82 120.90 120.90 112.42 112.42 103.48 103.48 
Ω4 216.34 216.34 208.27 208.27 199.86 199.86 191.08 191.08 182.12 182.12 
Ω5 315.74 315.74 307.27 307.27 298.56 298.56 289.58 289.58 280.56 280.56 
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4.2. Non-uniform homogeneous column 

     In the case studied, the column has the same resistance in compression along the longitudinal axis, hence we have an 
exponential variation of cross section area and quadratic moment as presented above. 

4.2.1. Effect of tip force on frequency parameter 

     Here we analyze the vibration of the column in absence of its own weight. We have investigated the effect of tip force 
on the free vibration of the column by drawing out the frequency parameter for the first five vibration modes by varying 
normalized axial load that we have presented in Table 3 and Table 4. 

      We have distinguished two cases of axial load, traction and compression corresponding respectively to negative and 
positive values of load. We found that the frequency value for the first vibration modes decreases  until cancelled to a value 
of the parameter 𝑃 corresponding to the critical value, which is the value for which the frequency parameter is zero. 

Table 3. Vibration mode of beam column with Pinned-Pinned condition. 

                                              𝑛 = 1 ,𝑚 = 1                                                                          𝑛 = 2 ,𝑚 = 1 

P -10 -5 0 5 9.8696 -10 -5 0 5 9.8696 
Ω1 14.002 12.113 9.869 6.9346 0.2361 14.0 12.11 9.8668 6.9306 0.006 
Ω2 44.194 41.903 39.478 36.895 34.193 44.184 41.892 39.467 36.883 34.180 
Ω3 93.690 91.291 88.826 86.292 83.749 93.666 91.266 88.801 86.266 83.722 
Ω4 162.83 160.39 157.91 155.40 152.90 162.79 160.35 157.87 155.35 152.86 
Ω5 251.69 249.23 246.74 244.23 241.76 251.62 249.16 246.67 244.16 241.69 

    
    𝑛 = 3 ,𝑚 = 1                                                                        𝑛 = 4 ,𝑚 = 1 

P -10 -5 0 5 9.8696 -10 -5 0 5 9.8696 
Ω1 13.998 12.109 9.864 6.9266 0 13.996 12.106 9.8611 6.9226 0 
Ω2 44.174 41.881 39.456 36.871 34.166 44.164 41.871 39.445 36.859 34.153 
Ω3 93.642 91.241 88.776 86.239 83.695 93.618 91.217 88.750 86.213 83.669 
Ω4 162.75 160.30 157.82 155.30 152.81 162.70 160.26 157.78 155.26 152.76 
Ω5 251.55 249.09 246.6 244.09 241.61 251.48 249.02 246.56 244.02 241.54 

 

Table 4. Vibration mode of beam column with Clamped-Clamped condition. 

                                              𝑛 = 1 ,𝑚 = 1                                                                          𝑛 = 2 ,𝑚 = 1 
P -40 -20 0 20 39.478 -40 -20 0 20 39.478 
Ω1 30.059 26.531 22.391 17.186 9.5356 28.637 24.938 20.508 14.674 3.349 
Ω2 73.053 67.633 61.697 55.069 47.659 68.615 62.849 56.448 49.149 40.693 
Ω3 133.92 127.60 120.93 113.86 106.52 124.60 117.81 110.59 102.85 94.702 
Ω4 213.80 206.96 199.89 192.55 185.11 197.80 190.43 182.76 174.74 166.56 
Ω5 313.07 305.92 298.58 291.06 283.55 288.66 280.93 272.97 264.77 256.53 

                                               𝑛 = 3 ,𝑚 = 1                                                                        𝑛 = 4 ,𝑚 = 1 

P -40 -20 0 20 39.478 -40 -20 0 20 39.478 
Ω1 27.396 23.525 18.779 12.137 0 26.321 22.278 17.192 9.441 0 
Ω2 64.659 58.525 51.604 43.503 33.620 61.159 54.636 47.139 38.062 26.055 
Ω3 116.17 108.87 101.03 92.510 83.367 108.60 100.75 92.204 82.753 72.362 
Ω4 183.23 175.27 166.91 158.10 149.03 170.03 161.39 152.26 142.53 132.36 
Ω5 266.32 257.93 249.25 240.26 231.16 245.96 236.83 227.32 217.40 207.28 

 

      For the case of pinned-pinned boundary conditions, we discover that the values of frequency parameters vary slowly for 
different geometrical sections, but offer maximal values for the case where the geometric parameter (𝑛 =  1). 

