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 Metaheuristic algorithms are a class of optimization techniques that have revolutionized problem-
solving across various domains. These algorithms provide a versatile and powerful approach to finding 
near-optimal solutions for complex, combinatorial, and computationally intensive problems. They 
draw inspiration from natural processes, such as evolution, swarm behavior, or annealing, to iteratively 
refine solutions by intelligently navigating the problem space. Metaheuristics have become indispen-
sable tools in both academia and industry, helping researchers and practitioners address real-world 
problems efficiently and effectively. The Pelican optimization algorithm (POA) is a recently devel-
oped metaheuristic algorithm that simulates the hunting behavior of pelicans. In complex optimization 
problems, an POA may have slow convergence or fall in sub-optimal regions, especially in high com-
plex ones. In this paper, Levy flight is integrated into the exploration phase to enhance its search 
capabilities. Furthermore, a novel exponential parameter has been introduced to enhance the algo-
rithm's overall performance by facilitating a smoother shift between exploration and exploitation 
phases. These modifications are intended to keep the algorithm from being locked in local optima. The 
developed algorithm named as IPOA was tested using widely recognized twenty-three benchmark 
functions with a variety of characteristics, a set of CEC2022 test suites, and five different engineering 
constrained problems. The results demonstrate the superiority and effectiveness of IPOA in tackling 
function optimization and constrained design engineering problems. 
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1. Introduction 
 

In practical scenarios, optimization problems are often treated as a "black box" model, consisting of three primary components: 
input, model, and output. In cases where both the model and the desired output are known, and the objective is to find the appro-
priate input, this scenario is referred to as an optimization problem (Saleem & Gallagher, 2022). Examples of optimization prob-
lems include feature selection, and scheduling. Conversely, when certain inputs and models are known, and the objective is to 
input these conditions into the model to determine the corresponding output, this situation is termed a simulation problem. Simu-
lation problems find applications in engineering design, particularly in predicting scenarios (Le Digabel & Wild, 2023). Typically, 
optimization problems involve a set of design variables utilized as inputs for an objective function, which acts as a model where 
the desired outcome is either known or can be quantified. The primary goal is to pinpoint the optimal values for these design 
variables, either minimizing or maximizing the objective function. Depending on the value ranges of these variables, the various 
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combinations of decision variables create an extensive search space. The definition of this search space cannot be separated to the 
distinctive features of the scenario at consideration. The difficulty of these problems is commonly determined by examining the 
ruggedness of the search space and the dimensions of the solution. The ruggedness of the search space is typically influenced by 
the constraints of the problem, while solution dimensions are often related to the problem's scale  (Gandomi & Deb, 2020).  

The utilization of optimization algorithms to tackle a multitude of intricate optimization problems has experienced a notable surge 
in recent times. Prior to this advancement, mathematical methods like dynamic, linear, and nonlinear programming were employed 
to handle complex optimization challenges (Wang et al., 2024; Ajagekar et al., 2022; Zhong et al., 2024). While these approaches 
are proficient at obtaining optimal solutions, they are not applicable to a broad spectrum of nondeterministic polynomial-time 
complete problems. These are problems for which determining an exact solution within polynomial time is infeasible, and the 
time required increases exponentially with the input size. Consequently, these methods are not suitable for practical real-world 
applications (Mataifa et al., 2022). 

To overcome these limitations, metaheuristic optimization algorithms have been introduced such as Giant trevally opti-
mizer (Sadeeq & Abdulazeez, 2022a), Chernobyl disaster optimizer (Shehadeh, 2023), Artificial hummingbird algorithm (Zhao 
et al., 2022), elk herd optimizer (Al-Betar et al., 2024) and Leopard seal optimization (Rabie et al., 2023). These algorithms, 
inspired by the observation and simulation of intelligent behaviors and natural processes, offer effective solutions to complex 
optimization problems in polynomial time, particularly when dealing with extensive problems. Moreover, they address a signifi-
cant issue encountered by local search algorithms, which is the tendency for search agents to become stuck in local regions far 
from the desired global solution area. Metaheuristic algorithms are primarily designed to prevent such confinement to local optima. 
They achieve global optima through the use of intelligent stochastic operators that explore the entire search space. Therefore, the 
overall search performance of metaheuristic algorithms hinges on achieving a suitable balance between exploration and exploita-
tion (Sadeeq & Abdulazeez, 2023b; Kuang et al., 2024). 

Exploration and exploitation are fundamental concepts in optimization algorithms. Exploration refers to the strategy of diversify-
ing the search by exploring various regions of the solution space, often through randomization. It aims to discover new and po-
tentially better solutions. On the other hand, exploitation involves intensively examining the current best-known solutions or their 
current neighborhoods to refine and improve them (Sadeeq & Abdulazeez, 2023b). Finding the correct balance between explora-
tion and exploitation becomes essential for optimization algorithms. Excessive exploration may lead to slow convergence, while 
excessive exploitation may cause the algorithm to become stuck in local optima. Finding the optimal trade-off between these two 
aspects is a key challenge in algorithm design to successfully navigate through the solution domain and arrive at superior solu-
tions (Sadeeq & Abdulazeez, 2022b). 

Although numerous metaheuristic algorithms are available in the existing literature, the continuous development of new metaheu-
ristics or enhancements to current ones for addressing various problem domains such as global optimization (Abu-Hashem & 
Shambour, 2024), feature selection (Houssein et al., 2023), data classification (Amine Tahiri et al., 2023; Zhong et al., 2023), 
feature extraction (Yang et al., 2023), image segmentation (Emam et al., 2023), scheduling (Wan et al., 2020), electronic cir-
cuits (Wongvanich et al., 2023), data regression domain problems (Yu et al., 2024;  Latifi Amoghin et al., 2024), path plan-
ning (Dao et al., 2024; Tian et al., 2024) and power systems (Hashish et al., 2023;  Alghamdi, 2024) remains a vibrant area of 
research. This necessity is underscored by the No Free Lunch (NFL) theorem, which asserts that there isn't a single metaheuristic 
universally suited for solving all optimization problems (Wolpert & Macready, 1997). Consequently, the choice to improve the 
Pelican Optimization Algorithm (POA) proposed by Trojovsky and Dehghani (2022) stems from its inherent limitations, such as 
a tendency to stagnate in local optima and slow convergence, particularly for complex and high-dimensional problems. These 
challenges hinder its performance in obtaining global optima. The motivation behind this research is to address these inefficiencies 
by introducing mechanisms like Lévy flights and an exponential parameter. These enhancements improve the exploration and 
exploitation balance, prevent premature convergence, and enhance global search capabilities. This makes the improved POA 
(IPOA) more robust and effective for diverse optimization and engineering design problems. 

Researchers have developed various versions of POA algorithms for many kinds of tasks in computer science. For in-
stance, (Kusuma & Prasasti, 2022) proposed a guided pelican algorithm (GPA) by making some improvements to the original 
algorithm. Then, GPA is employed to optimize several benchmark functions and is compared against various metaheuristic algo-
rithms. The outcomes demonstrate that GPA surpasses all other algorithms in optimizing most benchmark functions. 

To address building energy optimization challenges, a hybrid approach combining the POA and the single candidate optimizer 
(SCO) has been introduced in (Yuan et al., 2023). This hybrid method, known as POSCO, leverages the global search capabilities 
of pelican optimization along with the local search capabilities of the single candidate method. POSCO has been employed to 
minimize the annual energy consumption of office buildings, resulting in noticeable energy savings compared to both POSCO 
and POA procedures. 

Authors in (Mohammed et al., 2022) have used POA for the trial-and-error hyperparameter tuning for their proposed optimal 
hybrid deep belief network method in smart cities. It was shown that POA improves the general effectiveness of the circulation 
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prediction mechanism. In yet another attempt (Alamir et al., 2023), proposed a new utilization of POA to address the multi-
objective optimization challenge of energy management in a microgrid. This approach takes into account a hybrid demand re-
sponse program. The primary goal of this energy management problem is to minimize the total operational expenses, which en-
compass both generation costs and transaction costs, while simultaneously maximizing the benefits for the microgrid operator. 

The authors of (Parvathi et al., 2022) have utilized POA to minimize the amount of load to be shed by determining the ideal 
amount of load to be shed within the restrictions provided by customers. Various kinds of distributed and renewable power gen-
erators are modeled in IEEE 33-bus simulations. The computational performance of POA is analyzed and compared to other 
methods with 25 independent runs per method. It has been noted that the findings produced by POA are superior in terms of 
execution time and global optima. 

The main objective of this paper is to improve the standard POA by proposing the IPOA and applying the IPOA approach for 
solving global optimization benchmarks and engineering design optimization problems. Considering the modifications introduced 
to the original POA as outlined in this paper, the key contributions of this study can be summed up as follows: 

o   The introduction of the IPOA algorithm, which incorporates a novel transition strategy and new random positioning to enhance 
exploration and exploitation capabilities, achieve an optimal balance between exploration and exploitation, and accelerate con-
vergence. 

o   The IPOA's performance is evaluated through benchmarking against a set of standard optimization benchmark functions. Fur-
thermore, The IPOA is implemented and evaluated under the new CEC2022 benchmarks. The superiority and consistency of the 
IPOA method over baseline algorithms is further demonstrated by the observations and statistical data. 

o   The performance of IPOA is assessed across five engineering design problems: Tension/Compression Spring Design, Tubular 
Column Design Optimization Problem, Speed Reducer Design, Welded Beam Design, and I-Shaped Beam Design. 

