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 Amid the ongoing pandemic, such as the Covid-19 outbreak, there exists a critical need to comprehend 
and forecast the dynamic trends of daily confirmed cases to effectively prevent and mitigate the impact 
of its consequences. This study aims to investigate the essential factors acting as predictors for fore-
casting daily new confirmed cases specifically within the Indonesian setting. Utilizing advanced Deep 
Learning (DL) methodologies, including Deep Feedforward Neural Networks (DFNN), Long Short-
Term Memory (LSTM), one-dimensional convolutional neural networks (CONV1D), and Gated Re-
current Units (GRU), this research endeavors to predict daily confirmed Covid-19 cases in Indonesia. 
To achieve this, a comprehensive set of 80 variables (predictors), encompassing the effective repro-
duction number (Rt), was utilized as input parameters. Before model construction, rigorous variable 
selection procedures and statistical analyses were conducted to enhance data understanding. The ef-
fectiveness of the predictive model was assessed using various metrics, such as Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Square 
Error (RMSE), and Mean Absolute Scaled Error (MASE), which evaluates MAE relative to a baseline 
model. Results indicate that DL models incorporating two key predictors—daily confirmed case count 
and Rt—exhibited superior predictive performance, capable of forecasting daily confirmed cases up 
to 13 days in advance. The inclusion of additional variables was found to diminish the predictive 
accuracy of DL algorithms. 
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1. Introduction 
 

The Covid-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant morbidity and mortality globally, transcending national 
boundaries to become an unprecedented crisis with multifaceted repercussions. Its impact extends beyond health, affecting socioeco-
nomic, educational, tourism, and entertainment sectors, causing a widespread economic downturn across nations. Indonesia, having 
recorded its initial cases on March 02, 2020, reported a staggering 6,556,627 positive cases and 159,068 deaths as of November 12, 2022, 
positioning it as a significant hotspot in Southeast Asia. Understanding daily case fluctuations is crucial for resource allocation and ef-
fective response strategies, guiding healthcare provisions and governmental interventions to mitigate pandemic consequences. Since the 
onset of the Covid-19 pandemic, numerous studies have sought to comprehend its dynamics and quantify its propagation. A literature 
review conducted by (Gnanvi et al., 2021)  disclosed that during the period spanning January 01, 2020, to November 30, 2020, a 
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minimum of 4311 peer-reviewed articles investigated modeling methodologies applied to Covid-19. These studies predominantly uti-
lized mathematical modeling or compartmental models (46.1%) and statistical approaches (growth models and time series) (31.8%), 
while a smaller proportion employed artificial intelligence techniques (6.7%), Bayesian methodologies (4.7%), network models (2.3%), 
and agent-based modeling (1.3%). 

Consistent with the findings in (Gnanvi et al., 2021) , Zhang et al. (2022) corroborated that compartmental models constitute the pre-
dominant approach employed by researchers to forecast the transmission dynamics of Covid-19. These models trace their origins back 
to the seminal work of Kermack and McKendrick (1927), who introduced a mathematical framework in which the population is parti-
tioned into distinct compartments, each characterized by individuals sharing similar attributes. Termed the SIR model, it encompasses 
three compartments: susceptible (S), infected (I), and recovered (R) individuals. The model's dynamics are encapsulated within three 
differential equations, governing the movement of individuals between compartments over time. The rate at which individuals move 
between these compartments is governed by parameters such as the transmission rate (β) and the recovery rate (γ).  

The Effective Reproduction Number (Rt) is a key metric in epidemiology, closely associated with the Susceptible-Infectious-Recovered 
(SIR) model  (Bsat et al., 2022; Cortés-Carvajal et al., 2022; Locatelli et al., 2021; Yang et al., 2022). It represents the average number 
of secondary infections caused by a single infectious individual at a given time. Rt is derived by multiplying the basic reproduction 
number (R0) by the proportion of the population still susceptible. This model elucidates the dynamics of disease transmission and its 
impact on population dynamics. An Rt value exceeding 1 indicates exponential spread, with each infected individual, on average, infect-
ing more than one other person. Conversely, an Rt below 1 indicates a decline in the disease, with each infected individual, on average, 
infecting fewer than one other person. 

Compartmental models are adaptable frameworks in epidemiological research, allowing researchers to modify their structure to improve 
accuracy by introducing new compartments or refining existing ones to better align with observed data. This flexibility has led to the 
development of diverse pandemic models rooted in compartmental frameworks, as evidenced by various publications utilizing mathe-
matical epidemic models (MEM) or compartment-based models to analyze Covid-19 transmission dynamics (Goel et al., 2021; In-
thamoussou et al., 2022; Luqmanul et al., 2021; Marinov & Marinova, 2022; Wintachai & Prathom, 2021; Zheng et al., 2020). 
However, despite its prevalence, the compartmental approach has notable limitations. Foremost among these is its reduced efficacy in 
long-term prediction, attributed to static hyperparameters that fail to adequately capture the dynamic nature of interventions such as 
governmental policies, pharmaceuticals, and non-pharmaceutical measures, as well as the impact of virus mutations (Lucas et al., 2023). 
Additionally, the compartmental methodology lacks systematic validation of long-term forecasts, hindering comparative analysis with 
other models and highlighting its inadequacy in capturing the evolving complexity of Covid-19 dynamics. 

Numerous scholars have opted for machine learning as an alternative approach for forecasting the progression of Covid-19 within a 
country  (Abolmaali & Shirzaei, 2021; Absar et al., 2022; Alassafi et al., 2022; Cinaglia & Cannataro, 2022; Delli Compagni et 
al., 2022; John-Otumu et al., 2024; Khalifa et al., 2023; Kim et al., 2022; Masum et al., 2022; Nabi et al., 2021; Qu et al., 2023; 
Shuai et al., 2024; Verma et al., 2022; Wathore et al., 2023; Xu et al., 2022). The utilization of machine learning methodologies 
typically seeks to enhance the efficacy of forecasting models. This goal is pursued through two primary avenues: algorithm refinement 
and the utilization of superior-quality data inputs during modeling. While the majority of studies concentrate on optimizing forecasting 
performance through algorithmic enhancements, scarce literature addresses the enhancement of model performance via data quality 
improvements. Nevertheless, only recently a few studies have been identified in this regard (Jo & Kim, 2023; Khalifa et al., 2023; Kim 
et al., 2022; Livieris, 2023; Lucas et al., 2023; Trajanoska et al., 2022; Wathore et al., 2023). These authors highlight that prior 
researches predominantly emphasize enhancing forecasting accuracy through the adoption of more complex model architectures and 
advanced learning methodologies, often neglecting the crucial aspect of obtaining high-quality training data. Given that machine learning 
fundamentally operates on data-driven principles, meticulous attention to input data quality is essential. The distinctive contribution of 
our study lies in this direction. 

Our study integrates a multitude of pharmaceutical and non-pharmaceutical variables sourced from diverse repositories such as the In-
donesian Covid-19 Task Force (Satuan Tugas Penanganan COVID-19, 2022), Our World in Data  (Our World in Data, 2022), Blavatnik 
School of Government (Blavatnik School of Government, 2022), and Google Community Mobile Reports (Google, 2022). Hence, the 
initial contribution of our study lies in the necessity for variable filtration due to the extensive array of variables involved, aiming to 
pinpoint those variables substantially influencing the daily case count over the forthcoming days. To accomplish this, we employed the 
Extreme Gradient Boost Regressor (XGBRegressor) algorithm to assess the significance of each variable. Furthermore, preceding the 
modeling phase, we undertook data analysis and exploration utilizing statistical methodologies to provide researchers with a preliminary 
understanding of the dataset's characteristics. 