      In the case of clamped-clamped boundary condition we have also evaluated the values of the parameter 𝑃 in traction and 
compression, we note here that the frequency parameter admits larger values and decreases in a more accelerated way than 
in the case of pinned-pinned boundary condition. Thus one can say that the pinned-pinned column is less sensitive in terms 
of vibration frequency variation than the clamped-clamped one. Fig. (3) Shows more the variation of natural frequency 
parameters with the tip force. 
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(a) (b) 

Fig. 3. First vibration frequency parameter Ωଵ under tip force for both pinned and both clamped end condition respectively 
to (a) and (b). 

4.2.2. Effect of self-weight on frequencies parameters 

     In this second section, we investigate the effect of self-weight on the vibration of the column in the absence of tip force 
shown in Table 5, Table 6 and clearly presented in Fig. 4. 

Table 5. Vibration mode of beam column under self-weight with pinned-pinned condition. 𝑛 = 1 ,𝑚 = 1 
Q 0 2.5 5 7.5 10 12.5 15 17.5 18.5729 
Ω1 9.869 9.2189 8.5078 7.7188 6.8235 5.7713 4.4496 2.4516 0.0169 
Ω2 39.478 38.848 38.205 37.549 36.88 36.197 35.50 34.787 34.476 
Ω3 88.826 88.199 87.566 86.928 86.285 85.639 84.981 84.321 84.036 
Ω4 157.91 157.29 156.66 156.03 155.39 154.36 154.11 153.47 153.47 
Ω5 246.74 246.12 245.49 244.86 244.23 243.59 242.96 242.32 242.05 𝑛 = 2 ,𝑚 = 1 
Q 0 2.5 5 7.5 10 12.5 15 17.5 18.5643 
Ω1 9.8668 9.2159 8.5047 7.7154 6.8198 5.7669 4.444 2.4416 0.00731 
Ω2 39.467 38.836 38.193 37.5383 36.869 36.186 35.488 34.775 34.467 
Ω3 88.801 88.174 87.541 86.903 86.259 85.610 84.955 84.295 84.01 
Ω4 157.87 157.24 156.61 155.98 155.35 154.71 154.07 153.42 153.15 
Ω5 246.67 246.04 245.42 244.79 244.16 243.52 242.89 242.25 241.98 𝑛 = 3 ,𝑚 = 1 
Q 0 2.5 5 7.5 10 12.5 15 17.5 18.5729 
Ω1 9.864 9.213 8.501 7.712 6.816 5.7626 4.4385 2.4317 0.0658 
Ω2 39.456 38.825 38.182 37.526 36.857 36.174 35.476 34.763 34.457 
Ω3 88.776 88.148 87.51 86.877 86.233 85.584 84.929 84.269 83.988 
Ω4 157.82 157.20 156.57 156.94 155.30 154.66 154.02 153.38 153.10 
Ω5 246.60 245.97 245.35 244.08 244.08 243.45 242.82 242.18 241.95 𝑛 = 4 ,𝑚 = 1 

Q 0 2.5 5 7.5 10 12.5 15 17.5 18.5643 
Ω1 9.861 9.210 8.498 7.708 6.812 5.7582 4.432 2.4216 0.0323 
Ω2 39.445 38.814 38.170 37.514 36.845 36.162 35.464 34.751 34.447 
Ω3 88.750 88.123 87.490 86.851 86.208 85.558 84.903 84.243 83.964 
Ω4 157.78 157.15 156.52 156.89 155.25 154.62 153.97 153.33 153.06 
Ω5 246.53 245.90 245.28 244.65 244.01 243.38 242.75 242.11 241.84 
 

    We find that the vibration frequencies decrease when the self-weight of the column increases until it reaches a certain 
critical load beyond which the system would become unstable.  In the case of pinned-pinned boundary conditions, it is also 
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noted that the vibration frequencies are varying slowly for each type of cross section, which does not clearly show the effect 
of variation of the cross section as shown in Table 5. Whereas in the case of bi-clamped boundary conditions the variation 
of frequency parameters is more observing for different cross sections and also the critical load values are different and 
taking the greatest value for the case of cross section 𝑛 =  1 as shown in Table 6. 

