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 This document addresses the Nurse Scheduling Problem (NSP) and presents a dynamic multi-
criteria optimization model for its solution considering a predefined time horizon. The purpose 
is to maximize the level of "work well-being" of nurses formulated as the minimization of 
"aversion" which translates into costs or penalties for certain undesirable work shifts. For this, a 
series of criteria are defined to estimate the preference structure of nurses according to the 
hospital center specifications by assigning costs for undesirable shift assignments. The proposed 
methodology involves developing a heuristic to decompose the global problem into daily 
subproblems for which a dynamic algorithm is implemented that considers a cost accumulation 
process for all criteria and all nurses. Daily models are dynamically solved by modifying the 
coefficients of the well-being function to achieve equity throughout the planning period by 
updating and accumulating different averages. This methodology has shown satisfactory results 
for scheduling work shifts for doctors, paramedics, security guards, and drivers in numerous 
hospital centers in Colombia.  
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1. Introduction 

 
 
The assignment problem is one of the most significant in the optimization field, where, for example, different people are 
assigned to various jobs to minimize or maximize a pre-established objective. Generally, each assignment implies a different 
performance and, therefore, a different contribution to the objective function. These assignments can be of people to 
machines, men to offices, or drivers to buses, among others. Multiple approaches have been developed to find optimal 
solutions. 
 
In this work, a dynamic multi-criteria optimization model is developed for formulating and solving a classic operations 
research problem for assigning work shifts to different types of personnel over a specific planning period. The developed 
model is implemented for the case of nurses in several hospitals in Colombia, where time is freed up for the staff in charge 
of planning and scheduling nurses' work shifts, allowing them to dedicate themselves to patient care tasks as the planning 
can be done more quickly and better through an operations research model. For the case presented in this paper a very large 
number of criteria are used to balance the "work well-being" of nurses; it is equivalent to minimize the total aversion (the 
cost coefficients). 
 
The problem is solved for a planning period as long as it is required (it could be several weeks) but in order to avoid the 
complexity of the problem for the whole period, the proposed algorithm solves the problem for each day consecutively, but 
for each new day an update of parameters and variables is made, as it is described later, in order to rebalance the accumulated 
welfare (maximization problem) or aversion (minimization problem, as is the case for this paper). The problem is solved 
through a hybrid methodology consisting of two stages for each day: 
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i. Developing a dynamic multi-criteria model for maximizing nurses' "work well-being" based on a heuristic 
methodology comprising the following steps: forming the preference structure integrated by a set of "work well-being" 
criteria and estimating and calibrating the satisfaction coefficient matrix for each of these criteria. 
ii. Solving the assignment problem by applying analytical techniques. The assignment of work shifts to nurses can be 
solved using a traditional procedure such as the hungarian algorithm for a square matrix, which is quite efficient for this 
problem, or using one of the specialized software packages. To facilitate and simplify the solution of a large problem, 
decomposition techniques such as Benders, Dantzig-Wolfe, Lagrangian Relaxation, or Cross Decomposition could be used. 
 
Implementing the algorithm without dividing it into the two mentioned steps would increase the difficulty to formulate the 
constraints and, therefore, the execution time, as the model would no longer represent the classic assignment problem. 
Moreover, if it were forced to maintain the classic model, the number of variables would grow factorially since each 
combination of shifts for each day of all the planning horizon would be considered a variable. For these reasons, the 
proposed algorithm was developed in two steps. 
 
This work focuses on the first stage, which is central and presents the main contribution: the development of a dynamic 
multi-criteria model. A detailed description is provided for each of the proposed criteria to form the nurses' preference 
structure so that shift assignments are equitable and fair, meaning that their shifts are balanced in terms of their "work well-
being" throughout the planning period. A file, where the criteria values for each institution, is defined, recorded, and adjusted 
through trials with the hospital staff performing this task. The selected criteria are considered the most representative for 
the case study. However, other criteria could be defined as these concepts have a subjective and particular component for 
the staff of each institution. 
 