In conclusion, the IPOA offers excellent results to global optimization and constrained optimization problems. 

The rest of this paper is structured as follows: Section 2 provides a concise overview of POA, featuring mathematical operations. 
Section 3 outlines the methodology and components of the proposed IPOA. Section 4 focuses on performance evaluation and 
results discussion, involving the application of the IPOA algorithm to global optimization benchmarks. Section 5 presents the 
application of IPOA on different constrained engineering problems. Section 6 concludes the paper.   
 
2. Pelican Optimization Algorithm Background Principle 

The Pelican Optimization Algorithm (POA) is a novel stochastic optimization method inspired by the foraging strategy employed 
by pelicans (Trojovský & Dehghani, 2022). Pelicans are known to hunt in coordinated groups. When they spot their prey in the 
water, pelicans dive and then extend their wings to corral the prey towards the water's surface and shallower areas, making it easier 
to capture. The POA algorithm is structured to mimic this behavior and can be outlined in the following manner: 

2.1. Phase 1: Moving Towards Hunting Locations (Exploration Phase) 

In this stage, the algorithm replicates the pelican's method of locating food sources through a search process across the designated 
area. Like pelicans moving towards their prey area to detect food sources, POA candidates initiate a search for their prey's location. 
The prey's location is determined randomly within the POA. The mathematical representation of the updated status of the ith 
pelican candidate during this phase is illustrated in Eq. (1): 

𝑥𝑥(𝑖𝑖,𝑗𝑗)
𝑛𝑛𝑛𝑛𝑛𝑛,𝑝𝑝1 = �

𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑟𝑟�𝑃𝑃𝑖𝑖,𝑗𝑗 − 𝐼𝐼 × 𝑥𝑥𝑖𝑖,𝑗𝑗�, 𝐹𝐹𝑝𝑝𝑝𝑝 < 𝐹𝐹𝑖𝑖
𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑟𝑟�𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑃𝑃𝑖𝑖,𝑗𝑗�,        𝐹𝐹𝑝𝑝𝑝𝑝 ≥ 𝐹𝐹𝑖𝑖

 
(1) 

where Pi is the ith pelican’s prey position, Fpi is its objective function value, 𝐹𝐹𝑖𝑖 is the current best objective function, I is a 
randomly chosen number, which can take on a value of either 1 or 2. r is a random number between [0, 1]. Equation 1 indicates 
that if the fitness value of the randomly chosen pelican 𝑃𝑃𝑖𝑖,𝑗𝑗 is superior to that of the current pelican 𝑥𝑥𝑖𝑖,𝑗𝑗, the current pelican 
adjusts its position by moving towards the randomly selected pelican. Conversely, if the fitness value of 𝑃𝑃𝑖𝑖,𝑗𝑗 is not better, the 
current pelican increases its distance from 𝑃𝑃𝑖𝑖,𝑗𝑗.   

Within POA, the acceptance of a new pelican position depends on whether it leads to an enhancement in the value of the objective 
function. This process prevents the algorithm from venturing into suboptimal areas. Equation (2) serves as the mathematical rep-
resentation of this mechanism: 
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𝑋𝑋𝑖𝑖 = �
𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃1   , 𝐹𝐹𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃1 < 𝐹𝐹𝑖𝑖
𝑋𝑋𝑖𝑖 ,𝐹𝐹𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃1 ≥ 𝐹𝐹𝑖𝑖
 

(2) 

where 𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃1is the new status for the ith solution, 𝑋𝑋𝑖𝑖,𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃1is its jth dimension, 𝐹𝐹𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃1is its objective function value based on 

first phase of POA. 

2.2. Phase 2: Winging On the Surface of the Water (Exploitation Phase) 

In this stage, pelicans initiate the process of spreading their wings on the water's surface to encourage their prey to surface. This 
behavior enables pelicans to capture a greater quantity of fish in the targeted area. The mathematical model describing the updated 
status of the ith pelican candidate solution during phase 2 is presented as follows: 

𝑥𝑥(𝑖𝑖,𝑗𝑗)
𝑛𝑛𝑛𝑛𝑛𝑛,𝑝𝑝2 = 𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑅𝑅 × (1 − 𝑡𝑡/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)(2 × 𝑟𝑟 − 1) × 𝑥𝑥𝑖𝑖,𝑗𝑗 (3) 

where t represents the iteration number, and the total iteration numbers is denoted as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. R is a constant value set to 0.2.  

In this step, the updates are implemented to either accept or reject the new pelican position, as described by Eq. (4). 

𝑋𝑋𝑖𝑖 = �
𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃2 , 𝐹𝐹𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃2 < 𝐹𝐹𝑖𝑖
𝑋𝑋𝑖𝑖 ,𝐹𝐹𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃2 ≥ 𝐹𝐹𝑖𝑖
 

(4) 

in this context, 𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃2  represents the updated state of the ith obtained solution, 𝑥𝑥𝑖𝑖,𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛,𝑝𝑝2 pertains to its jth dimension, and 𝐹𝐹𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛,𝑃𝑃2 

signifies its objective function value specifically in relation to the second phase of POA. 

3. The Proposed Algorithm 

In the following subsections, we introduce a novel IPOA algorithm designed to enhance the performance of the original POA 
algorithm. 

3.1 The Levy Flight Strategy 

Like many other swarm optimizers, POA can encounter stagnation in sub-optimal regions and exhibit slow convergence, particu-
larly when dealing with intricate and high-dimensional problems. To address these challenges and enhance its search capabilities, 
two strategies have been adopted, the first one is incorporating Levy flights into the exploration step, and the second one is pro-
posing a novel exponential parameter for a smooth switch between exploration and exploitation.  

The proposed IPOA can offer several benefits when dealing with high-dimensional benchmark problems. It is important to point 
out that Levy flights are a type of random walk with heavy-tailed step lengths that can enhance exploration capabilities (Li et al., 
2022). There are two main reasons for using Levy flight: 

Improved Exploration: Levy flights introduce long jumps or steps in the search space, which can help the algorithm explore a 
broader region of the solution space quickly. This is particularly beneficial in high-dimensional spaces where the standard POA 
may struggle to adequately explore the vast solution space. 

Enhanced Global Search: High-dimensional spaces often contain many local optima, making it challenging to find the global 
optimum. Levy flights can facilitate global search by allowing the algorithm to escape local optima more effectively and discover 
promising regions of the search space. Consequently, the second part of Eq. (1) has been updated as follows: 

𝑥𝑥(𝑖𝑖,𝑗𝑗)
𝑛𝑛𝑛𝑛𝑛𝑛,𝑝𝑝1 = 𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑉𝑉 × �𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑃𝑃𝑖𝑖,𝑗𝑗�,               𝐹𝐹𝑝𝑝𝑝𝑝 ≥ 𝐹𝐹𝑖𝑖   (5) 

where, 𝑉𝑉 represents the Levy Flight distribution function, and it is computed utilizing Eq. (6): 
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𝑉𝑉 = ℊ ×
𝑢𝑢 × 𝜎𝜎

|𝑣𝑣|
1
𝛽𝛽�

 (6) 

where ℊ corresponds to the step size, which is set at a constant value of 0.02. The parameter 𝛽𝛽 is an index and has been specifically 
assigned a value of 1.5. 𝑢𝑢 and 𝑣𝑣 denote random numbers within the range of 0 to 1. The calculation of 𝜎𝜎 is determined using Eq. 
(7):  

𝜎𝜎 = �
𝛤𝛤(1 + 𝛽𝛽) × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋𝜋𝜋

2
�

𝛤𝛤 �1+𝛽𝛽
2
� × 𝛽𝛽 × 2�

𝛽𝛽−1
2 �

� 
(7) 

 3.2 The Exponential Parameter 

After that, the exponential parameter is proposed in this work aiming to improve the search quality of IPOA, ensuring a seamless 
transition from exploration to exploitation, thereby further improving global movement. Consequently, Equation (3) is updated as 
follows:  

𝑥𝑥(𝑖𝑖,𝑗𝑗)
𝑛𝑛𝑛𝑛𝑛𝑛,𝑝𝑝2 = 𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑅𝑅 × 𝐸𝐸 × (2 × 𝑟𝑟 − 1) × 𝑥𝑥𝑖𝑖,𝑗𝑗 (8) 

where E represents the proposed exponential parameter. E can be particularly beneficial in handling multimodal optimization 
problems, where there are multiple optima. The adaptive nature of E allows the algorithm to explore and exploit multiple modes 
effectively. E can be calculated using Eq. (9) as follows:   

𝐸𝐸 = 𝑆𝑆 × exp �−𝐶𝐶 ∗ �
𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
� /𝑄𝑄� (9) 

 where S scales the magnitude of the exponential function and set to 0.3, C controls the rate of decay of the exponential function 
and set to 0.2. Q found in the denominator, affecting how fast the exponential function approaches zero as t increases and is set to 
10. Figure 1 illustrate the proposed exponential parameter. One possible adaptive mechanism exhibited by 𝐸𝐸  is its highly 
oscillatory behavior, as shown in Fig. 1. Because of this oscillation, the algorithm can dynamically switch between exploration 
and exploitation. Such oscillations guarantee comprehensive search space coverage and keep the algorithm from becoming stuck 
in a single mode, both of which are advantageous in multimodal optimization. Furthermore, the flowchart detailing the IPOA 
algorithm is illustrated in Fig. 2. 