The significance of this procedure was underscored by its ability to unveil the previously unexplored yet noteworthy role of Rt as one of 
the predictors within our model. Before undertaking the variables filtering procedure, the fundamental premise of our study posits that 
Rt holds predictive value for the trajectory of epidemics or outbreaks. With accurate knowledge or estimation of Rt, projections of forth-
coming infections can be made, thereby informing healthcare resource allocation, vaccination strategies, and other mitigation initiatives. 
While Rt's utility as an immediate metric is well-established, its potential for forecasting future outbreaks remains incompletely explored. 
To the best of our knowledge, no prior study has integrated Rt into forecasting models for predicting the trajectory of outbreaks. Thus, 
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the primary contribution of this study resides in this novel approach. Ultimately, this study introduces a novel approach for evaluating 
model performance, constituting another noteworthy contribution. A model's efficacy is deemed satisfactory if its performance equals or 
surpasses that of a baseline model. The selected baseline model in this research is a simplistic naïve model, which assumes the current 
number of cases to be identical to the previous day. Overcoming the naïve model presents a challenge due to the inherent nature of time-
series data, which tends to exhibit persistence. As depicted in Figures 3 and 4, the autocorrelation analysis of Covid-19 time series data 
in Indonesia reveals a notably high correlation at lag = 1, justifying the selection of the baseline model. Consequently, the predictive 
capability of a model is evaluated based on the maximum horizon within which it can accurately forecast. Unlike prior studies where the 
prediction horizon was treated as an input parameter for models, this study considers the horizon as one of the output metrics of our 
models. 

2. Theory/Calculation 

2.1 Time series 
 

Sample Time-series data refers to a sequence of data points gathered at regular intervals. If each data point in the time-series 
dataset comprises multiple values (multidimensional), rather than solely a single value, it is categorized as a multivariate time 
series (Wei, 2018). Otherwise, it is classified as a univariate time series. The typical structure of time-series data can be expressed 
as follows: 

𝑥𝑥 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑡𝑡} (1) 
 

where 𝑥𝑥𝑡𝑡 is the current value, and {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑡𝑡−1} are the past values. In the case of a multivariate time series, point 𝒙𝒙𝒊𝒊 is a vector 
of fixed length d, that is, 𝒙𝒙𝒊𝒊 = {𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2 … 𝑥𝑥𝑖𝑖,𝑑𝑑}. Time-series forecasting models predict future values of a target 𝑦𝑦𝑡𝑡+ℎ for a given 
entity at time t+h. The h-step-ahead forecasting model takes the following form. 

ŷ𝑡𝑡+ℎ = 𝑓𝑓(𝑦𝑦𝑡𝑡−𝑘𝑘:𝑡𝑡 , 𝑥𝑥𝑡𝑡−𝑘𝑘:𝑡𝑡) (2) 
 

where 

ŷ𝑡𝑡+ℎ is the prediction of the model in the h future time horizon 

 𝑦𝑦𝑡𝑡−𝑘𝑘:𝑡𝑡 = {𝑦𝑦𝑡𝑡−𝑘𝑘,…𝑦𝑦𝑡𝑡} 

 𝑥𝑥𝑡𝑡−𝑘𝑘:𝑡𝑡 = {𝑥𝑥𝑡𝑡−𝑘𝑘,…𝑥𝑥𝑡𝑡} 

In this context, ŷ𝑡𝑡  represents the predicted value of the target variable, which in this study pertains to new daily cases. The input 
vector, denoted as, 𝑥𝑥𝑡𝑡−𝑘𝑘:𝑡𝑡 encompasses exogenous factors presumed to influence the observed value, considering a look-back 
window of length k. The function f(.) represents the prediction function derived from modeling subsequent to the training phase 
conducted with historical data. Given that Deep Learning (DL) serves as the technique employed in this investigation, the subse-
quent section provides an overview of Artificial Neural Networks (ANN) and its derivatives in DL. 

2.2 ANN 
 

Artificial neural networks replicate the operational mechanism of the human brain (Witten et al., 2011). The human brain encom-
passes numerous neural connections where incoming signals undergo processing within each neuron. Correspondingly, an ANN 
is composed of multiple interconnected nodes. Each node accepts input signals presented in matrix format (x) alongside a weight 
matrix (W) originating from the preceding layer. 

Furthermore, in each node, the following two operations are performed: 

1. Multiply (inner product) between the input and weight and add up with the y-intercept b term 
 
𝑣𝑣 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏 (3) 

   

2. Activating the resulting weighted sum by using a function. The output of this function calculation continues to the next node(s) 
as input for that node(s). 
 

𝑦𝑦 = 𝜑𝜑(𝑣𝑣) = 𝜑𝜑(𝑊𝑊𝑥𝑥 + 𝑏𝑏) (4) 
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3. The activation function 𝝋𝝋(. ) and bias term b are crucial components in artificial neural networks (ANNs), facilitating infor-
mation retention and pattern extraction through weight and bias storage. ANNs can vary in architecture, with shallow networks 
containing only one hidden layer, while deep networks have two or more hidden layers, currently dominating practical appli-
cations. During supervised learning, weights are adjusted iteratively to minimize disparities between expected and model out-
puts, with the back-propagation algorithm playing a pivotal role. This algorithm systematically updates weights based on 
provided information, constituting a structured learning rule within the training regimen of deep neural networks (DNNs). 

2.3 Deep Neural Networks and Deep Learning 
 

Increasing the depth of a deep neural network (DNN) architecture doesn't consistently improve model performance, often leading 
to diminished results due to inadequate training. Two primary challenges encountered during training are the vanishing gradient 
problem and overfitting. The vanishing gradient occurs when error signals fail to effectively propagate to initial layer nodes, 
hindering weight updates in subsequent layers, rendering additional hidden layers ineffective. Overfitting is a significant concern 
in DNNs due to their complex structure and larger parameter count, exacerbated by the presence of numerous hidden layers. 
Dropout, randomly deactivating a percentage of nodes during training, has proven effective in mitigating overfitting, along with 
incorporating a regularization term into the cost function. In time series analysis, Deep Learning (DL) (Witten et al., 2011) within 
DNNs involves encoding historical data into a latent variable followed by final estimation solely from this variable. 

𝑓𝑓(𝑦𝑦𝑡𝑡−𝑘𝑘:𝑡𝑡 , 𝑥𝑥𝑡𝑡−𝑘𝑘:𝑡𝑡) = 𝑔𝑔𝑑𝑑(𝑧𝑧𝑡𝑡) (5) 
 

𝑧𝑧𝑡𝑡 = 𝑔𝑔𝑒𝑒(𝑦𝑦𝑡𝑡−𝑘𝑘:𝑡𝑡 , 𝑥𝑥𝑡𝑡−𝑘𝑘:𝑡𝑡) (6) 
 

The functions 𝑔𝑔𝑒𝑒(. ) and 𝑔𝑔𝑑𝑑(. ) denote the encoder and decoder functions, respectively. Consequently, these encoders and decoders 
constitute the fundamental components of deep learning frameworks, wherein the selection of the network influences the kinds of 
relationships that the models are capable of learning. 

2.3.1 Convolutional Neural Networks (CNN) 
 

A CNN, designed to emulate brain visual processing, consists of two primary layers: a feature extraction (encoder) layer and a 
classification (decoder) layer employing a multiclass classification neural network. During training, CNN autonomously extracts 
features using a feature-extraction layer comprising convolutional and pooling layers. The convolution layer applies filters to the 
input, generating feature maps, while the pooling layer reduces dimensionality by merging adjacent elements. CNN operates 
conceptually in two-dimensional space for image data but can adapt to one-dimensional data like time series. 

2.3.2 1-D Convolution Neural Network (Conv1d) for Time Series 
 

In the realm of time-series data, a 1-D Convolutional Neural Network (Conv1d) operates with a fixed-width kernel matching the 
dataset's width and variable-length progression across the time steps. At each step, the kernel convolves with the time series, 
producing filtered elements subjected to a non-linear activation function. Max-pooling extracts predominant values from each 
filtered vector, forming a maximum vector input for the subsequent fully connected decoding layer. 

2.3.3 Long Short-Term Memory Network LSTM and GRU 
 

LSTM and GRU represent deep learning neural network architectures designed to comprehend the inherent order dependencies 
present in sequence prediction tasks. These models incorporate internal mechanisms termed gates, responsible for managing the 
information flow. These gates possess the ability to learn and discern data, enabling them to determine the significance of infor-
mation for retention or omission. Consequently, LSTM and GRU are capable of transmitting pertinent information along extensive 
sequence chains to facilitate predictive objectives. By employing a sequence of LSTM and GRU gates, the network can effectively 
retain solely relevant information while disregarding extraneous data. 