Stages i) and ii) are repeated iteratively for the entire planning period once for each day. Therefore, the "work well-being" 
matrix of step 1 is different for each day because when a shift is assigned for a day, the personnel's situation changes, as the 
assigned shift may be desired or not, causing the "well-being" values to differ for each person the following day. If a nurse 
is assigned to an undesirable shift, the next day there should be a propensity to assign her to a more desired shift, and 
conversely, other nurses who were assigned to a more desired shift may have a less desired one the next day to seek equity 
for all personnel throughout the planning period. Additionally, not only the current shift but the accumulation of all assigned 
shifts up to the current day should be considered, updating a set of averages and accumulated values day by day as specified 
later. 
 
The rest of this document is organized as follows. Section 2 presents a literature review of the most relevant approaches and 
methodologies for the nurse shift assignment problem. Section 3 outlines the proposed methodology, validated in Section 
4 with computational results. Finally, Section 5 provides conclusions. 
 
2. Literature Review 
 
The Resource Allocation Problem is of great importance in organizations of all types, industrial and service, among others, 
as it is based on the concept of small-action big-effect, maximizing productivity and profitability. In hospital centers for 
medical care, administrators face significant challenges as efficient resource allocation means their programmers are under 
increasing pressure to control costs while ensuring high-quality service delivery. One way to alleviate this pressure is to 
develop better decision-support systems for the scheduling staff. This work focuses on the nurse shift assignment aiming to 
maximize their "work well-being" considering that their satisfaction level results in better service quality and greater patient 
well-being (Stimpfel et al., 2012). Simultaneously, the goal is to reduce costs for delivering high-quality hospital services. 
 
The Nurse Scheduling Problem (NSP), also known as the Nurse Rostering Problem (NRP), is an NP-hard combinatorial 
optimization problem (Zolfagharinia et al., 2024) related to scheduling nurses' work shifts over a planning horizon to meet 
the hospital center's requirements or demands and workday-related constraints. Government regulations and labor laws, 
hospital policies, and nurses' status must be considered, as well as their "aversion" to certain work shifts. Although there 
are many possibilities for defining the objective function, this work aims to minimize the nurses' total "aversion" to certain 
shifts and the penalty costs for violating soft constraints, intending to maximize their "work well-being". 
 
The optimal solution to the NSP can improve the hospital resource allocation efficiency, nurse and patient safety and 
satisfaction, and administrative workload. Due to variations among different hospital centers depending on their conditions, 
numerous hard and soft constraints, and various objective function possibilities, the NSP has a multitude of representations 
and a wide variety of solution procedures. Due to its complexity and practical relevance, many different procedures have 
been proposed, including various methods and models, as shown below. 
 
Multi-Commodity Network Flow (MCF): In (El Adoly et al., 2018), a minimum cost MCF model is proposed, where 
source nodes are available nurses, sink nodes are shifts on different days of the planning horizon, and the demand is the 
number of nurses required per shift. The model was applied in an Egyptian hospital, improving the nurse satisfaction and 
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reducing overtime costs by 36%. MCF has also been implemented for energy management (Adhikari et al., 2012), airline 
scheduling (Maharjan & Matis, 2012), material routing (Jiang et al., 2014), maintenance planning (Mesquita et al., 2015), 
the traveling salesman problem (Boland et al., 2016; Letchford & Salazar-González, 2016), and inventory management 
(Rudi et al., 2016). 
 
Mixed Integer Programming (MIP): In (EL-Rifai et al., 2015), a stochastic MIP model for NSP in the emergency 
department of the Lille University Hospital, France, combined with discrete event simulation, is proposed. In (M’Hallah & 
Alkhabbaz, 2013), a MIP model is applied in health units in Kuwait to minimize the number of subcontracted nurses, 
considering their preferences, contributing to their satisfaction and performance, and providing a safer environment for 
patients. In (Lin et al., 2014), shift preference constraints and historical data are considered to maximize the nurse 
satisfaction. In (Yilmaz, 2012), the total nurse idle time is minimized over a week planning horizon. In (Yahia et al., 2016), 
a stochastic optimization model is proposed under three types of constraints: nurses, beds, and operating room time. In 
(Svirsko et al., 2019), service in the emergency department of the Children's Hospital of Pittsburgh is improved through a 
mathematical model minimizing the number of shifts needed to achieve the service level objective, considering nurses' shift 
durations and meal coverage. Additionally, fuzzy mathematical models have been implemented, such as in (Jafari et al., 
2016), where the number of subcontracted nurses to cover daily demands is minimized, considering preferences under 
uncertainty modeled with fuzzy variables. In (Burke & Curtois, 2014), the NSP is solved using a Branch and Price algorithm 
and an ejection chain method. 
 