Fig. 1. The proposed exponential parameter (E) 
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Fig. 2. The flowchart of the proposed IPOA 

3.3. Computational Complexity  

For the Improved Pelican Optimization Algorithm (IPOA), the time complexity depends on the number of agents 𝑁𝑁, the number 
of iterations 𝑇𝑇, and the computational cost of evaluating the fitness function 𝐹𝐹(𝑥𝑥). During initialization, the algorithm generates 
𝑁𝑁 agents, each with 𝑑𝑑 dimensions. This requires 𝑂𝑂(𝑁𝑁 ∙ 𝑑𝑑) operations to randomly initialize the population. Each agent's fitness is 
evaluated at every iteration. The complexity of a single fitness evaluation is 𝑂𝑂(𝐹𝐹(𝑥𝑥)), and this is performed 𝑁𝑁 times per iteration 
for 𝑇𝑇 iterations, leading to a total complexity of 𝑂𝑂(𝑇𝑇 ∙ 𝑁𝑁 ∙ 𝐹𝐹(𝑥𝑥)). In the exploration phase, a Lévy flight-based update is applied to 
the agents. The Lévy flight computation has a complexity of 𝑂𝑂(𝑑𝑑) per agent, resulting in a total complexity of 𝑂𝑂(𝑇𝑇 ∙ 𝑁𝑁 ∙ 𝑑𝑑). Sim-
ilarly, the exploitation phase involves updating agent positions based on the exponential parameter. This also has a complexity of 
𝑂𝑂(𝑑𝑑) per agent, contributing another 𝑂𝑂(𝑇𝑇 ∙ 𝑁𝑁 ∙ 𝑑𝑑). Combining all components, the total time complexity of IPOA can be expressed 
as: 𝑂𝑂(𝑇𝑇 ∙ 𝑁𝑁 ∙ 𝐹𝐹(𝑥𝑥) + 𝑂𝑂(𝑁𝑁 ∙ 𝑑𝑑) + 𝑂𝑂(𝑇𝑇 ∙ 𝑁𝑁)). 

4. Experiments and Results 

This section is dedicated to assessing the effectiveness of IPOA in tackling optimization problems and deriving solutions for these 
challenges. To this end, IPOA is applied to twenty-three standard benchmark functions encompassing various types, including 
unimodal, high-dimensional multimodal, fixed-dimensional multimodal. Information about the utilized benchmark functions can 
be founded in (Zeidabadi et al., 2022). To gauge the quality of the results obtained through IPOA, we conduct a comparative 
analysis against seven well-established algorithms: Whale optimization algorithm (WOA) (Mirjalili & Lewis, 2016), Multi-Verse 
Optimizer (MVO) (Mirjalili et al., 2016), Marine Predators Algorithm (MPA) (Faramarzi et al., 2020), Tunicate Swarm Algorithm 
(TSA) (Kaur et al., 2020), Harris Hawks Optimizer (HHO) (Heidari et al., 2019), White Shark Optimizer (WSO) (Braik et al., 
2022), and the standard POA. In each case, IPOA and the competitor algorithms undergo thirty independent runs, with each run 
comprising 500 iterations and a fixed population size of 30 for optimizing the objective functions. The optimization results for 
these objective functions are presented using key statistical indices, including best, worst, mean, and standard deviation (SD). For 
reference, the control parameter values for the competitor algorithms are listed in Table 1. 
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Table 1 
Parameter settings 

Algorithm Parameter Values 
IPOA I= 1 or 2, R=0.2 
POA I= 1 or 2, R=0.2 
WOA R= [0,1], I= [-1,1], a: 2 to 0 
MVO Min (WEP) = 0.2, Max (WEP) = 1, Exploitation accuracy=6 
MPA Fish aggregating devices=0.2, Binary vector=0 or 1, Constant number=0.5  
TSA 𝑐𝑐1,𝑐𝑐2,𝑐𝑐3in the range [0-1], 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 1, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 4  
HHO 𝐸𝐸0 = [−1,1], 𝐸𝐸: 2 𝑡𝑡𝑡𝑡 0 
WSA 𝑎𝑎0 = 6.25, 𝑎𝑎1 = 100, 𝑎𝑎2 = 0.0005 

4.1. Evaluation of Unimodal Benchmark Functions 

The outcomes of applying IPOA and seven competitor algorithms to the unimodal functions F1 to F7 are documented in Table 2.  
 
Table 2 
Results of evaluating unimodal functions 

E.T F. Figure In. IPOA POA WOA MVO MPA TSA HHO WSO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unimodal 
Functions 

  B 2.15E-
 

5.87E-
 

1.07E-84 0.069132 5.22E-23 2.23e−51 1.82E-113 11.3561 
1  W 3.46E-

 
8.54E-99 1.53E-74 0.312412 2.28E-20 4.31e−44 3.69E-101 423.8192 

  M 1.21E-
 

4.57E-
 

5.80E-79 0.162312 9.60E-22 3.84e−48 4.46E-107 83.5361 
  SD 0 8.34E-

 
1.06E-79 0.0296 1.75E-22 7.01E-49 8.15E-108 15.2515 

  B 2.98E-
 

6.48E-55 3.75E-56 0.17382 1.73E-15 8.48E-39 6.67E-63 0.89156 
2  W 4.44E-

 
4.74E-51 1.04E-50 0.51671 2.86E-13 6.81e−26 5.36E-51 6.34651 

  M 2.04E-
 

2.05E-53 1.08E-53 0.28527 9.32E-14 2.45e−31 6.15E-55 1.87641 
  SD 3.73E-

 
3.74E-54 1.98E-54 0.0521 1.70E-14 4.47E-32 1.12E-55 0.3426 

  B 1.55E-
 

1.68E-
 

21818.42 4.734351 9.81E-06 1.15E-21 1.19E-94 633.4576 
3  W 1.61E-

 
5.09E-

 
54291.2 27.21344 0.00111 2.91e−11 2.25E-80 3887.45 

  M 1.29E-
 

7.50E-
 

24162.05 13.55651 3.04E-03 4.43e−15 7.06E-84 1617.54 
  SD 0 1.37E-

 
4.41E+03 2.4751 5.54E-04 8.09E-16 1.29E-84 295.321 

  B 2.81E-
 

1.56E-56 0.14113 0.167123 1.88E-09 4.17e−5 5.77E-57 12.5412 
4  W 3.61E-

 
1.98E-51 76.957 0.914531 1.21E-07 0.035113 1.39E-50 25.4523 

  M 2.92E-
 

3.74E-53 40.8523 0.610921 4.09E-08 0.004871 5.22E-54 18.8891 
  SD 5.32E-

 
6.84E-54 7.4586 0.1115 7.47E-09 8.89E-04 9.53E-55 3.4487 

  B 2.12E-05 26.1878 27.5301 25.4551 25.107 26.53351 0.003425 67.432 
5  W 24.5868 28.9393 28.765 2232.671 26.0972 28.51838 0.065786 3102.323 
  M 8.20E-01 28.2561 27.9197 386.349 25.404 27.5176 0.047074 2356.43 
  SD 0.1497 5.1588 5.0974 70.5374 4.6381 5.024 0.0086 430.223 
  B 0 0 0.1342 0.081766 3.53E-08 7.15E-23 1.83E-06 13.1242 
6  W 0 0 0.8821 0.34156 0.00181 0.429712 0.0005481 733.5619 
  M 0 0 0.3191 0.19561 3.90E-03 4.33E-09 0.0001797 134.761 
  SD 0 0 0.0583 0.0357 7.12E-04 7.90E-10 3.28E-05 24.603 
  B 2.58E-05 6.92E-05 0.0004 0.006123 0.00096 2.73E-05 2.84E-05 8.67e−07 
7  W 1.65E-04 5.80E-01 0.0123 0.030713 0.00224 0.010815 4.09E-02 1.82E-03 
  M 8.84E-05 2.71E-03 0.0033 0.021863 0.0018 2.12E-04 1.10E-03 8.15e−05 
  SD 1.61E-05 4.95E-04 6.02E-04 0.004 3.29E-04 3.88E-05 2.01E-04 1.49E-05 

 

An examination of the statistical metrics reveals that IPOA, with its enhanced search capabilities, successfully attains the global 
optimum for optimizing functions F1 through F6. Additionally, IPOA achieves an optimal solution for F6 similar to that of POA. 
However, for F7, WSO outperforms other algorithms in obtaining a superior solution. A comprehensive analysis of the simulation 
outcomes indicates that IPOA excels in optimizing unimodal functions, consistently delivering highly competitive results com-
pared to the other algorithms. 
 