2.4 XGBoost 
 

XGBoost is a highly popular ensemble algorithm, utilizing bootstrapping sampling techniques. It belongs to the class of gradient 
boosting algorithms, which amalgamate multiple weak learners, usually decision trees, to enhance predictive models. Compared 
to traditional gradient boosting methods, XGBoost boasts advantages in speed and scalability. It employs optimization techniques 
such as parallel processing and column block for efficient memory utilization. Additionally, XGBoost offers flexibility through 
support for various objective functions and evaluation metrics, catering to diverse problem domains. 
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2.5 Time Series Data Analysis 
 
2.5.1  Autocorrelation function (ACF) 
 

A fundamental aspect of time-series analysis involves the autocorrelation function (ACF). Autocorrelation becomes evident when 
examining the scatter plot of data pairs 𝑦𝑦𝑡𝑡+1 with 𝑦𝑦𝑡𝑡  for a lag of one (k = 1). If no discernible structured pattern emerges between 
these observations, they are deemed uncorrelated. In essence, the value of y in the present time period does not offer informative 
insights into the value of y observed in the subsequent period. 

2.5.2  Multicollinearity 
 

Multicollinearity, as discussed in academic literature, denotes strong correlations among independent variables in a multiple re-
gression model, potentially leading to increased variability in coefficients. Although multicollinearity doesn't directly diminish the 
overall predictive capability of the model, it does affect the reliability and consistency of predictions for individual variables. 
Detection methods include assessing Pearson's correlation coefficient, where multicollinearity is indicated by correlations exceed-
ing 0.8, and examining Variance Inflation Factor (VIF) values, representing the ratio of variances observed in the full model versus 
models with specific variables under scrutiny. 

2.6 Performance Metric Evaluation 
 
2.6.1  Mean Absolute Error (MAE) 
 

MAE provides the average value of the absolute difference between a model’s actual and predicted values across all the datasets. 
This value measures the average error or the residual. The MAE was calculated using the following formula:   

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |
𝑁𝑁

𝑖𝑖=1

 
(7) 

where 

𝑦𝑦𝑖𝑖   the actual values 

 𝑦𝑦𝚤𝚤�  the predicted values 

2.6.2 Mean Absolute Percentage Error (MAPE) 
 

The Mean Absolute Percentage Error (MAPE) method provides information on the extent to which the forecasting error is com-
pared to the actual value of the dataset. The smaller the percentage error value in the MAPE, the more accurate the forecasting 
results of the model. 

The formula for MAPE is as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
100
𝑁𝑁

��
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�
𝑦𝑦𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1

 
(8) 

    

2.6.3  Mean Squared Error (MSE) 
 

The (MSE) is the average squared error between the actual and forecast values. A low Mean Squared Error value or a mean squared 
error value close to zero indicates that the forecasting results follow the actual data and can be used for forecasting calculations in 
future periods. The mean squared error (MSE) was calculated using the following equation. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑁𝑁

𝑖𝑖=1

 
(9) 

      

2.6.4  Root Mean Squared Error (RMSE) 
 

As indicated by the name, the RMSE is the square root of the MSE. RMSE was introduced to make the error scale equal to the 
target scale.  
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𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = √𝑀𝑀𝑀𝑀𝑀𝑀 (10) 
 

2.6.5  Mean Absolute Scaled Error (MASE) 
 

MASE, an error metric devoid of scale dependency, evaluates the efficacy of a forecasting model vis-à-vis a reference method, 
typically a simplistic naive forecasting 𝑦𝑦𝑡𝑡+1� = 𝑦𝑦𝑡𝑡 . In our investigation, we utilize Mean Absolute Error (MAE) as the model's 
performance benchmark. MASE is computed by dividing the MAE of the forecast by that of the naive approach. A value of 1 
signifies that the forecast model performs equivalently to the naive model, while values below 1 denote superior performance and 
those above 1 indicate inferior performance compared to the naive model. Notably, MASE equals one for the naive forecast or 
closely approximates it. 

3. Data and methods 

3.1 Dataset description 

This dataset amalgamated information from multiple sources: daily active cases data were sourced from the Our World in Data 
(OWID) website (Our World in Data, 2022), control policy data implemented by the Indonesian government were retrieved from 
The Oxford Covid-19 Government Response Tracker (OxCGRT) website (Blavatnik School of Government, 2022), and commu-
nity mobility patterns were acquired from Google Community Mobility Reports (Google, 2022). Spanning from March 16, 2020, 
to August 09, 2022, encompassing a total of 877 days (as illustrated in Fig. 1), this dataset was partitioned into 80% for training 
purposes and the remaining portion for testing and validation. 

 

Fig. 1 Time series depicting daily confirmed Covid-19 cases in Indonesia spanning from March 16, 2020, to August 09, 2022 

Comprising a total of 80 columns, the dataset was primarily derived from OxCGRT (44 columns), supplemented by seven columns 
from the Google Mobility index, and 19 columns from OWID. Additionally, seven columns were sourced from the Indonesian 
Covid-19 Task Force (Satuan Tugas Penanganan COVID-19, 2022) . Two additional variables were generated by the authors: 
data pertaining to holidays and the count of individuals with no prior exposure.  

The authors constructed holiday data by assigning a value of 0 to denote a working day and an integer value greater than or equal 
to 1 (represented as x) if the day fell within a series of consecutive holidays spanning x days. All data acquired from the afore-
mentioned sources were inherently numerical and did not necessitate additional quantification. Following an initial review, redun-
dancies were identified where multiple columns contained identical information under different labels. Consequently, redundant 
columns were eliminated, resulting in the formation of a final dataset comprising 877 records and 67 columns, primed for subse-
quent analysis. 

3.2 Data preparation and exploration 

During the preparatory and exploratory phases, two procedures were conducted. Firstly, the dataset, initially consisting of 67 
columns, underwent multicollinearity assessment using Variance Inflation Factor (VIF) values to identify and eliminate highly 
correlated variables. The elimination process ceased when all variables exhibited VIF values below 100, resulting in a subset of 
25 variables for further analysis. Secondly, series lag relationships were examined to assess seasonality within the dataset. Scatter 
diagrams were initially used to explore correlations between datasets with lag intervals up to 14, followed by calculations of Partial 
Autocorrelation Function (PACF) to refine the observation. Fig. 3 exhibits a discernible systematic pattern evident in the new case 
data for a lag of one day. The plot illustrates a relationship that conforms to the equation 𝑦𝑦𝑡𝑡+1 = 𝑦𝑦𝑡𝑡  indicative of consistent data 
distribution and a pronounced correlation within the dataset at a lag of one day. As lag intervals increase, the correlation diminishes 
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proportionately. Furthermore, Figure 4 corroborates the exceptionally high correlation nearing unity between data points with a 
lag of one day. Predicting tomorrow's new cases as equivalent to the current count represents a plausible assumption, supported 
by the robust performance of the naive model. However, while the naive model demonstrates high accuracy in estimating next-
day case counts, its practical utility is limited as it fails to forecast cases beyond a single-day horizon. 

  

Fig. 3. Scatter plot depicting daily Covid-19 cases on day t 
and day t+1 (lag = 1) 

Fig. 4. Partial Autocorrelation Function (PACF) plotted for lag 
intervals ranging from 0 to 14 

3.3 Methods 

The primary aim of this study is to construct a Deep Learning (DL) model for forecasting the daily incidence of new Covid-19 
cases in Indonesia, employing both univariate and multivariate methodologies. Prior to delving further, it is imperative to establish 
two terms that will be frequently referenced: “horizon”, denoting the duration of time leading up to the future point to be predicted, 
and “window size”, representing the number of preceding time intervals utilized in model construction. 
 

Deep Learning Architectures for Time Series Prediction: 

This study employs four Deep Learning (DL) architectures for time series forecasting: deep feedforward neural networks, Long 
Short-Term Memory (LSTM), one-dimensional convolutional neural networks (Conv1D), and Gated Recurrent Units (GRU). The 
constructed model incorporates both univariate and multivariate time series data. 
 