Approximation Techniques: In (Ohki et al., 2010), a Cooperative Genetic Algorithm (CGA) is proposed, including a 
mutation operator and using a penalty function. In (Jafari & Salmasi, 2015), a mathematical model maximizes the nurses' 
preferences, and its optimal solution is compared with that generated through Simulated Annealing (SA). In (Legrain et al., 
2015), supernumeraries are considered to cover regular nurse shortages; two easy-to-implement models in spreadsheets are 
proposed to minimize the total cost, using local search algorithms. In (Bilgin et al., 2012), a general high-level hyper-
heuristic approach is proposed to solve the Patient Admission Scheduling Problem (PASP) and the NSP. In (Constantino et 
al., 2013), a two-phase heuristic is proposed to maximize nurse preference satisfaction and minimize soft constraint 
violations. In (Akbari et al., 2013), an SA and Variable Neighborhood Search (VNS) approach is developed, considering 
worker fatigue during their shift. In (Tassopoulos et al., 2015), a two-phase VNS heuristic is proposed. In (Rahimian et al., 
2017), a hybrid IP and a VNS four-stage algorithm is presented to generate and improve solutions. 
 
Hybrid Algorithms: In (X. Zhang et al., 2024), a multi-agent deep Q-network-based algorithm (MDQN-MA) for solving 
the problem with different strategies using neural networks to learn from their experiences is proposed. In (Ceschia et al., 
2023), a MIP model is combined with a Simulated Annealing metaheuristic based on two neighborhood structures. The 
model was tested in 34 hospitals in Italy. In (Chen et al., 2023), a learning mechanism algorithm with a deep neural network 
is proposed to reconstruct the solution obtained from local optima. In (Amindoust et al., 2021), a hybrid genetic algorithm 
considering the fatigue factor is proposed. In (Zhang et al., 2011), a hybrid swarm-based optimization algorithm combining 
genetic algorithms and variable neighborhood search in three steps, dividing the problem into several subproblems, is 
proposed. 
 
Multi-objective Optimization (MOO): In (Liang & Turkcan, 2016), two MOO models for appointment assignment are 
developed, aiming to minimize both total patients waiting time and total nurse overtime. In (Burke et al., 2010), MOO is 
proposed in two steps; first, integer programming generates a feasible solution, and then variable neighborhood search 
improves it. In (Hamid et al., 2020), MOO with three objectives is proposed: minimizing the total staffing cost, minimizing 
the sum of assignment incompatibilities, and maximizing the nurses' overall satisfaction with the assigned shifts. In (Di 
Martinelly & Meskens, 2017), a multi-objective model considering different staff skills aims to maximize group affinity 
and minimize idle time. 
 
Previous works have proposed up to four criteria, generally using an MOO approach for their solution. These methods have 
several notable disadvantages: first, the computational complexity and resource intensity required to evaluate and balance 
multiple objectives; second, it can be challenging to identify a clear optimal solution as the process often results in a set of 
non-dominated solutions (Pareto front) rather than a single answer, making decision-making difficult; third, formulating 
appropriate objective functions and weighting their relative importance is highly subjective and context-dependent, 
potentially leading to biases; finally, interpreting and analyzing the results can be challenging due to the multidimensional 
nature of the outcomes. For these reasons, this work develops a Multi-Criteria Decision Making (MCDM) approach that 
includes 20 criteria (in other cases, up to 40 criteria) applied in several hospital centers in Colombia. This proposal 
decomposes the NSP into multiple easily solvable subproblems in each period, integrating solutions sequentially and 
dynamically into the complete problem's solution. The proposed methodology integrates two main components: formulating 
a 20-criteria preference matrix and its estimation based on learning and exact daily subproblem solution, allowing a high 
level of detail in the criteria. To the authors' knowledge, this approach has not been considered in other papers generally or 
for NSP specifically. 
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3. Proposed Dynamic Multi-Criteria Optimization Model  
 
The assignment problem is a classic operations research problem that can be defined using a table or matrix where, in this 
case of assigning work shifts to nurses in a hospital center, the rows represent nurses, and the columns represent shifts. A 
cost or "aversion" coefficient is assigned to each matrix element since the criteria used may correspond to undesirable 
situations. Therefore, to maximize the nurses' "work well-being" a problem of minimizing costs associated with assigning 
certain shifts to each nurse is proposed. 
 