Table 6. Vibration mode of beam column under self-weight with clamped-clamped condition. 𝑛 = 1 ,𝑚 = 1 
Q 0 5 10 15 20 25 30 35 
Ω1 22.391 20.70 18.850 16.787 14.421 11.570 7.719 0.006 
Ω2 61.697 59.484 57.178 54.765 52.23 49.553 46.707 43.655 
Ω3 120.93 118.54 116.09 113.59 111.04 108.42 105.73 102.98 
Ω4 199.89 197.39 194.29 192.29 189.69 187.05 184.38 181.66 
Ω5 298.58 296.02 293.43 290.82 288.18 285.52 282.83 280.12 𝑛 = 2 ,𝑚 = 1 
Q 0 5 10 15 20 24 26 28.12 
Ω1 20.508 18.625 16.515 14.075 11.09 7.914 5.691 0.0411 
Ω2 56.448 53.992 51.408 48.672 45.756 43.267 41.961 40.525 
Ω3 110.59 107.94 105.22 102.42 99.538 97.170 95.964 94.669 
Ω4 182.76 177.18 177.18 174.32 171.41 169.04 167.85 166.57 
Ω5 272.97 267.25 267.25 264.34 261.41 259.03 257.83 256.56 𝑛 = 3 ,𝑚 = 1 
Q 0 5 10 15 20 22 23 25 
Ω1 18.779 16.669 14.225 11.230 7.013 4.271 1.658 0 
Ω2 51.604 48.865 45.944 42.802 39.381 37.160 37.160 35.593 
Ω3 101.03 98.076 95.024 91.865 88.588 87.242 86.560 85.181 
Ω4 166.91 163.83 160.68 157.47 154.19 152.86 152.19 150.84 
Ω5 249.25 246.09 242.88 239.62 236.32 234.99 234.32 232.98 𝑛 = 4 ,𝑚 = 1 
Q 0 5 10 15 17 18 19 20 
Ω1 17.191 14.809 11.917 7.974 5.648 4 0.224 0.0068 
Ω2 47.139 44.065 40.732 37.061 35.474 34.650 33.804 32.933 
Ω3 92.204 88.894 85.447 81.846 80.358 79.604 78.841 78.071 
Ω4 152.26 148.81 145.27 141.64 140.16 139.41 138.66 137.91 
Ω5 227.32 223.78 220.18 216.51 215.03 214.28 213.53 212.78 

 

4.2.3. Coupled effect of self-weight and axial force on frequencies parameters 

     We have investigated the effect of frequency parameter on free vibration for various tip load and fixed self-weight as 
presented in Table 7 and Table 8. 

 
 

(a) (b) 

Fig. 4. First frequency parameter Ωଵunder self-weight for both pinned and clamped ends conditions respectively to (a) and 
(b). 
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      We also note that for pinned-pinned boundary conditions the self-frequencies are varying slowly with the cross section 
in the same order of magnitude, but in the case of clamped-clamped boundary conditions this variation is better observed. 
We can say that this behavior is due to the assumption of equal resistance assumed above. We also note that for small values 
of self-weight of the column in traction, the self-frequencies are higher and decrease as the positive values of tip force 
parameter increases. For cases of compression the proper frequencies of vibration decrease very quickly until it's cancelled. 
For the geometrical cross section (𝑛 =  4) the frequencies parameters give smallest values. The case where cross section 
parameter (𝑛 =  1) the frequencies parameters are giving highest values. 