3.3.1 Univariate Experimental Setup 

The experimental procedures utilizing univariate data are depicted in Fig. 5. The complete dataset consisting of 25 columns was 
employed, although solely the active cases column was utilized. This experimental configuration, utilizing only active cases as 
input, is designated as Scenario 1. Referring to the PACF plot, it is anticipated that the model's predictions will extend up to a 
horizon of 8. Dataset windowing was conducted to format the dataset appropriately for input into each designated model. The 
resultant dataset size after this procedure (n^') is contingent upon the window size and horizon, defined as follows: 

𝑛𝑛′ = 𝑛𝑛 − 𝑤𝑤 − ℎ + 1 (11) 
 

where  

𝑛𝑛′ = the length of the new data set  

𝑛𝑛 = the length of the original data set  

𝑤𝑤 = window size  

ℎ = horizon length  
 
The optimal window size was determined via an initial experiment, yielding a range spanning from 6 to 21 days. The study was 
executed with a training-testing split of 80% and 20%, respectively. The final row of testing data is utilized for forecasting purposes 
employing the most effective model. The configurations of the four Deep Learning models are depicted in Figures 6 to 9, whereas 
the parameters employed by each model are outlined in Table 1. 
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Fig. 5. Schematic illustrating the procedural steps involved in Univariate Experiments 

 

Fig. 6. Structural layout of the Deep Feedforward Neural Network (DFNN) 
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Set Horizon h =1 
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Fig. 6 illustrates the architecture of the Deep Feedforward Neural Network (DFNN). The input layer receives time series data, 
configured based on the input sequence length (input_length) and the number of variables in the time series (input_dim), repre-
sented as (w, d), where w is the window size and d is the dimension (with d being 1 for univariate time series). Subsequently, four 
hidden layers with neurons (units) employing rectified linear unit ('relu') activation functions are integrated. The output layer 
predicts time series values, with the number of units matching the forecast horizon (h). Further details on the parameters used in 
this architecture are provided in Table 1. 

 
Fig. 7. Structural configuration of the Stacked Long Short-Term Memory (LSTM) architecture 

 

Fig. 7 depicts the configuration of the stacked Long Short-Term Memory (LSTM) model, consisting of two LSTM layers arranged 
sequentially and augmented with dropout layers to mitigate overfitting. The input layer maintains the same structure as the Deep 
Feedforward Neural Network (DFNN), denoted as (w, d), where w represents the window size and d the dimension of the input 
time series data. Stacking LSTM layers enables the model to capture intricate temporal dependencies within the data, with each 
layer transmitting its hidden state to the subsequent layer, facilitating the acquisition of diverse levels of abstraction. Dropout 
layers are positioned after the LSTM layers to address overfitting and improve generalization. Finally, the output layer predicts 
the time series values. For comprehensive parameter details, please refer to Table 1. 

 

 

Fig. 8. Structural layout of the Convolutional 1D (Conv1D) architecture 

Fig. 8 illustrates our one-dimensional Convolutional Neural Network (CNN), featuring a convolutional hidden layer designed to 
process a 1D sequence. Subsequently, a second convolutional layer and a pooling layer are applied to distill the output of the 
convolutional layer, emphasizing the most pertinent elements. Following the convolutional and pooling layers, a dense, fully 
connected layer interprets the features extracted by the convolutional segment of the model. A flatten layer is interposed between 
the convolutional and dense layers to condense the feature maps into a singular one-dimensional vector. Each sample's input shape 
comprises the number of time steps and the number of features. Comprehensive details regarding the parameters utilized in our 
experiments are provided in Table 1. 

 

Fig. 9. Structural configuration of the Gated Recurrent Unit (GRU) architecture 
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Fig. 9 illustrates the architecture of the GRU model employed in this study. Beginning with an input layer structured as (w, d) to 
accommodate sequential input data, GRU layers play a pivotal role in capturing temporal dependencies within the time series data. 
Comprising multiple GRU units, these layers process sequential information, with outputs transmitted hierarchically to subsequent 
layers, facilitating the representation of intricate patterns. The model integrates two GRU layers to capture enduring dependencies 
effectively. To address overfitting and enhance generalization, two dropout layers follow the GRU layers, and a dense layer is 
incorporated thereafter to facilitate nonlinear transformations and feature extraction. Details regarding the number of units in the 
dense layers and other parameters are provided in Table 1. The final output layer comprises h neurons, representing predictions. 

Table 1  
Hyperparameters of Four Deep Learning Models 

 Naive DFNN LSTM Conv1D GRU 
Split Percentage (80,20) (80,20) (80,20) (80,20) (80,20) 
Window Size N/A 7 – 21 7 - 21 7 – 21 7 - 21 
# Trial 1 10 10 10 10 
Hidden Layers N/A 4 Default Default Default 
Hidden Units N/A (256,128,64,32) (128,128) 128,128 32,32 
Activation Function N/A Relu Default Relu Relu 
Convolutional Filters N/A N/A N/A 128,128 N/A 
Stride N/A N/A N/A 5,3 N/A 
Padding N/A N/A N/A Causal N/A 
Learning Rate N/A Default (0.001) Default Default Default 
Optimizer N/A Adam Adam Adam Adam 
Metric evaluation N/A MAE MAE MAE MAE 
Epoch N/A 150 150 150 150 
Batch Size N/A 2 2 2 2 

Note: In this study, all algorithms are implemented utilizing TensorFlow Keras API version 2.6.0. In this context, the term "Default" pertains to the default settings 
provided by the Keras library. 
 

3.3.2 Multivariate Experimental Setup 

The multivariate experiment follows a methodology akin to that depicted in Figure 6. Diverging from univariate datasets, multi-
variate datasets necessitate preprocessing steps such as scaling and variable selection. Consequently, two additional processes are 
introduced in the second box of Figure 5: dataset scaling and filtering. The dataset employed encompasses the full dataset com-
prising 25 columns. Data scaling becomes imperative due to the substantial disparities in the scales of the variables within the 
dataset. To address this, Minimax scaling within the range [0,1] is implemented. Variable filtering employs the XGB Regressor 
algorithm, entailing multiple regression computations between all predictors at time t against new_cases at t+h, where h varies 
within the range h = 1,2,…,28. Subsequently, the three variables exhibiting the highest weights in each horizon are retained for 
further analyses. Based on these outcomes, experiments are conducted across several scenarios predicated on the optimal number 
of variables with superior weights. Dataset windowing is undertaken to format the dataset appropriately for input into each desig-
nated model. The resultant dataset's row count (n') post this process hinges on the window size and horizon, as illustrated in 
Equation (17). Optimal window size determination is guided by preliminary experiments. This study adopts an 80% training and 
20% testing data splitting scheme. Notably, the last row of the validation data is reserved for testing purposes, offering insights 
into the forecasting efficacy of the optimal model. The architectural configurations for the four Deep Learning (DL) models 
employed are elucidated in Fig. 6 to Fig. 9, while the respective parameter specifications are delineated in Table 1. 

4. Results  

4.1 Univariate Experimental Results 

Table 2 delineates the outcomes of the experiment, employing deep learning methodologies for forecasting new_cases h horizon 
days, employing window steps and a defined hyperparameter configuration as illustrated in Fig. 5 and Table 1. These experimental 
procedures were conducted utilizing a laptop equipped with an AMD Ryzen 3 4300U processor featuring Radeon Graphics and 8 
gigabytes of RAM. The duration of execution for the steps depicted in Fig. 5 spans from 2,000 to 13,000 seconds. 

Fig. 10 (univariate analysis) displays the outcomes documented in Table 2. This figure exclusively presents the Mean Absolute 
Scaled Error (MASE) acquired by each model derived from univariate experiments (Scenario 1). Additionally, for comparison 
purposes, the results of experiments conducted under multivariate scenarios are also depicted within the same figure. 
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Table 2  
Evaluation of Optimal Deep Learning Models on Test Data Utilizing Univariate Predictors (Scenario 1) 