4.2. Evaluation of High-Dimensional Multimodal Benchmark Functions 

Table 3 displays the optimization outcomes for high-dimensional multimodal functions F8 to F13, achieved through the appli-
cation of IPOA and competitor algorithms. The simulation outcomes indicate that IPOA successfully discovers the global optima 
for functions F9 and F11. Additionally, IPOA demonstrates its superior optimization capabilities by outperforming other algo-
rithms in optimizing functions F8, F10, and F13. The exception is function F12, for which MPA attains superior results. A 
comparative analysis of competitor algorithms against IPOA underscores IPOA's remarkable efficiency in optimizing multi-
modal functions, primarily owing to its advanced capabilities.  
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Table 3  
Optimization results of high-dimensional multimodal functions 

E.T F. Figure In. IPOA POA WOA MVO MPA TSA HHO WSO 
 
 
 
 
 
 
 
 
 
 

Unimodal 
Functions 

  B -12569.45 -8118.39 -12203.21 -9275.27 -8772.47 -6685.34 -12569.19 -8912.11 
8  W -9144.25 -6977.02 -8499.91 -6356.16 -3594.163 -4856.31 -12567.36 -5934.14 
  M -10540.31 -7747.46 -9016.33 -7811.22 -6718.29 -5641.22 -12568.41 -7644.15 
  SD 370.4686 880.3709 648.708 868.73 1.07E+03 1.26E+03 0.1899 899.2326 
  B 0 0 0 44.13521 6.43E-145 3.51E-04 0 13.322 

9  W 0 0 0 154.7712 6.65E-78 0.0081 0 67.452 
  M 0 0 0 103.1234 2.31E-133 9.89E-01 0 38.998 
  SD 0 0 0 18.8277 4.22E-134 0.1806 0 7.12 
  B 8.88E-16 4.44E-15 8.88E-16 0.069781 2.65E-13 2.73E-08 8.88E-16 2.1243 

10  W 8.88E-16 4.44E-15 7.99E-14 1.879032 4.87E-11 0.0012 8.88E-16 7.0001 
  M 8.88E-16 4.44E-15 4.44E-15 0.542676 8.45E-12 7.81E-02 8.88E-16 4.9343 
  SD 1.62E-16 8.11E-16 8.11E-16 0.0991 1.54E-12 0.0143 1.62E-16 0.9009 
  B 0 0 0 0.179045 0 4.56E-16 0 1.36891 

11  W 0 0 0 0.564978 0 0.0612 0 6.56341 
  M 0 0 0 0.435217 0 1.12E-07 0 1.89672 
  SD 0 0 0 0.0795 0 2.04E-08 0 0.3463 
  B 0.0596 0.05847 0.034 0.001315 3.46E-10 0.0132 9.28E-06 0.84674 

12  W 0.2923 0.34605 0.059 8.267811 0.0561 17.2313 8.22E-01 563.819 
  M 0.1664 0.1894 0.044 1.654517 2.18E-02 5.1221 8.92E-02 37.056 
  SD 0.0304 0.0346 0.008 0.3021 0.004 0.9352 0.0163 6.7655 
  B 4.41E-13 2.0223 0.1566 0.008113 4.76E-04 2.1375 4.74E-05 11.1298 

13  W 3.45E-07 2.9814 0.9379 0.081711 0.3214 3.7456 0.00671 9613.55 
  M 7.42E-09 2.4803 0.5695 0.031861 1.22E-01 2.8235 0.000297 5744.34 
  SD 1.35E-09 0.4528 0.104 0.0058 0.0222 0.5155 5.42E-05 1.05E+03 

 

4.3. Evaluation of Fixed-Dimensional Multimodal Benchmark Functions 

Table 4 presents the optimization results obtained using IPOA and seven competitor algorithms when dealing with fixed-dimen-
sional multimodal functions ranging from F14 to F23.  

Table 4 
Optimization results of fixed high-dimensional multimodal functions 

E.T F. Figure In. IPOA POA WOA MVO MPA TSA HHO WSO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unimodal 
Functions 

  B 0.998 0.998 0.998 0.998004 0.998004 0.998004 0.998 0.998004 
14  W 0.998 1.992 2.982 0.998004 0.998004 10.31927 5.9288 4.286715 

  M 0.998 1.231 1.442 0.998004 0.998004 1.89322 3.713 1.35122 
  SD 0 0.0425 0.0811 7.30E-07 7.30E-07 0.1634 0.4957 0.0645 

15  B 0.00030798 0.00030749 0.00045 0.000498 0.000307 0.000308 0.0003248 0.000307 
  W 0.00030798 0.0012232 0.00061 0.067821 0.002364 0.057812 0.0004397 0.000317 
  M 0.00030798 0.00048 0.00051 0.005071 0.000821 0.008824 0.0003789 0.000308 
  SD 0 3.14E-05 3.69E-05 8.70E-04 9.37E-05 0.0016 1.29E-05 3.65E-09 

16  B -1.0316 -1.0316 -1.0316 -1.03163 -1.03163 -1.03163 -1.0316 -1.03163 
  W -1.0316 -1.0316 -1.0316 -1.03163 -1.03163 -1 -1.0316 -1.03163 
  M -1.0316 -1.0316 -1.0316 -1.03163 -1.03163 -1.12576 -1.0316 -1.03163 
  SD 0 0 0 0 0 0.0172 0 0 

17  B 0.39789 0.39789 0.39789 0.397887 0.397887 0.397888 0.39789 0.397887 
  W 0.39789 0.39789 0.39792 0.397888 0.397887 0.398187 0.39793 0.398048 
  M 0.39789 0.39789 0.3979 0.397887 0.397887 0.39812 0.39791 0.397895 
  SD 0 0 1.83E-06 5.48E-07 5.48E-07 4.20E-05 3.65E-06 9.13E-07 

18  B 3 3 3 3 3 3 3 3 
  W 3 3 3 3 3 63.1562 3 3 
  M 3 3 3 3 3 7.3215 3 3 
  SD 0 0 0 0 0 0.789 0 0 

19  B -3.8628 -3.8628 -3.8614 -3.86278 -3.86278 -3.86278 -3.862 -3.86278 
  W -3.8628 -3.8628 -3.7891 -3.85204 -3.86278 -3.86261 -3.7731 -3.86278 
  M -3.8628 -3.8628 -3.8228 -3.86058 -3.86278 -3.86262 -3.8573 -3.86278 
  SD 0 0 0.0073 4.05E-04 3.65E-06 3.29E-05 0.001 3.65E-06 

20  B -3.22 -3.322 -3.3212 -3.32199 -3.322 -3.32153 -3.1951 -3.322 
  W -3.22 -3.322 -3.1673 -3.20281 -3.2142 -3.1363 -3.0517 -3.20308 
  M -3.22 -3.322 -3.1944 -3.25652 -3.2901 -3.2554 -3.0923 -3.29813 
  SD 0 0.0186 0.0047 0.0067 0.0128 0.0065 0.0233 0.0143 

21  B -10.1532 -10.1532 -10.1443 -10.1532 -10.1532 -10.0743 -5.0385 -10.1532 
  W -10.1532 -5.0552 -5.0549 -2.64519 -5.0331 -2.5435 -5.0548 -3.55781 
  M -10.1532 -8.3035 -8.3451 -8.13243 -9.1012 -6.8951 -5.0442 -9.1161 
  SD 0 0.3377 0.3301 0.3689 0.1921 0.5948 0.9328 0.1893 

22  B -10.4029 -10.4029 -10.394 -10.4029 -10.4029 -10.3432 -5.083 -10.4029 
  W -10.4029 -5.0877 -2.7646 -2.8532 -5.1867 -1.8912 -5.0792 -2.5234 
  M -10.4029 -8.6941 -5.087 -8.8917 -8.4129 -6.1481 -5.0811 -9.1235 
  SD 0 0.312 0.9705 0.2759 0.3633 0.7768 0.9716 0.2336 

23  B -10.5364 -10.5363 -10.5322 -10.5364 -10.5364 -10.4963 -5.1268 -10.5364 
  W -10.5364 -5.1285 -2.4214 -5.23684 -5.1432 -2.6143 -5.1247 -3.65812 
  M -10.5364 -8.1389 -5.1272 -9.21166 -8.6472 -8.1012 -5.1251 -9.67811 
  SD 0 0.4377 0.9876 0.2419 0.3449 0.4446 0.988 0.1567 
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These results unambiguously demonstrate IPOA's superiority over all other optimization methods for handling functions F14 to 
F23. An in-depth performance comparison between IPOA and its competitors reinforces IPOA's remarkable efficiency and excep-
tional performance in optimizing fixed-dimensional multimodal functions. 

4.4. Boxplot Analysis 
 

Boxplot result analysis is a fundamental aspect of data interpretation in various fields such as statistics, and data science. When 
examining boxplots, the first step is to consider the central tendency of the data. The median, represented by the line within the 
box, provides an excellent measure of central location. If the median is positioned close to the center of the box, it suggests that 
the data is symmetrically distributed around this central value. Conversely, if the median is skewed towards one end of the box, 
it indicates that the data might be skewed or asymmetric. 

 
The boxplots depicting the variations in fitness are presented in Figure 3, providing a visual representation of the outcome 
distributions produced by each algorithm across thirty runs for the given function. These boxplots offer insights into the data 
distribution, with a particular focus on the identification of outliers. Several observations can be made from these boxplots, 
including: 
 

o The body of the box of the IPOA is the shortest one among all algorithms in F1 to F6 and F9, F10, F13 and functions 
from F14 to F23. The IPOA even has no outlier points in these cases. This demonstrates that the performance of IPOA 
is very stable; 

o Only the IPOA algorithm gets zero values of the standard deviation in F1, F3, F6, F9, F11, and functions from F14 to 
F23. 

o In most of the 23 benchmarks, IPOA provides a stable behavior. On the other hand, most of the other algorithms exhibit 
instability when optimizing these problems. This can be attributed to the effective exponential parameter design, which 
allows for dynamic allocation of computational resources to various sub-populations supported by different search 
strategies (further elaborated in Section 3). With the IPOA algorithm, each run has the capability to adapt to the problem 
based on acquired information. Consequently, while the search trajectories in each run may vary, IPOA maintains a 
relatively stable performance. 
 