Table 7. Vibration mode of beam column under self-weight and axial load with bi-Pinned condition. 𝑛 = 1 ,𝑚 = 1 

  Q=5   Q=10   Q=15   Q=20  
P -10 -5 9.8696 -10 -5 5 -10 -5 5 -10 -5 5 
Ω1 13.084 11.036 0 12.066 9.802 0 10.920 8.340 0 9.593 6.485 0 
Ω2 43.065 40.708 32.708 41.894 39.467 34.099 40.682 38.178 32.603 39.426 36.839 31.032 
Ω3 92.502 90.068 82.406 91.290 88.823 83.671 90.058 87.557 82.326 88.807 86.269 80.956 
Ω4 161.62 159.16 151.60 160.39 157.91 152.83 159.16 156.65 151.53 157.91 155.38 150.21 
Ω5 250.47 247.99 240.47 249.23 246.74 241.69 247.99 245.49 240.40 246.74 244.22 239.12 𝑛 = 2 ,𝑚 = 1 

  Q=5   Q=10   Q=15   Q=20  
P -10 -5 7.3177 -10 -5 5 -10 -5 5 -10 -5 5 
Ω1 13.082 11.034 0.024 12.064 9.799 0.089 10.917 8.337 0.0939 9.591 6.481 0.0487 
Ω2 43.055 40.697 34.201 41.883 39.456 34.265 40.671 38.167 34.369 39.416 36.828 34.512 
Ω3 92.478 90.043 83.744 91.265 88.798 83.808 90.034 87.531 83.913 88.782 86.244 84.058 
Ω4 161.58 159.12 152.88 160.35 157.87 152.94 159.11 156.61 153.05 157.86 155.34 153.19 
Ω5 250.40 247.92 241.71 249.16 246.67 241.77 247.92 245.42 241.88 246.64 244.14 242.02 𝑛 = 3 ,𝑚 = 1 

  Q=5   Q=10   Q=15   Q=20  
P -10 -5 7.3124 -10 -5 5 -10 -5 5 -10 -5 -0.8146 
Ω1 13.080 11.031 0.0043 12.062 9.797 0.0828 10.915 8.334 0.007 9.588 6.477 0.0223 
Ω2 43.045 40.686 34.191 41.873 39.445 34.255 40.661 38.156 34.359 39.405 36.817 34.502 
Ω3 92.454 90.018 83.720 91.241 88.773 83.784 90.009 87.506 83.889 88.757 86.218 84.034 
Ω4 161.53 159.07 152.83 160.31 157.82 152.90 159.07 156.56 153.00 157.82 155.29 153.15 
Ω5 250.33 247.85 241.64 249.09 246.60 241.70 247.85 245.34 241.81 246.60 244.08 241.96 𝑛 = 4 ,𝑚 = 1 

  Q=5   Q=10   Q=15   Q=20  
P -10 -5 7.307 -10 -5 4.681 -10 -5 1.972 -10 -5 -0.82 
Ω1 13.078 11.029 0.0217 12.060 9.794 0.0755 10.913 8.331 0.0162 9.586 6.473 0.081 
Ω2 43.034 40.675 34.181 41.863 39.434 34.245 40.650 38.145 34.349 39.394 36.805 34.493 
Ω3 92.429 89.993 83.696 91.217 88.748 83.760 89.985 87.481 83.865 88.733 86.193 84.011 
Ω4 161.49 159.03 152.79 160.26 157.78 152.85 159.02 156.52 153.96 157.77 155.29 153.11 
Ω5 250.26 247.78 241.57 249.02 246.53 241.63 247.78 245.27 241.74 246.53 244.01 241.89 
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Table 8. Vibration mode of beam column under self-weight and axial load with bi-Clamped condition. 𝑛 = 1 ,𝑚 = 1 

  Q=5   Q=10   Q=15   Q=20  
P -40 20 41 -40 20 33.9 -40 20 30 -40 10 19.9 
Ω1 28.873 14.843 0.007 27.633 12.030 0.004 26.333 8.280 0.006 24.964 20.443 0.009 
Ω2 71.215 52.561 44.040 69.324 49.917 44.121 67.373 47.114 42.743 65.358 48.354 44.162 
Ω3 131.77 111.31 103.18 129.58 108.71 103.26 127.35 106.03 102.04 125.07 107.23 103.33 
Ω4 211.47 189.95 181.81 209.11 187.32 181.90 206.72 184.65 180.71 204.30 185.86 181.98 
Ω5 310.63 288.43 280.24 300.89 285.78 280.33 305.67 283.09 279.15 303.17 284.31 280.42 𝑛 = 2 ,𝑚 = 1 