  MAE MSE RMSE MAPE MASE 
 NAÏVE 1313.317871 10995298.0 1313.317871 18.630119 1.00 
 DFNN 883.65 5190366.5 2278.237549 15.36 0.672840 
Horizon = 1 LSTM 882.722168 5068792.0 2251.397705 14.835999 0.672131 
 CONV1D 895.317444 5165272.5 2272.723633 14.668820 0.681722 
 GRU 1309.246216 13459805.0 3668.760742 16.597067 0.996900 
 NAÏVE 1310.170532 10987072.0 1468.379028 18.548323 1.000000 
 DFNN 1044.293945 6764670.5 1167.943481 17.072536 0.797067 
Horizon = 2 LSTM 1100.123779 7947832.5 1210.607788 17.667553 0.839680 
 CONV1D 1094.034424 7990885.0 1201.172241 18.660189 0.835032 
 GRU 1682.005859 18657478.0 1828.220581 22.052633 1.283807 
 NAÏVE 1323.616577 11097612.0 1528.525635 18.537531 1.000000 
 DFNN 1091.961792 7873397.5 1246.030762 18.579967 0.824983 
Horizon = 3 LSTM 1153.723633 8594721.0 1301.843872 18.925718 0.871645 
 CONV1D 1156.255981 8128375.0 1325.600708 18.581030 0.873558 
 GRU 1843.574829 19850782.0 2044.575317 26.012411 1.392831 
 NAÏVE 1317.829956 11102246.0 1555.318726 18.570448 1.000000 
 DFNN 1127.714966 7712999.0 1320.954102 19.878557 0.855736 
Horizon = 4 LSTM 1106.666870 7346445.5 1298.744629 19.927185 0.839765 
 CONV1D 1203.325928 9252538.0 1399.098877 20.846319 0.913112 
 GRU 1899.683960 21188162.0 2137.000244 27.994749 1.441524 
 NAÏVE 1347.910400 11647780.0 1625.956177 18.580898 1.000000 
 DFNN 1211.099121 8487647.0 1430.666016 20.933155 0.898501 
Horizon = 5 LSTM 1248.208374 8969898.0 1469.298828 21.605707 0.926032 
 CONV1D 1183.589111 7700390.5 1404.270996 21.439163 0.878092 
 GRU 1981.558228 22565950.0 2287.288086 30.101984 1.470096 
 NAIVE 1375.160767 12073528.0 1676.785767 18.599396 1.000000 
 DFNN 1342.517090 10676143.0 1606.338135 23.056026 0.976262 
Horizon = 6 LSTM 1304.960693 10187365.0 1594.224121 22.217001 0.948951 
 CONV1D 1338.717163 11226568.0 1641.417603 23.464102 0.973499 
 GRU 2051.931641 24781816.0 2358.406006 29.974390 1.492139 
 NAIVE 1367.746826 11978104.0 1672.518311 18.651089 1.000000 
 DFNN 1323.395874 9491738.0 1601.843018 23.901087 0.967574 
Horizon = 7 LSTM 1342.807983 10784328.0 1634.744873 24.035267 0.981767 
 CONV1D 1357.122925 10164708.0 1615.185669 24.194988 0.992232 
 GRU 1874.111572 19125806.0 2195.093994 29.963703 1.370218 
 NAIVE 1434.678833 12928787.0 1759.389526 18.664747 1.000000 
 DFNN 1510.288208 12948476.0 1831.603149 26.122417 1.052701 
Horizon = 8 LSTM 1492.555786 12930806.0 1793.618896 25.757946 1.040341 
 CONV1D 1510.883789 13548019.0 1843.132446 25.796734 1.053116 
 GRU 1854.183716 19952378.0 2163.464355 28.543400 1.292403 
 NAIVE 1422.790161 12776653.0 1743.760742 18.694855 1.000000 
 DFNN 1536.508301 13578925.0 1828.404053 25.973475 1.079926 
Horizon = 9 LSTM 1525.955688 13263729.0 1829.734375 26.705345 1.072509 
 CONV1D 1541.007324 13295836.0 1873.072998 27.124849 1.083088 
 GRU 1841.795410 19304114.0 2174.532227 29.647469 1.294495 
 NAIVE 1445.514038 13118028.0 1776.539062 18.699409 1.000000 
 DFNN 1696.067627 15974404.0 2030.316162 28.503838 1.173332 
Horizon = 10 LSTM 1618.077026 14907396.0 1944.740234 27.373291 1.119378 
 CONV1D 1643.845703 15232460.0 1975.722046 26.785664 1.137205 
 GRU 2055.106934 22788930.0 2423.059082 30.667458 1.421713 
 NAIVE 1466.781494 13417188.0 1807.333862 18.696201 1.000000 
 DFNN 1673.251099 14484569.0 1995.095581 27.811123 1.140764 
Horizon = 11 LSTM 1752.379883 17315262.0 2078.024414 28.544985 1.194711 
 CONV1D 1683.078125 16481523.0 2030.381348 28.125175 1.147464 
 GRU 2100.281982 24985832.0 2513.043213 31.594790 1.431898 
 NAIVE 1451.733765 13230539.0 1792.781494 18.717451 1.000000 
 DFNN 1768.781738 17602090.0 2115.720459 28.153948 1.218393 
Horizon = 12 LSTM 1745.918701 18106658.0 2107.490967 28.356607 1.202644 
 CONV1D 1757.592285 18310492.0 2102.190918 28.323296 1.210685 
 GRU 2164.490967 25652494.0 2598.680664 34.445511 1.490970 
 NAIVE 1473.809937 13521798.0 1825.368042 18.723145 1.000000 
 DFNN 1846.863159 21246070.0 2245.180664 28.846254 1.253122 
Horizon = 13 LSTM 1790.528320 18113022.0 2166.532227 29.457363 1.214898 
 CONV1D 1826.008911 19167842.0 2191.894287 28.528379 1.238972 
 GRU 2324.121338 29955354.0 2758.261719 34.750858 1.576948 
 NAIVE 0.006651 0.000182 0.008408 19.087564 1.000000 
 DFNN 0.021005 0.001440 0.037941 146.38478 1.160628 
Horizon = 14 LSTM 0.007741 0.000178 0.009360 29.057104 1.163898 
 CONV1D 0.009003 0.000215 0.010833 36.719528 1.353781 
 GRU 0.010261 0.000241 0.012397 73.416748 1.542806 

 



 12 

 

Fig. 10. Mean Absolute Scaled Error (MASE) for the NAÏVE, DFNN, CONV1D, LSTM, and GRU models across various datasets: 
Scenario 1 (Univariate), Scenario 2 (Two_Variable), Scenario 3 (Seven_Variable), Scenario 4 (Six_Variable), and Scenario 5 
(Full_Variable). 

To visually assess the efficacy of the top-performing models generated by each algorithm in predicting outcomes using both testing 
data and data from the latest horizon, the subsequent section presents visual representations of model performance solely for h = 
3 and h = 7, which stand as representatives for other horizons. Fig. 11a illustrates the performance of deep learning (DL) models 
on the testing data employing Scenario 1 input with a horizon of 3. On the other hand, Fig. 11b illustrates the DL models' perfor-
mance in forecasting for the final three days (h = 3). 

  
Fig. 11a Performance of DL models on the testing dataset with 
a horizon of 3, utilizing Scenario 1 input 

Fig. 11b. Performance of DL models for the final horizon (h 
= 3) utilizing Scenario 1 

 

Additionally, Fig. 12a showcases the performance of DL models on the testing data, employing Scenario 1 input with a horizon 
of 7. Meanwhile, Fig. 12b illustrates the performance of DL models in forecasting the preceding seven days (h = 7). 

  

Fig. 12a Performance of DL models on the testing dataset with 
a horizon of 7, utilizing Scenario 1 input 

Fig. 12b. Performance of DL models for the final horizon (h 
= 7) employing Scenario 1 
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4.2 Multivariate Experimental Results 

In contrast to the univariate analysis, multivariate experiments incorporated scaling and variable filtering techniques. The Minimax 
scaling method utilized in this investigation was confined within the range [0.1]. Variable selection was conducted using the XGB 
Regressor. Findings from these experiments revealed that, irrespective of the value of h, two predictors, namely new_cases and 
Rt_ave, consistently ranked among the top three, as demonstrated in Figures 13–15. These figures delineate the weights attributed 
to the ten most influential predictors for h values of 1, 14, and 21. Based on these observations, a series of four additional experi-
ments were undertaken, resulting in a total of five distinct scenarios.  

Scenario 1 is expounded upon in Subsection 5.1.  

Scenario 2 entails the utilization of two predictors: new_cases and Rt_ave. 

Scenario 3 involves the integration of seven predictors: new_cases, Rt_Ave, C8EV_International travel controls, 
new_cases_smoothed, population_vaccinated, StringencyIndex_weighted_average, and C5E_closed public transport. 

Scenario 4 encompasses all 25 predictors. 

Scenario 5 incorporates all predictors included in Scenario 3, with the exclusion of Rt_Ave. 

  
Fig. 13. Ten most significant features determined through XGB 
Regressor analysis for the period h = 7 

Fig. 14. Ten most influential features computed via 
XGB Regressor analysis for the duration h = 14 

 

Fig. 15. Ten most significant features determined through XGB Regressor analysis for the period h = 21 

A comprehensive outline of the experimental configuration is condensed and presented in the following Table 3. 