   
Fig. 3. The boxplot of the objective function variation (F1-F23) 

4.5. CEC 2022 Benchmark Functions 

 

In this section, the proposed IPOA approach is evaluated using the CEC2022 benchmark test suite (Luo et al., 2022), alongside 
the same comparator algorithms used previously. Additionally, the evaluation includes two modified versions of the POA algo-
rithm, namely GPOA (Kusuma & Prasasti, 2022) and CPOA (Song et al., 2023). The research for the CEC2022 benchmark was 
conducted in accordance with the CEC guidelines. The maximum number of fitness evaluations were 4000, the function's dimen-
sions (Dim) were 10, and each algorithm had been tested 30 times. Table 5 shows the detailed results. ''M'' and ''SD'' are the mean 
and standard deviation of the best-so-far results provided by each algorithm, respectively. The data in Table 5 show that the 
proposed IPOA algorithm performs optimally on 7 tests. 
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Table 5 
 Experimental results of IPOA and 9 comparative algorithms on CEC2022 

# In. IPOA POA WOA MVO MPA TSA HHO WSO GPOA CPOA 
C1 M 3.84E+02 9.95E+02 3.09E+02 3.13E+03 2.85E+03 1.83E+03  7.81E+03 4.67E+03 6.43E+03 4.69E+03 

SD 5.31E+01 1.14E+03 4.81E-01 2.86E+03 2.36E+04 2.13E+03 2.31E+03 3.51E+03 1.91E+03 3.55E+03 
C2 M 4.13E+02 4.47E+02 4.44E+02 4.66E+02 1.87E+03 4.67E+02  4.89E+02 4.49E+02 5.81E+02 4.81E+02 

SD 5.71E+00 2.56E+01 3.39E+01 4.43E+01 5.89E+02 2.48E+01 2.90E+02 2.89E+01 3.77E+02 2.93E+01 
C3 M 5.98E+02  6.03E+02 6.22E+02 6.43E+02 6.22E+02 6.24E+02  6.51E+02 6.39E+02 6.59E+02 6.52E+02 

SD 2.11E-01 8.42E-01 1.19E+01 6.31E+00 1.31E+01 5.01E+02 2.42E+01 3.71E+00 2.51E+01 3.84E+00 
C4 M 8.22E+02  8.25E+02 8.38E+02 8.41E+02 8.39E+02 8.48E+02  8.45E+02 8.47E+02 8.49E+02  8.46E+02 

SD 5.91E+00 6.47E+00 1.32E+01 6.01E+00 7.88E+00 6.78E+00 1.27E+01 1.26E+01 6.81E+00 1.29E+01 
C5 M 9.05E+02 1.70E+03 1.23E+03 1.16E+03 9.38E+02  9.77E+02  2.02E+03 9.89E+02 9.83E+02  2.34E+03 

SD 8.33E+00 8.43E+01 1.87E+02 1.31E+02 1.67E+01 9.86E+01  3.21E+02 6.43E+01 9.96E+01  3.37E+02 
C6 M 4.48E+03  6.50E+03 6.71E+03 4.30E+03 5.42E+08 6.52E+03 6.73E+03 4.32E+03 5.45E+08 6.75E+03 

SD 2.18E+03 2.20E+03 2.88E+03 2.23E+03 4.81E+08 2.30E+03 2.91E+03 2.28E+03 4.89E+08 2.94E+03 
C7 M 2.05E+03  2.25E+03 2.26E+03 2.47E+03 2.61E+03 2.44E+03  2.51E+03 2.69E+03 2.52E+03 2.72E+03 

SD 5.09E+00 9.93E+00 2.59E+01 3.43E+01 2.23E+01 1.86E+01 3.72E+01 2.34E+01 3.73E+01 2.51E+01 
C8 M 2.20E+03  2.67E+03 2.45E+03 2.55E+03 2.71E+03 2.73E+03 2.74E+03 2.75E+03 2.70E+03 2.69E+03 

SD 3.81E+00 6.52E+00 2.01E+01 5.17E+00 6.32E+00 6.81E+00 3.11E+01 4.24E+00 5.31E+00 3.21E+01 
 
4.6. Wilcoxon Rank Sum Test Analysis 

 
The Wilcoxon rank sum test, also known as the Mann-Whitney U test, is a statistical method used to compare two independent 
groups or samples to determine if there is a significant difference between them. It is a non-parametric test, meaning that it does 
not assume a normal distribution of data. In the context of the analysis presented in this study, the Wilcoxon Rank Sum Test is 
employed to assess and compare the performance of the proposed IPOA algorithm with several competitor algorithms across 
various optimization functions. The results of the Wilcoxon rank sum test are typically presented in tabular form, as shown in 
Tables 6 and 7. These tables provide information on the statistical significance of the performance differences between algorithms. 
The p-values obtained from the test are compared to a predefined significance level (alpha), often set at 0.05. If the p-value is less 
than alpha, it indicates that there is a significant difference between the two groups being compared. In the context of this study, 
when all p-values are less than 0.05, it suggests that IPOA significantly outperforms all the competitor algorithms across all opti-
mization functions. This statistical analysis adds a rigorous and objective dimension to the performance evaluation of the proposed 
IPOA. 
 
Table 6 
p-values obtained from Wilcoxon rank sum test for tables 2, 3, and 4 

Functions 
Type 

Compared Algorithms 
IPOA vs POA IPOA vs WOA IPOA vs MVO IPOA vs MPA IPOA vs TSA IPOA vs HHO IPOA vs WSO 

 
Unimodal 

 
3.1250E-02 4.4350E-02 1.5625E-03 2.2341E-02 4.1347E-02 4.0243E-02 3.1553E-02 

High 
dimensional 
multimodal 

3.7500E-02 4.153E-02 3.1251E-02 4.5750E-02 3.1238E-02 5.000E-01 3.6796E-03 

Fixed 
dimensional 
multimodal 

3.5534E-02 5.4977E-03 4.6228E-02 4.6229E-02 3.0758E-01 1.7046E-03 3.3535E-02 

 
Table 7 
p-values obtained from Wilcoxon rank sum test for table 5 

Functions 
Type 

Compared Algorithms   
IPOA vs 

POA 
IPOA vs 

WOA 
IPOA vs 

MVO 
IPOA vs 

MPA 
IPOA vs 

TSA 
IPOA vs 

HHO 
IPOA vs 

WSO 
IPOA vs 
GPOA 

IPOA vs 
CPOA 

 
CEC2022 

 
3.3507E-02 4.5147E-02 2.2431E-03 3.1352E-02 3.2123E-02 4.6523E-02 3.1924E-02 4.0341E-02 4.1522E-02 

 
5. Application of IPOA for Engineering Design Problems 

 
In this section, the IPOA algorithm's performance is put to the test in real-world engineering design problems encompassing ten-
sion/compression spring design, tubular column design, speed reducer design, welded beam design, and I-shaped beam design. 
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When dealing with constrained optimization problems, if the decision variable values exceed the permissible range, they are ad-
justed to the boundary values of the intervals. Additionally, to meet both unequal and equal constraints, a penalty coefficient is 
utilized and incorporated into the objective function value. Consequently, solutions that do not conform to the specified constraints 
are considered unsuitable solutions (Sadeeq & Abdulazeez, 2023a). 

 
5.1. Tension/ Compression Spring Design Optimization Problem (TCSD) 

 
TCSD problem presents a significant challenge in engineering design, as it involves the optimization of critical components used 
in various mechanical systems. The goal is to find the optimal design parameters for a tension/compression spring, such as wire 
diameter and number of active coils, that satisfy specific performance criteria while minimizing the spring's weight. TCSD is of 
paramount importance in engineering applications where the performance and efficiency of springs play a crucial role, such as 
in automotive suspensions, industrial machinery, and aerospace systems (Wang et al., 2023). The illustration of this problem's 
setup is depicted in Figure 4A. The outcomes achieved from the IPOA algorithm and its competition on the optimization of this 
particular challenge are displayed in Tables 8 and 9. Upon analyzing the simulation results, it becomes evident that IPOA has 
successfully provided the optimal solution for this design, with the recommended values for the design variables being 
(0.0518488, 0.360503, 11.0778) resulting in an objective function value of 0. 0.012601. Statistical analysis indicates that IPOA 
outperforms the competing algorithms when it comes to addressing the TCSD problem. The algorithms' performance rankings 
are determined by the mean index. The convergence behavior of IPOA and other algorithms while tackling this problem is 
graphically represented in Figure 5A. 
 