  Q=5   Q=10   Q=15   Q=20  
P -40 20 33.9 -40 20 25.85 -40 10 18.485 -40 10 15.35 
Ω1 27.384 11.784 0.011 26.068 7.846 0.009 24.678 9.577 0.014 23.203 3.854 0.010 
Ω2 66.638 46.284 39.993 64.593 43.214 40.483 62.473 44.510 40.624 60.269 41.284 38.668 
Ω3 122.25 99.990 94.073 119.86 97.047 94.524 117.42 98.302 94.670 114.92 95.299 92.952 
Ω4 195.25 171.85 165.95 192.66 168.90 166.40 190.04 170.16 166.55 187.37 167.18 164.87 
Ω5 285.98 261.83 255.91 283.27 258.87 256.37 280.53 260.14 256.52 277.76 257.15 254.85 𝑛 = 3 ,𝑚 = 1 

  Q=5   Q=10   Q=15   Q=20  
P -40 20 26.425 -40 10 18.965 -40 10 13.58 -40 10 18.95 
Ω1 26.076 8.295 0.414 24.682 9.835 0.487 26.199 4.277 0.002 24.682 9.835 0.632 
Ω2 62.534 40.178 36.925 60.324 41.519 37.076 58.017 37.991 36.104 60.324 41.519 37.084 
Ω3 113.62 89.269 86.247 111.01 90.579 86.398 108.33 87.258 85.549 111.01 90.579 86.405 
Ω4 180.43 154.84 151.85 177.59 156.16 152.00 174.69 152.86 151.17 177.59 156.16 152.01 
Ω5 263.36 236.97 233.97 260.37 238.30 234.12 257.34 234.98 233.30 260.37 238.30 234.13 𝑛 = 4 ,𝑚 = 1 

  Q=5   Q=10   Q=15   Q=20  
P -40 10 20.75 -40 10 14 -40 -20 5.569 -40 -5 5 
Ω1 24.936 10.709 0.013 23.463 5.890 0.004 21.884 16.594 1.61 20.176 6.288 0.004 
Ω2 58.879 39.429 33.687 56.491 35.633 33.363 53.981 46.352 34.002 51.327 35.787 29.794 
Ω3 105.83 84.114 78.648 102.97 80.459 78.375 100.02 91.396 78.985 96.970 80.679 75.375 
Ω4 166.96 143.91 138.45 163.82 140.25 138.18 160.62 151.43 138.79 157.34 140.49 135.28 
Ω5 242.69 218.79 213.30 239.38 215.11 213.04 236.01 226.48 213.66 232.60 215.36 210.17 

 

5. Conclusion 

      Columns of variable cross sections are examples of structures that offer very high strength and guarantee high stability 
of the structure due to the fact that the resistance is equal along its axial straight line. The application of the principle of 
equal resistance yields an exponentially decreasing cross section. By applying the variation principle we established the 
equations of motion and then we used the differential quadrature method to discretize the problem. We have considered the 
case of constant cross section axially loaded that the results are very well known which will allow us to verify the accuracy 
of our calculation code. In the solution of this vibration problem we distinguished 03 cases of loading corresponding to tip 
force, self-weight and the coupling of the tip force and self-weight respectively. For each case studied, we observe that the 
frequency parameters of the columns vary slowly in the same order of magnitude for different cases of cross section and 
boundary conditions, but for the case of clamped-clamped columns, this variation is more sensible according to the highest 
values of self-frequencies.We can say that this behavior is due to the assumption of equal resistance assumed above. In 
addition, the rectangular cross section (n = 1) admits greater values of frequencies which further guarantees the stability of 
the column and the rhomb cross section (𝑛 =  4). They give the smallest values which correspond to the poor stability. This 
behavior justifies the choice of clamped-clamped rectangular column for the support of pillars in building construction. 
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