Table 3  
Overview of Experimental Scenarios 

Input Sce-
nario 

Type Number of Var 
/Predictors 

Variables/ Predictors Name 

Scenario 1 Univariate 1 new_cases 
Scenario 2 Multivariate 2 new_cases, Rt_Ave 
Scenario 3 Multivariate 6 new_cases,C8EV_International travel controls, new_cases_smoothed, population_vaccinated, 

StringencyIndex_WeightedAverage, C5E_Close Public Transport 
Scenario 4 Multivariate 7 new_cases, Rt_Ave, C8EV_International travel controls, new_cases_smoothed, population_vac-

cinated, StringencyIndex_WeightedAverage, C5E_Close Public Transport 
Scenario 5 Multivariate 25 new_cases, daily_Recover, daily_meninggal,C1E_School closing, C2E_Workplace clos-

ing,C3E_Cancel public events, C5E_Close public transport, C6E_Stay at home requirements, 
C7M_Restrictions on internal movement, C8EV_International travel controls, H2E_Testing pol-
icy, H3E_Contact tracing, 
 H6E_Facial Coverings,H8E_Protection of elderly people, PopulationVaccinated,StringencyIn-
dex_WeightedAverage, grocery_and_pharmacy_percent_change_from_baseline, 
parks_percent_change_from_baseline, transit_stations_percent_change_from_baseline, 
workplaces_percent_change_from_baseline, residential_percent_change_from_baseline, 
new_cases_smoothed, new_people_vaccinated_smoothed, 
holiday, Rt_Ave 
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Table 4  
Experimental Findings Utilizing Multivariate Predictors from Horizon 1 to Horizon 14 

Models/  Two Predictors  Six Predictors Seven Predictors Full (25) Predictors 
Horizon MAE MSE RMSE MAPE MASE MAE MSE RMSE MAPE MASE MAE MSE RMSE MAPE MASE MAE MSE RMSE MAPE MASE 

Horizon =1                     
NAIVE 0.011 0.001 0.011 19.000 1.000 0.013 0.001 0.015 19.218 1.000 0.015 0.001 0.015 19.232 1.000 0.007 0.000 0.014 18.959 1.000 
DFNN 0.003 0.000 0.003 5.379 0.283 0.006 0.001 0.007 9.355 0.487 0.008 0.001 0.008 10.708 0.557 0.008 0.000 0.016 21.515 1.135 
LSTM 0.003 0.000 0.003 5.744 0.302 0.007 0.001 0.008 10.672 0.555 0.012 0.001 0.012 15.645 0.813 0.008 0.000 0.011 35.698 1.121 

CONV1D 0.005 0.000 0.005 9.186 0.483 0.018 0.002 0.020 26.452 1.376 0.014 0.001 0.014 18.127 0.943 0.010 0.000 0.014 35.669 1.313 
GRU 0.005 0.000 0.005 8.468 0.446 0.006 0.001 0.006 8.306 0.432 0.006 0.001 0.006 8.275 0.430 0.021 0.001 0.031 102.151 2.853 

Horizon =2                     
NAIVE 0.011 0.001 0.012 19.078 1.000 0.014 0.001 0.016 19.238 1.000 0.014 0.001 0.016 19.238 1.000 0.009 0.000 0.010 19.000 1.000 
DFNN 0.006 0.000 0.011 28.411 0.305 0.010 0.000 0.016 52.353 0.487 0.012 0.000 0.018 40.497 0.591 0.012 0.001 0.013 25.559 1.345 
LSTM 0.004 0.000 0.005 9.384 0.372 0.008 0.000 0.009 20.931 0.566 0.012 0.000 0.012 31.655 0.827 0.012 0.000 0.013 60.832 1.354 

CONV1D 0.006 0.000 0.006 17.769 0.508 0.020 0.001 0.021 91.096 1.416 0.014 0.000 0.014 46.646 0.956 0.013 0.000 0.013 49.355 1.447 
GRU 0.005 0.000 0.005 30.293 0.449 0.007 0.000 0.007 31.600 0.479 0.006 0.000 0.006 26.134 0.432 0.011 0.000 0.011 71.053 1.169 

Horizon = 3                          
NAIVE 0.011 0.001 0.012 19.039 1.000 0.014 0.001 0.016 19.180 1.000 0.014 0.001 0.016 19.180 1.000 0.014 0.001 0.016 19.224 1.000 
DFNN 0.006 0.000 0.006 10.182 0.535 0.018 0.001 0.029 37.326 0.918 0.011 0.001 0.013 16.040 0.836 0.017 0.002 0.020 23.327 1.213 
LSTM 0.005 0.000 0.006 15.184 0.453 0.010 0.000 0.011 48.115 0.730 0.010 0.000 0.011 39.782 0.748 0.017 0.001 0.018 89.018 1.198 

CONV1D 0.007 0.000 0.007 22.441 0.620 0.029 0.002 0.031 78.987 2.133 0.018 0.001 0.019 37.434 1.290 0.018 0.001 0.019 103.189 1.240 
GRU 0.006 0.000 0.006 34.339 0.549 0.008 0.000 0.009 27.808 0.557 0.006 0.000 0.008 25.850 0.463 0.021 0.001 0.023 87.128 1.485 

Horizon = 4                          
NAIVE 0.010 0.001 0.012 19.046 1.000 0.013 0.001 0.016 19.195 1.000 0.013 0.001 0.016 19.195 1.000 0.008 0.000 0.010 18.993 1.000 
DFNN 0.006 0.000 0.007 10.446 0.548 0.024 0.002 0.040 43.040 1.198 0.015 0.001 0.023 48.920 0.740 0.012 0.000 0.014 27.611 1.454 
LSTM 0.005 0.000 0.006 22.283 0.490 0.012 0.000 0.014 32.131 0.910 0.011 0.000 0.012 34.094 0.834 0.015 0.000 0.016 98.823 1.789 

CONV1D 0.006 0.000 0.007 18.910 0.533 0.026 0.002 0.029 62.509 1.917 0.013 0.001 0.014 39.942 0.936 0.012 0.000 0.013 60.624 1.456 
GRU 0.006 0.000 0.007 38.970 0.582 0.010 0.000 0.011 45.177 0.721 0.008 0.000 0.010 35.076 0.627 0.022 0.001 0.024 114.597 2.630 

Horizon = 5                          
NAIVE 0.010 0.001 0.012 19.059 1.000 0.013 0.001 0.015 19.190 1.000 0.013 0.001 0.015 19.190 1.000 0.008 0.000 0.010 19.007 1.000 
DFNN 0.011 0.001 0.025 49.687 0.524 0.029 0.003 0.057 73.851 1.458 0.019 0.001 0.026 55.558 0.966 0.025 0.001 0.038 129.886 1.280 
LSTM 0.005 0.000 0.006 17.400 0.485 0.022 0.001 0.026 43.662 1.669 0.014 0.000 0.015 46.069 1.072 0.015 0.000 0.015 48.833 1.770 

CONV1D 0.006 0.000 0.008 28.849 0.635 0.024 0.002 0.025 42.091 1.840 0.016 0.001 0.018 40.242 1.222 0.015 0.001 0.016 75.208 1.783 
GRU 0.006 0.000 0.007 43.407 0.632 0.012 0.001 0.014 46.581 0.935 0.009 0.000 0.011 37.602 0.728 0.024 0.001 0.027 123.807 2.899 

Horizon = 6                          
NAIVE 0.010 0.000 0.012 19.086 1.000 0.013 0.001 0.015 19.211 1.000 0.013 0.001 0.015 19.211 1.000 0.008 0.000 0.010 19.016 1.000 
DFNN 0.012 0.001 0.027 34.276 0.579 0.034 0.004 0.063 242.584 1.704 0.016 0.001 0.026 72.402 0.813 0.030 0.002 0.050 305.668 1.565 
LSTM 0.005 0.000 0.006 15.018 0.538 0.017 0.001 0.020 37.944 1.371 0.012 0.000 0.014 55.841 0.980 0.017 0.001 0.019 94.535 2.121 

CONV1D 0.007 0.000 0.008 29.780 0.672 0.025 0.002 0.028 83.145 1.930 0.013 0.000 0.014 37.057 1.011 0.016 0.001 0.018 83.932 1.995 
GRU 0.007 0.000 0.008 40.673 0.712 0.014 0.001 0.016 43.889 1.093 0.011 0.001 0.013 45.810 0.860 0.029 0.002 0.033 130.806 3.608 