Table 8 
Performance of IPOA and competitors’ algorithms for the TCSD 

Algorithm 
Optimal Variables 

Optimal Cost 
𝑑𝑑 𝐷𝐷 𝑃𝑃 

IPOA 0.0518488 0.360503 11.0778 0.012601 
POA 0.052923 0.38713 9.7062 0.012693 
WOA 0.05311 0.33567 15.012 0.013197 
MVO 0.052716 0.3819 9.9532 0.012686 
MPA 0.054367 0.42403 8.2271 0.012818 
TSA 0.056278 0.47682 6.6424 0.013052 
HHO 0.054098 0.41738 8.4661 0.012784 
WSO 0.06064 0.61262 4.2424 0.014062 

 
Table 9 
Statistical results of IPOA and competitors’ algorithms for the TCSD 

Algorithm Best Worst Mean Std Rank 

IPOA 0.012601 0.012676 0.012666 1.1867322e-05 1 

POA 0.012693 0.013002 0.012832 4.2174636e-05 2 

WOA 0.013197 0.017764 0.014713 3.8559668e-04 6 

MVO 0.012686 0.018374 0.016761 7.5950861e-04 8 

MPA 0.012818 0.013001 0.012993 7.1569080e-05 4 

TSA 0.013052 0.013668 0.013321 1.3145341e-04 5 

HHO 0.012784 0.012997 0.012842 4.4000378e-05 3 

WSO 0.014062 0.016463 0.015152 4.6574674e-04 7 
 
5.2. Tubular Column Design Optimization Problem (TCD) 

 
TCD is a classic engineering challenge that aims to find the optimal dimensions and specifications for a tubular column, typically 
used in structural engineering applications. The primary objective is to minimize the cost of the column while satisfying various 
engineering constraints related to strength, stability, and material properties. Th is problem has two design variables, the mean 
diameter of the column d(=x1) and the thickness of tube t(= x2) (Gao et al., 2020), which are shown in Fig. 4B. The outcomes of 
applying IPOA and rival algorithms to the TCD problem are displayed in Tables 10 and 11. According to the simulation outcomes, 
IPOA has achieved the best solution alongside with MPA, with specific values for the design variables at 5.4522 and 0.29163, 
resulting in a corresponding objective function value of 26.486361. An analysis of the statistical results clearly indicates that IPOA 
with MPA outperforms the competitor algorithms in resolving the TCD. Figure 5B illustrates the convergence curve of IPOA 
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while obtaining the solution for this design, demonstrating its efficiency. 
 
Table 10  
Performance of IPOA and competitors’ algorithms for the TCD 

Algorithm 
Optimal Variables 

Optimal Cost 
𝑑𝑑 𝑡𝑡 

IPOA 5.4522 0.29163 26.486361 
POA 5.4521 0.29163 26.4864 
WOA 5.45548 0.291685 26.48856 
MVO 5. 45138 0.291973 26.53413 
MPA 5.45218 0.29162 26.486361 
TSA 5.4477 0.29234 26.5028 
HHO 5.4504 0.29191 26.4929 
WSO 5.44247 0.29317 26.5218 

 
Table 11  
Statistical results of IPOA and competitors’ algorithms for the TCD 

Algorithm Best Worst Mean Std Rank 
IPOA 26.486361 26.486361 26.486361 0 1 
POA 26.4864 28.18624 27.31221 0.1507787087 7 
WOA 26.48856 27.4624 26.88077 0.0720089020 6 
MVO 26.53413 26.56583 26.54376 0.0104795756 3 
MPA 26.486361 26.486361 26.486361 0 1 
TSA 26.5028 26.5134 26.5237 0.0068171375 2 
HHO 26.4929 26.6075 26.5527 0.0121117889 4 
WSO 26.5218 29.14386 26.8492 0.0662450351 5 

 
5.3. Speed Reducer Design Optimization Problem (SRD) 

 
SRD is a real-world engineering challenge, involves the task of optimizing the design parameters of a speed reducer system to 
meet specific performance criteria. In this problem, the design variables typically include geometric parameters like gear tooth 
profiles, diameters, and other dimensions of the speed reducer components. The objective is to minimize the weight of the speed 
reducer (Jiang et al., 2022). The optimization results for the SRD, obtained using the IPOA algorithm and compared with those of 
competing algorithms, are summarized in Tables 12 and 13. Based on the simulation outcomes, it is evident that IPOA has achieved 
the optimal solution for this design. The suggested values for the design variables, which yield an optimal performance, include 
(3.46124, 0.7, 17, 7.35871, 7.71735, 3.35867, 5.28892), resulting in an objective function value of 2992.312. An analysis of the 
statistical results reveals that the IPOA approach has consistently outperformed the competitor algorithms in terms of various 
statistical indicators. These findings emphasize the superior performance of IPOA in addressing the SRD Problem. The problem's 
schematic is presented in Figure 4C, while the convergence curve of IPOA during the optimization process for this design is 
depicted in Figure 5C. 
 
Table 12 
Performance of IPOA and competitors’ algorithms for the SRD 

Algorithm 
Optimal Variables 

Optimal Cost 
𝑏𝑏 𝑚𝑚 𝑝𝑝 𝑙𝑙1 𝑙𝑙2 𝑑𝑑1 𝑑𝑑2 

IPOA 3.46124 0.7 17 7.35871 7.71735 3.35867 5.28892 2992.312 
POA 3.48068 0.7 17 7.30018 7.72772 3.34879 5.28712 2996.996 
WOA 3.36652 0.7 17 7.30008 7.7108 3.38374 5.28665 3008.651 
MVO 3.39909 0.700005 17.0008 8.12903 7.45968 3.3522 5.28662 3011.341 
MPA 3.48048 0.700065 17.002 7.30732 7.95997 3.36104 5.28674 3002.113 
TSA 3.36426 0.7 17.0003 7.65956 7.85765 3.35174 5.28699 3006.158 
HHO 3.42545 0.7 17 7.38004 7.68411 3.3445 5.28761 3003.908 
WSO 3.31275 0.7 17 7.71889 7.8618 3.34949 5.28784 3010.781 
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Table 13 
Statistical results of IPOA and competitors’ algorithms for the SRD 

Algorithm Best Worst Mean Std Rank 

IPOA 2992.312 2998.981 2996.455 0.75640485191 1 

POA 2996.996 3002.761 3000.462 1.48797961455 2 

WOA 3008.651 3231.474 3109.378 21.3732296389 8 

MVO 3011.341 3081.784 3034.331 7.67158471460 6 

MPA 3002.113 3008.341 3006.912 2.66558311319 3 

TSA 3006.158 3020.483 3013.312 3.83405790253 4 

HHO 3003.908 3224.471 3101.321 19.9022294236 7 

WSO 3010.781 3075.439 3029.971 6.87556126436 5 
 

5.4. Welded Beam Design Optimization Problem (WBD) 
 

WBD Problem is a structural engineering design aims to minimize the fabrication cost of the welded beam. The results obtained 
using the IPOA algorithm, along with comparisons to competing algorithms, are exhaustively presented in Tables 14 and 15. These 
results clearly demonstrate IPOA's capability in successfully achieving the optimal solution for this intricate design problem. The 
values of the design variables that correspond to this optimal solution are (0.20434, 3.5002, 9.0391, 0.20572) resulting in a re-
markable objective function value of 1.7017. The comprehensive statistical analyses of these results reinforce the conclusion that 
IPOA consistently outperforms its competitor algorithms. This underscores IPOA's prowess in addressing complex structural op-
timization problems (Połap & Woźniak, 2021). Fig. 4D provides a schematic representation of the WBD Problem. Additionally, 
for a visual representation of IPOA's iterative optimization process for this challenge, please refer to Fig. 5D. This convergence 
curve offers a dynamic view of how IPOA systematically hones in on the optimal solution over successive iterations. 

 
Table 14 
Performance of IPOA and competitors’ algorithms for the WBD 

Algorithm 
Optimal Variables 

Optimal Cost 
ℎ 𝑙𝑙 𝑇𝑇 𝑏𝑏 

IPOA 0.20434 3.5002 9.0391 0.20572 1.7017 
POA 0.20567 3.4718 9.0415 0.20571 1.7256 
WOA 0.20486 3.4514 9.1647 0.20599 1.8275 
MVO 0.2034 3.5206 9.0383 0.20572 1.7282 
MPA 0.20586 3.4691 9.0349 0.20583 1.7255 

TSA 0.20119 3.5711 9.0366 0.20573 1.7314 

HHO 0.20927 3.4299 8.9476 0.20993 1.7326 
WSO 0.20487 3.4946 9.0386 0.20572 1.7251 

 
Table 15  
Statistical results of IPOA and competitors’ algorithms for the WBD 

Algorithm Best Worst Mean Std Rank 

IPOA 1.7017 1.7257 1.7167 0.002738612 1 

POA 1.7256 1.7313 1.7279 0.004783443 4 

WOA 1.8275 4.2321 2.4610 0.138628579 8 

MVO 1.7282 1.7812 1.7413 0.007229937 5 

MPA 1.7255 1.7275 1.7269 0.004600869 2 

TSA 1.7314 1.7536 1.7457 0.008033264 7 

HHO 1.7326 1.7936 1.7546 0.009658174 6 

WSO 1.7251 1.7341 1.7271 0.004637384 3 
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5.5. I-Shaped Beam Design Optimization Problem (I-SBD) 
 

Another common engineering optimization problem is the I-beam design problem, which has the objective of minimizing the 
vertical deflection of the beam as depicted in Fig. 4E. This problem also involves satisfying both cross-sectional area and stress 
constraints under predefined loads. The variables considered in this problem include the width of the flange (denoted as b and 
represented as x1), the height of the section (referred to as h and denoted as x2), the thickness of the web (designated as tw and 
expressed as x3), and the thickness of the flange (tf, represented as x4) (Chen et al., 2023). The results of applying the IPOA 
algorithm alongside competing algorithms to address the I-SBD problem are presented in Tables 16 and 17. Based on the simula-
tion findings, IPOA has emerged as the top-performing solution, yielding specific values for the design variables: b = 80, h = 50, 
tw = 0.900058, and tf = 2.32175, resulting in a corresponding objective function value of 0.013074. An examination of the statis-
tical outcomes unambiguously demonstrates IPOA's superiority over rival algorithms in tackling the I-beam design problem. Fig. 
5E visually portrays IPOA's convergence curve during the process of obtaining the solution for this design, underscoring its effec-
tiveness. 

 

 
Fig. 4. Schematic of the engineering applications: (A) Schematic of the TCSD; (B) Schematic of the TCD (C) Schematic of 
the SRD; (D) Schematic of the WBD; (E) Schematic of the I-SBD. 
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Table 16 
Performance of IPOA and competitors’ algorithms for the I-SBD 

Algorithm Optimal Variables Optimal Cost 
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 

IPOA 80 50 0.900058 2.32175 0.013074 
POA 80 50 0.9 2.32179 0.013074 
WOA 80 50 0.90006 2.31638 0.013088 
MVO 80 48.4151 0.900017 2.399266 0.013076 
MPA 80 49.999 0.9 2.32179 0.013074 
TSA 79.9875 49.9922 0.91872 2.30694 0.013112 
HHO 80 50 0.900049 2.32175 0.013074 
WSO 79.8950 49.9344 1.151839 2.12357 0.013074 

 
Table 17 
Statistical results of IPOA and competitors’ algorithms for the I-SBD 

Algorithm Best Worst Mean Std Rank 
IPOA 0.013074 0.013074 0.013074 0 1 
POA 0.013074 0.013343 0.013112 6.93781906e-06 3 
WOA 0.013088 0.083128 0.016171 5.65432253e-04 6 
MVO 0.013076 0.069102 0.015842 5.05365346e-04 5 
MPA 0.013074 0.013076 0.013075 1.82574185e-07 2 
TSA 0.013112 0.149339 0.024921 0.002162956 8 
HHO 0.013074 0.013423 0.013318 4.45481013e-05 4 
WSO 0.013074 0.060413 0.016419 6.10710651e-04 7 

 

 
Fig. 5. Convergence rate diagram for IPOA and other competing algorithms: (A) Convergence rate diagram for TCSD; (B) 
Convergence rate diagram for TCD (C) Convergence rate diagram for SRD; (D) Convergence rate diagram for WBD; (E) 
Convergence rate diagram for I-SBD. 
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6. Conclusions 
 

This paper introduces a novel variant of the Pelican Optimization Algorithm (POA) termed IPOA, aimed at addressing a wide 
range of optimization challenges. To enhance the exploration phase, IPOA incorporates a novel transition mechanism. Addition-
ally, it employs a new random position strategy to bolster local search capabilities, thereby preventing the algorithm from becoming 
trapped in local optima. These enhancements collectively promote a more balanced exploration-exploitation trade-off within the 
proposed algorithm. To comprehensively assess its function optimization performance, IPOA is benchmarked against the original 
POA and six advanced metaheuristics using 23 classical benchmark functions. Also, CEC2022 benchmark have been used to 
further prove the performance of the proposed IPOA. Statistical significance is confirmed through the Wilcoxon rank-sum test. 
Numerical and statistical results affirm that IPOA significantly outperforms other algorithms in terms of accuracy, convergence 
speed, stability, and avoidance of local optima. To showcase its practical applicability, IPOA is applied to five engineering design 
problems, yielding highly competitive solutions. As future perspectives, the research envisions the development of multi-objective 
and binary versions of IPOA. Furthermore, the algorithm's potential applications span diverse fields, including network applica-
tions, text clustering, parameter estimation, feature selection, and more. While the results showcase IPOA's excellent performance, 
its reliance on fixed parameter settings limits its adaptability to different problem landscapes. As a part of future research, we aim 
to focus on developing parameter-adaptive adjustment strategies that allow IPOA to dynamically tune its parameters based on the 
optimization context. This enhancement is expected to further improve the algorithm's robustness and adaptability, enabling it to 
tackle a broader range of dynamic and real-world optimization challenges. 

 
The statement of data 
 
The corresponding author will provide the data sets upon request. 
 
Conflicts of interest 

 
The authors declare that they have no conflicts of interest to report regarding the present study. 
 

References 
 

Abu-Hashem, M., & Shambour, M. (2024). An improved black widow optimization (IBWO) algorithm for solving global 
optimization problems. International Journal of Industrial Engineering Computations, 15(3), 705–720. 

Ajagekar, A., Al Hamoud, K., & You, F. (2022). Hybrid Classical-Quantum Optimization Techniques for Solving Mixed-Integer 
Programming Problems in Production Scheduling. IEEE Transactions on Quantum Engineering, 3(March), 1–16. 
https://doi.org/10.1109/TQE.2022.3187367 

Al-Betar, M. A., Awadallah, M. A., Braik, M. S., Makhadmeh, S., & Doush, I. A. (2024). Elk herd optimizer: a novel nature-
inspired metaheuristic algorithm. In Artificial Intelligence Review (Vol. 57, Issue 3). Springer Netherlands. 
https://doi.org/10.1007/s10462-023-10680-4 

Alamir, N., Kamel, S., Megahed, T. F., Hori, M., & Abdelkader, S. M. (2023). Developing Hybrid Demand Response Technique 
for Energy Management in Microgrid Based on Pelican Optimization Algorithm. Electric Power Systems Research, 214(PA), 
108905. https://doi.org/10.1016/j.epsr.2022.108905 

Alghamdi, A. S. (2024). Cost-Effective Planning of Hybrid Energy Systems Using Improved Horse Herd Optimizer and Cloud 
Theory under Uncertainty. In Electronics (Vol. 13, Issue 13). https://doi.org/10.3390/electronics13132471 

Amine Tahiri, M., Zohra El hlouli, F., Bencherqui, A., Karmouni, H., Amakdouf, H., Sayyouri, M., & Qjidaa, H. (2023). White 
blood cell automatic classification using deep learning and optimized quaternion hybrid moments. Biomedical Signal 
Processing and Control, 86(PA), 105128. https://doi.org/10.1016/j.bspc.2023.105128 

Braik, M., Hammouri, A., Atwan, J., Al-Betar, M. A., & Awadallah, M. A. (2022). White Shark Optimizer: A novel bio-inspired 
meta-heuristic algorithm for global optimization problems. Knowledge-Based Systems, 243, 108457. 
https://doi.org/10.1016/j.knosys.2022.108457 

Chen, L., Zhao, B., & Ma, Y. (2023). FSSSA: A Fuzzy Squirrel Search Algorithm Based on Wide-Area Search for Numerical and 
Engineering Optimization Problems. Mathematics, 11(17), 3722. https://doi.org/10.3390/math11173722 

Dao, T.-K., Ngo, T.-G., Pan, J.-S., Nguyen, T.-T.-T., & Nguyen, T.-T. (2024). Enhancing Path Planning Capabilities of Automated 
Guided Vehicles in Dynamic Environments: Multi-Objective PSO and Dynamic-Window Approach. Biomimetics, 9(1), 35. 

Emam, M. M., Houssein, E. H., & Ghoniem, R. M. (2023). A modified reptile search algorithm for global optimization and image 
segmentation: Case study brain MRI images. Computers in Biology and Medicine, 152(October 2022), 106404. 
https://doi.org/10.1016/j.compbiomed.2022.106404 

Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Algorithm: A nature-inspired 
metaheuristic. Expert Systems with Applications, 152, 113377. https://doi.org/10.1016/j.eswa.2020.113377 



H. T. Sadeeq et al.    / Decision Science Letters 14 (2025) 17 

Gandomi, A. H., & Deb, K. (2020). Implicit constraints handling for efficient search of feasible solutions. Computer Methods in 
Applied Mechanics and Engineering, 363, 112917. https://doi.org/https://doi.org/10.1016/j.cma.2020.112917 

Gao, C., Hu, Z., Xiong, Z., & Su, Q. (2020). Grey prediction evolution algorithm based on accelerated even grey model. IEEE 
Access, 8, 107941–107957. 

Hashish, M. S., Hasanien, H. M., Ullah, Z., Alkuhayli, A., & Badr, A. O. (2023). Giant Trevally Optimization Approach for 
Probabilistic Optimal Power Flow of Power Systems Including Renewable Energy Systems Uncertainty. Sustainability, 
15(18), 13283. 

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and 
applications. Future Generation Computer Systems, 97, 849–872. 

Houssein, E. H., Oliva, D., Samee, N. A., Mahmoud, N. F., & Emam, M. M. (2023). Liver Cancer Algorithm: A novel bio-inspired 
optimizer. Computers in Biology and Medicine, 107389. 