Horizon = 7                          
NAIVE 0.010 0.000 0.012 19.108 1.000 0.012 0.001 0.015 19.218 1.000 0.012 0.001 0.015 19.218 1.000 0.008 0.000 0.009 19.047 1.000 
DFNN 0.013 0.001 0.028 31.696 0.629 0.040 0.004 0.065 301.956 1.970 0.018 0.001 0.034 38.575 0.914 0.028 0.003 0.050 157.379 1.473 
LSTM 0.006 0.000 0.007 22.579 0.602 0.028 0.002 0.032 56.360 2.278 0.013 0.000 0.014 40.258 1.030 0.017 0.001 0.019 78.746 2.205 

CONV1D 0.007 0.000 0.008 18.942 0.711 0.036 0.004 0.039 60.510 2.936 0.015 0.001 0.017 43.330 1.250 0.020 0.001 0.021 138.315 2.583 
GRU 0.008 0.000 0.009 47.691 0.789 0.013 0.001 0.016 58.797 1.087 0.011 0.000 0.013 45.725 0.903 0.020 0.001 0.024 103.515 2.615 

Horizon = 8                     
NAIVE 0.009 0.000 0.011 19.114 1.000 0.012 0.001 0.014 19.215 1.000 0.012 0.001 0.014 19.215 1.000 0.008 0.000 0.009 19.047 1.000 
DFNN 0.014 0.001 0.026 121.137 0.719 0.037 0.006 0.078 74.341 1.848 0.013 0.001 0.016 20.801 1.083 0.041 0.005 0.073 175.603 2.137 
LSTM 0.006 0.000 0.007 21.561 0.644 0.029 0.003 0.032 65.234 2.373 0.014 0.000 0.015 56.356 1.132 0.020 0.001 0.022 66.514 2.666 

CONV1D 0.007 0.000 0.008 26.636 0.718 0.064 0.016 0.069 171.825 5.363 0.013 0.000 0.015 54.424 1.109 0.020 0.001 0.021 173.140 2.662 
GRU 0.009 0.000 0.010 58.540 0.928 0.016 0.001 0.018 62.016 1.334 0.011 0.001 0.013 49.246 0.885 0.034 0.002 0.040 156.622 4.420 
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Table 4  
Experimental Findings Utilizing Multivariate Predictors from Horizon 1 to Horizon 14 (Continued) 

Models/  Two Predictors  Six Predictors Seven Predictors Full (25) Predictors 
Horizon = 9                     

NAIVE 0.009 0.000 0.011 19.120 1.000 0.012 0.001 0.014 19.215 1.000 0.012 0.001 0.014 19.215 1.000 0.007 0.000 0.009 19.050 1.000 
DFNN 0.013 0.001 0.029 46.204 0.684 0.042 0.008 0.087 177.116 2.074 0.021 0.001 0.033 46.747 1.020 0.037 0.004 0.062 292.487 1.905 
LSTM 0.006 0.000 0.007 21.124 0.642 0.034 0.003 0.040 103.095 2.905 0.013 0.000 0.015 44.175 1.089 0.014 0.000 0.015 80.244 1.865 

CONV1D 0.008 0.000 0.009 38.339 0.821 0.040 0.005 0.042 80.469 3.390 0.016 0.001 0.018 57.928 1.367 0.019 0.001 0.020 84.198 2.514 
GRU 0.009 0.000 0.011 57.565 0.979 0.017 0.001 0.019 81.156 1.430 0.012 0.001 0.014 53.989 1.050 0.035 0.003 0.041 178.788 4.644 

Horizon =10                     
NAIVE 0.007 0.000 0.009 19.036 1.000 0.011 0.001 0.014 19.211 1.000 0.011 0.001 0.014 19.211 1.000 0.007 0.000 0.009 19.036 1.000 
DFNN 0.007 0.000 0.009 19.032 1.000 0.045 0.007 0.082 99.358 2.209 0.021 0.001 0.033 59.934 1.062 0.046 0.005 0.072 302.980 2.525 
LSTM 0.006 0.000 0.007 20.142 0.819 0.053 0.008 0.060 120.734 4.681 0.012 0.000 0.013 31.654 1.028 0.018 0.001 0.019 67.285 2.475 

CONV1D 0.007 0.000 0.008 31.513 0.954 0.074 0.010 0.078 362.595 6.452 0.016 0.001 0.018 51.338 1.394 0.022 0.001 0.024 147.697 3.100 
GRU 0.009 0.000 0.011 61.389 1.258 0.017 0.001 0.019 65.090 1.446 0.011 0.000 0.013 65.924 0.984 0.031 0.003 0.036 117.357 4.332 

Horizon = 11                     
NAIVE 0.007 0.000 0.009 19.037 1.000 0.011 0.001 0.013 19.208 1.000 0.011 0.001 0.013 19.208 1.000 0.007 0.000 0.009 19.037 1.000 
DFNN 0.008 0.000 0.010 22.056 1.159 0.052 0.007 0.085 82.521 2.579 0.015 0.001 0.018 25.205 1.312 0.047 0.009 0.096 231.427 2.603 
LSTM 0.007 0.000 0.008 22.445 0.932 0.031 0.002 0.034 199.341 2.782 0.015 0.000 0.016 56.658 1.319 0.018 0.001 0.020 101.385 2.593 

CONV1D 0.007 0.000 0.009 32.087 1.060 0.047 0.007 0.051 162.983 4.189 0.016 0.001 0.018 37.204 1.473 0.023 0.001 0.027 69.810 3.248 
GRU 0.009 0.000 0.011 70.505 1.337 0.018 0.002 0.021 78.724 1.623 0.014 0.000 0.016 65.521 1.217 0.039 0.004 0.044 167.970 5.500 

Horizon = 12                     
NAIVE 0.007 0.000 0.009 19.047 1.000 0.011 0.001 0.013 19.214 1.000 0.011 0.001 0.013 19.214 1.000 0.007 0.000 0.009 19.047 1.000 
DFNN 0.023 0.002 0.042 100.999 1.244 0.063 0.014 0.118 434.306 3.127 0.023 0.001 0.032 99.505 1.117 0.063 0.016 0.128 620.330 3.471 
LSTM 0.007 0.000 0.008 25.564 0.984 0.066 0.011 0.075 168.353 6.124 0.016 0.001 0.018 43.240 1.499 0.020 0.001 0.022 98.659 2.906 

CONV1D 0.009 0.000 0.010 33.640 1.233 0.074 0.011 0.081 207.281 6.863 0.016 0.001 0.018 46.246 1.448 0.022 0.001 0.025 159.878 3.175 
GRU 0.009 0.000 0.011 68.555 1.359 0.018 0.001 0.021 80.019 1.637 0.012 0.000 0.015 58.251 1.111 0.058 0.006 0.066 305.848 8.327 

Horizon = 13                     
NAIVE 0.007 0.000 0.009 19.064 1.000 0.011 0.001 0.013 19.226 1.000 0.011 0.001 0.013 19.226 1.000 0.007 0.000 0.009 19.064 1.000 
DFNN 0.028 0.003 0.052 81.221 1.530 0.052 0.013 0.114 120.315 2.706 0.013 0.001 0.016 23.735 1.235 0.064 0.024 0.154 350.805 3.523 
LSTM 0.006 0.000 0.008 25.641 0.916 0.031 0.002 0.035 79.684 2.974 0.017 0.001 0.019 70.354 1.581 0.030 0.003 0.034 98.938 4.486 

CONV1D 0.009 0.000 0.010 48.085 1.303 0.043 0.006 0.048 97.811 4.074 0.016 0.001 0.018 42.317 1.558 0.032 0.002 0.035 201.634 4.745 
GRU 0.011 0.000 0.013 70.769 1.603 0.017 0.001 0.020 79.098 1.631 0.012 0.000 0.015 63.526 1.154 0.042 0.004 0.049 186.452 6.144 

Horizon = 14                     
NAIVE 0.007 0.000 0.014 18.959 1.000 0.010 0.001 0.013 19.239 1.000 0.011 0.001 0.013 19.226 1.000 0.007 0.000 0.008 19.088 1.000 
DFNN 0.008 0.000 0.016 21.515 1.135 0.063 0.018 0.135 359.546 3.248 0.019 0.001 0.023 34.408 1.790 0.059 0.015 0.122 403.080 3.260 
LSTM 0.008 0.000 0.011 35.698 1.121 0.097 0.028 0.111 223.660 9.444 0.017 0.001 0.019 70.354 1.581 0.031 0.002 0.035 225.961 4.702 

CONV1D 0.010 0.000 0.014 35.669 1.313 0.061 0.009 0.069 320.693 5.957 0.016 0.001 0.018 42.317 1.558 0.028 0.002 0.030 132.534 4.226 
GRU 0.021 0.001 0.031 102.151 2.853 0.018 0.002 0.021 82.549 1.762 0.012 0.000 0.015 63.526 1.154 0.054 0.007 0.064 252.104 8.180 
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Fig. 10 (10b–10e) illustrates the Mean Absolute Scaled Error (MASE) comparison across all comprehensive multivariate 
experiments. In order to offer a comprehensive assessment of the predictive capabilities of the models utilizing Scenario 2 
input, Fig. 16 displays the models' performance on the test dataset for h = 7, while Fig. 17 showcases their performance 
evaluated on the final horizon for h = 7. 