Jiang, Y., Wu, Q., Zhu, S., & Zhang, L. (2022). Orca predation algorithm: A novel bio-inspired algorithm for global optimization 
problems. Expert Systems with Applications, 188(April 2021), 116026. https://doi.org/10.1016/j.eswa.2021.116026 

Kaur, S., Awasthi, L. K., Sangal, A. L., & Dhiman, G. (2020). Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic 
paradigm for global optimization. Engineering Applications of Artificial Intelligence, 90(December 2018), 103541. 
https://doi.org/10.1016/j.engappai.2020.103541 

Kuang, X., Hou, J., Liu, X., Lin, C., Wang, Z., & Wang, T. (2024). Improved African Vulture Optimization Algorithm Based on 
Random Opposition-Based Learning Strategy. In Electronics (Vol. 13, Issue 16). https://doi.org/10.3390/electronics13163329 

Kusuma, P. D., & Prasasti, A. L. (2022). Guided Pelican Algorithm. International Journal of Intelligent Engineering and Systems, 
15(6), 179–190. https://doi.org/10.22266/ijies2022.1231.18 

Latifi Amoghin, M., Abbaspour-Gilandeh, Y., Tahmasebi, M., Kaveh, M., El-Mesery, H. S., Szymanek, M., & Sprawka, M. 
(2024). VIS/NIR Spectroscopy as a Non-Destructive Method for Evaluation of Quality Parameters of Three Bell Pepper 
Varieties Based on Soft Computing Methods. In Applied Sciences (Vol. 14, Issue 23). https://doi.org/10.3390/app142310855 

Le Digabel, S., & Wild, S. M. (2023). A taxonomy of constraints in black-box simulation-based optimization. Optimization and 
Engineering. https://doi.org/10.1007/s11081-023-09839-3 

Li, J., An, Q., Lei, H., Deng, Q., & Wang, G. G. (2022). Survey of Lévy Flight-Based Metaheuristics for Optimization. 
Mathematics, 10(15). https://doi.org/10.3390/math10152785 

Luo, W., Lin, X., Li, C., Yang, S., & Shi, Y. (2022). Benchmark functions for CEC 2022 competition on seeking multiple optima 
in dynamic environments. ArXiv Preprint ArXiv:2201.00523. 

Mataifa, H., Krishnamurthy, S., & Kriger, C. (2022). Volt/VAR Optimization: A Survey of Classical and Heuristic Optimization 
Methods. IEEE Access, 10, 13379–13399. https://doi.org/10.1109/ACCESS.2022.3146366 

Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51–67. 
https://doi.org/10.1016/j.advengsoft.2016.01.008 

Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-Verse Optimizer: a nature-inspired algorithm for global optimization. 
Neural Computing and Applications, 27(2), 495–513. https://doi.org/10.1007/s00521-015-1870-7 

Mohammed, G. P., Alasmari, N., Alsolai, H., Alotaibi, S. S., Alotaibi, N., & Mohsen, H. (2022). Autonomous Short-Term Traffic 
Flow Prediction Using Pelican Optimization with Hybrid Deep Belief Network in Smart Cities. Applied Sciences 
(Switzerland), 12(21). https://doi.org/10.3390/app122110828 

Parvathi, K. A., Kotaiah, N. C., & Rani, K. R. (2022). Pelican Optimization Algorithm for Optimal Demand Response in Islanded 
Active Distribution Network Considering Controllable Loads. International Journal of Intelligent Engineering and Systems, 
15(6), 132–141. https://doi.org/10.22266/ijies2022.1231.14 

Połap, D., & Woźniak, M. (2021). Red fox optimization algorithm. Expert Systems with Applications, 166(October 2020), 114107. 
https://doi.org/10.1016/j.eswa.2020.114107 

Rabie, A. H., Mansour, N. A., & Saleh, A. I. (2023). Leopard seal optimization (LSO): A natural inspired meta-heuristic algorithm. 
Communications in Nonlinear Science and Numerical Simulation, 125, 107338. https://doi.org/10.1016/j.cnsns.2023.107338 

Sadeeq, H. T., & Abdulazeez, A. M. (2022a). Giant Trevally Optimizer (GTO): A Novel Metaheuristic Algorithm for Global 
Optimization and Challenging Engineering Problems. IEEE Access, October, 121615–121640. 
https://doi.org/10.1109/ACCESS.2022.3223388 

Sadeeq, H. T., & Abdulazeez, A. M. (2022b). Improved Northern Goshawk Optimization Algorithm for Global Optimization. 89–
94. 

Sadeeq, H. T., & Abdulazeez, A. M. (2023a). Car side impact design optimization problem using giant trevally optimizer. 
Structures, 55(February), 39–45. https://doi.org/10.1016/j.istruc.2023.06.016 

Sadeeq, H. T., & Abdulazeez, A. M. (2023b). Metaheuristics: A Review of Algorithms. International Journal of Online and 
Biomedical Engineering, 19(9), 142–164. https://doi.org/10.3991/ijoe.v19i09.39683 

Saleem, S., & Gallagher, M. (2022). Using regression models for characterizing and comparing black box optimization problems. 
Swarm and Evolutionary Computation, 68(June 2021), 100981. https://doi.org/10.1016/j.swevo.2021.100981 

Shehadeh, H. A. (2023). Chernobyl disaster optimizer (CDO): a novel meta-heuristic method for global optimization. Neural 
Computing and Applications, 35(15), 10733–10749. https://doi.org/10.1007/s00521-023-08261-1 



 18 

Song, H.-M., Xing, C., Wang, J.-S., Wang, Y.-C., Liu, Y., Zhu, J.-H., & Hou, J.-N. (2023). Improved pelican optimization 
algorithm with chaotic interference factor and elementary mathematical function. Soft Computing, 27(15), 10607–10646. 
https://doi.org/10.1007/s00500-023-08205-w 

Tian, T., Liang, Z., Wei, Y., Luo, Q., & Zhou, Y. (2024). Hybrid Whale Optimization with a Firefly Algorithm for Function 
Optimization and Mobile Robot Path Planning. Biomimetics, 9(1), 39. 

Trojovský, P., & Dehghani, M. (2022). Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering 
Applications. Sensors, 22(3). https://doi.org/10.3390/s22030855 

Wan, Y., Zuo, T. Y., Chen, L., Tang, W. C., & Chen, J. (2020). Efficiency-Oriented Production Scheduling Scheme: An Ant 
Colony System Method. IEEE Access, 8, 19286–19296. https://doi.org/10.1109/ACCESS.2020.2968378 

Wang, B., Jin, Q., Zhao, R., & Zhang, Y. (2023). A New Optimization Idea: Parallel Search-based Golden Jackal Algorithm. 
IEEE Access, 11(August), 1–1. https://doi.org/10.1109/access.2023.3312684 

Wang, J., Wang, W. C., Chau, K. W., Qiu, L., Hu, X. X., Zang, H. F., & Xu, D. M. (2024). An Improved Golden Jackal 
Optimization Algorithm Based on Multi-strategy Mixing for Solving Engineering Optimization Problems. Journal of Bionic 
Engineering, 21(2), 1092–1115. https://doi.org/10.1007/s42235-023-00469-0 

Wolpert, D., & Macready, W. (1997). No Free Lunch Theorems for Optimization. Evolutionary Computation, IEEE Transactions 
On, 1, 67–82. 

Wongvanich, N., Roongmuanpha, N., & Tangsrirat, W. (2023). Extended Exploration Grey Wolf Optimization, CFOA-Based 
Circuit Implementation of the sigr Function and its Applications in Finite-Time Terminal Sliding Mode Control. IEEE Access, 
11, 88388–88402. https://doi.org/10.1109/ACCESS.2023.3305943 

Yang, H., Yang, X., & Li, G. (2023). Dual feature extraction system for ship-radiated noise and its application extension. Ocean 
Engineering, 285(P2), 115352. https://doi.org/10.1016/j.oceaneng.2023.115352 

Yu, Y., Yao, M., Huang, J., & Xiao, X. (2024). When Process Analysis Technology Meets Transfer Learning: A Model Transfer 
Strategy Between Different Spectrometers for Quantitative Analysis. IEEE Transactions on Instrumentation and 
Measurement, 73, 1–19. https://doi.org/10.1109/TIM.2024.3353273 

Yuan, X., Karbasforoushha, M. A., Syah, R. B. Y., Khajehzadeh, M., Keawsawasvong, S., & Nehdi, M. L. (2023). An Effective 
Metaheuristic Approach for Building Energy Optimization Problems. Buildings, 13(1). 
https://doi.org/10.3390/buildings13010080 

Zeidabadi, F. A., Dehghani, M., Trojovský, P., Hubálovský, Š., Leiva, V., & Dhiman, G. (2022). Archery Algorithm: A Novel 
Stochastic Optimization Algorithm for Solving Optimization Problems. Computers, Materials and Continua, 72(1), 399–416. 
https://doi.org/10.32604/cmc.2022.024736 

Zhao, W., Wang, L., & Mirjalili, S. (2022). Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering 
applications. Computer Methods in Applied Mechanics and Engineering, 388, 114194. 
https://doi.org/10.1016/j.cma.2021.114194 

Zhong, K., Xiao, F., & Gao, X. (2024). APFA: Ameliorated Pathfinder Algorithm for Engineering Applications. Journal of Bionic 
Engineering, 0123456789. https://doi.org/10.1007/s42235-024-00510-w 

Zhong, M., Wen, J., Ma, J., Cui, H., Zhang, Q., & Parizi, M. K. (2023). A hierarchical multi-leadership sine cosine algorithm to 
dissolving global optimization and data classification: The COVID-19 case study. Computers in Biology and Medicine, 
164(June), 107212. https://doi.org/10.1016/j.compbiomed.2023.107212 

 
 
 

       

 

 

© 2025 by the authors; licensee Growing Science, Canada. This is an open access article distributed 
under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://crea-
tivecommons.org/licenses/by/4.0/). 

 


	Decision Science Letters 14 (2025) ***–***
	C H R O N I C L E                                 A B S T R A C T
	1. Introduction
	2. Pelican Optimization Algorithm Background Principle
	Table 1
	Parameter settings
	Table 2
	Results of evaluating unimodal functions
	Table 4
	The statement of data
	References