  

Fig. 16. Prediction Performance of All Models for h = 
7 on the Entire Testing Dataset Utilizing Scenario 2 

Fig. 17. Prediction Performance of All Models for the 
Final Seven Days Utilizing Scenario 2 Predictors 

To offer a comprehensive assessment of the predictive capacity of the models employing the Scenario 3 input, Fig. 18 depicts the 
performance of the models on the test dataset for h = 7, while Fig. 19 demonstrates their performance evaluated on the final horizon 
for h = 7. 

  

Fig. 18. Prediction Performance of All Models for h = 
7 on the Entire Testing Dataset Utilizing Scenario 3 

Fig. 19. Prediction Performance of All Models for the Final 
Seven Days Utilizing Scenario 3 Predictors 

In order to present a comprehensive evaluation of the predictive capability of the models utilizing the Scenario 4 input, Fig. 20 
illustrates the performance of the models on the test dataset for h = 7, while Fig. 21 demonstrates their performance assessed on 
the final horizon for h = 7. 

  

Fig. 20. Prediction Performance of All Models for h = 
7 on the Entire Testing Dataset Utilizing Scenario 4 

Fig. 21. Prediction Performance of All Models for the 
Final Seven Days Utilizing Scenario 4 Predictors 
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5. Discussion  

This section highlights several key points derived from a series of experiments and subsequent analysis of the results. Firstly, it is 
imperative to investigate whether the dataset exhibits specific patterns conducive to estimating various aspects of time series data. 
Scatter diagrams depicting time series with varying lags offer an initial informative depiction prior to modeling. Fig. 3 provides 
insight into the temporal relationships within the data, where smaller lags denote greater information sharing. Furthermore, the 
Partial Autocorrelation Function (PACF) analysis, as depicted in Figure 4, yields equally crucial insights. Beyond lag = 1, Figure 
4 distinctly reveals a substantial correlation within the Covid-19 time series data in Indonesia, notably with a lag of eight days. 
This correlation suggests a close association between present case numbers and those occurring eight days prior or subsequent. 
Further investigation is warranted to ascertain whether this phenomenon is linked to the virus's incubation period. Based on the 
insights gleaned from the Scatter diagrams and PACF analysis, we infer that the naïve model exhibits sufficient strength in pre-
dicting Covid-19 new cases one day in advance. Any model capable of enhancing the accuracy of this prediction is deemed suitable 
for real-world forecasting scenarios. However, it is noteworthy that by its inherent nature, the naïve model is unsuitable for pre-
dicting real-world problems with a horizon equal to or greater than 2. The DNN-based model and its DL variant demonstrated 
superior performance compared to the Naive model. In univariate scenarios, the prediction of future cases relies solely on the 
present or past case counts, limited by the window size. As depicted in Figure10a, DL models exhibit proficient forecasting capa-
bilities for up to 7 days ahead. Notably, the figure indicates that at least one algorithm achieves a Mean Absolute Scaled Error 
(MASE) value below 1.0, indicating superior performance relative to the Naive model. With the exception of GRU, all DL algo-
rithms exhibited similar performance, as evidenced by the proximity of their respective curves in Figure10a. 

 
Experiments conducted with multivariate time-series data demonstrate the potential for enhancing the capabilities of DFNN and 
DL models. This enhancement necessitates the incorporation of supplementary information during the model training phase. How-
ever, the selection of additional variables for model inclusion must be approached with caution. Findings from these experiments 
indicate that augmenting models with more variables does not invariably enhance their predictive efficacy. As illustrated in Figure 
10d, the inclusion of all variables in the model results in diminished performance, even when trained under identical conditions 
and hyperparameters. Despite variations in selected horizons, none of the models succeeded in surpassing the accuracy achieved 
by the Naive model. The subsequent challenge revolves around the selection of suitable variables for incorporation into the model. 
Utilizing an XGB Regressor for variable selection in this context yields effective outcomes. Findings from the five experimental 
scenarios indicate that employing only two variables as inputs yields optimal results. The inclusion of these two variables enhances 
the predictive capacity of DL models from seven days (Figure 10a) to twelve days (Figure 10b) ahead. Once again, the performance 
of the three DL algorithms appeared to be comparable to that of LSTM, with the latter exhibiting slightly superior performance. 
However, this predictive capability diminishes with the addition of more variables to the model (Figure 10c). Under this scenario, 
DL models can predict up to eight days ahead using GRU, demonstrating superior performance compared to other algorithms. 
Furthermore, our experiments underscored the significance of Rt in enhancing prediction accuracy, as previously discussed. The 
inclusion of Rt alongside daily case counts notably augmented the predictive capabilities of DL-based models. In univariate sce-
narios where Rt was not accounted for, DL models were limited to predicting the subsequent seven days. However, with Rt incor-
porated into the model in a 2-variable multivariate scenario, DL predictions extended to 13 days. Likewise, in the 7-variable 
scenario, DL could forecast up to eight days ahead. Conversely, when Rt was excluded in the 6-variable scenario, DL predictions 
were constrained to the following five days. Ultimately, our experiments unveiled an unexpected discovery: governmental 
measures appeared ineffective in stemming the disease's spread, and community mobility behavior seemed to have no discernible 
impact on daily case counts. However, this conclusion was deemed unsatisfactory and imprecise. We postulated that the functions 
of all aforementioned variables might have been subsumed within the Rt value, which has been demonstrated to notably enhance 
the predictive capacity of DL models. Consequently, Rt emerges as a mediating variable encompassing all independent variables 
examined in this study. 
 
6. Conclusion and Future Research 
 

Since early 2020, human life has faced widespread disruptions across the globe due to the Covid-19 pandemic, exerting a profound 
impact on various facets of existence. Comprehending the dynamics of Covid-19 transmission within a given area holds significant 
importance in mitigating and forestalling the adverse consequences of this pandemic. In this investigation, deep learning method-
ologies were employed by researchers to forecast the forthcoming number of active Covid-19 cases over the following days. The 
experiments were conducted across diverse input scenarios tailored to available data inputs, yielding several notable insights. 
Deep learning techniques exhibited the capability to forecast new daily cases for a duration extending up to 13 days, evaluated 
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relative to the predictive capacity of a naive model. The efficacy of deep learning methodologies varied contingent upon the 
specific algorithm employed and the input variables provided. Notably, the investigation revealed that the count of daily cases and 
the Rt value at a given juncture played pivotal roles in predicting the number of active cases in the ensuing days. Consequently, 
avenues for further research can be explored in several directions: 

 
1. Further investigation may entail conducting analogous experiments utilizing alternative deep learning algorithms, including but 
not limited to the bidirectional variant. Additionally, extensive hyperparameter tuning remains an area that warrants exploration 
to ascertain optimal model configurations. 
2. Beyond the prediction of new cases, the target variable could be diversified to include other pertinent factors directly influencing 
pandemic mitigation efforts. These factors may encompass metrics such as Bed Occupancy Ratio (BOR), mortality rates, require-
ments for intensive care unit (ICU) admissions, and availability of isolation facilities. 
3. The elucidation of Rt's role in enhancing the predictive capacity of DL models for active case prediction represents another 
significant finding of this study. However, the authors advocate for the exploration of Rt prediction, positing that governmental 
interventions and community mobility behaviors likely exert influence on Rt values, thereby impacting disease transmission dy-
namics. 
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