In the assignment problem, for example, a worker can perform several tasks, or a task can be shared by several workers. 
This work solves a general version of the assignment problem through a balanced model where each nurse is assigned to a 
single shift, and each shift is assigned to a single nurse. If there are more nurses than shifts, excess rest shifts are created to 
balance the problem; similarly, if there are more shifts than nurses, fictitious nurses are created. This last situation implies 
insufficient nurses to cover the shifts. This way of balancing the problem ensures that the number of nurses always equals 
the number of shifts, which is the simplest way to solve the assignment problem. 
 
To solve the resulting mathematical model of this assignment problem, one of three alternative approaches could be used: 
i) As a general Linear Programming problem, ii) As a Transportation Problem considered a special case of Linear 
Programming, iii) As an Assignment Problem, a special case of the Transportation Problem solvable by numerous methods 
such as the highly efficient "Hungarian Algorithm" for this problem. 
 
In this work, the following procedure is developed to solve the problem of assigning shifts to nurses in a hospital center: 
 
i) Selection of cost or "aversion" criteria for nurses' shifts. 
ii) Estimation of cost coefficients. Heuristic rules are used for their estimation. For each combination of nurses and 
shifts, the cost or "aversion" level of the nurse for performing that shift is estimated by aggregating several criteria (multi-
criteria problem) and dynamically considering accumulated values up to the programming day. Thus, in this phase, criteria 
and coefficients are recalculated considering past assignments up to the current period. 
iii) Parameter estimation and calculation of relative weights of the criteria through an iterative procedure based on the 
experience and preferences of the health entity. 
iv) Minimization of the global nurse cost or "aversion" during the current day based on the cost or "aversion" matrix 
using specialized software for the assignment problem. 
 
This process is repeated iteratively from step ii) to iv), day by day, recalculating all averages and variables until assigning 
shifts for all days of the planning horizon. Step 1 is not repeated, because it is supposed that the aversion to a shift or welfare 
during the whole planning period remains constant. In this way, for different days the aversion (cost) coefficients change 
as long are shifts are assigned for each day, i.e. every time the model is solved. 
 
3.1. Definition of the Preference Structure and Cost Coefficients 
 
The proposed dynamic multi-criteria optimization model consists of three subsections. The first defines the sets and indices, 
parameters and variables, and the procedure for estimating the coefficient matrix used in the assignment problem. The 
second shows the integer linear programming model. The third describes the model parameter calibration. 
 
Definition of Sets and Indices 

  
{1, … , 𝑖𝑖, … , 𝐼𝐼} Set of nurses. 𝐼𝐼 is the total number of nurses. 
{1, … , 𝑗𝑗, … , 𝐽𝐽} Set of shifts. 𝐽𝐽 is the maximum number of shifts. In this case, 𝐽𝐽 = 5 (Table 1). 
{1, … , 𝑠𝑠, … , 𝑆𝑆} Set of weeks in the planning horizon. 𝑆𝑆 is the total number of considered weeks. 

{1, … , 𝑘𝑘, … ,7} Set of days of the week. 𝑘𝑘 = 1, 2, 3, 4, 5, 6, 7  corresponds to Monday, Tuesday, Wednesday, 
Thursday, Friday, Saturday, and Sunday, respectively. 

{1, … , ℎ, … ,𝐻𝐻} Set of criteria for the multi-criteria model. 𝐻𝐻 is the total number of considered criteria. 
 
Definition of Shifts (Case Study) 
 
Table 1 shows the most commonly used shifts in hospital centers according to Colombian regulations. To ensure compliance 
with legal regulations regarding maximum daily working hours, overtime, or incompatible shifts according to law, the 
model uses high-value penalty coefficients to avoid them. However, when attempting to balance so many criteria 
simultaneously, some assignments may exceed the established limits. In such cases, the coefficients are adjusted, and the 
shifts are reassigned (a new model is solved). 
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Table 1  
Work shifts considered 

Symbol Shift Description Shift Duration (hours/day) 
1 Day 7:00 AM to 7:00 PM 12 
2 Night 7:00 PM to 7:00 AM 12 
3 Morning 7:00 AM to 1:00 PM 6 
4 Afternoon 1:00 AM to 7:00 PM 6 
5 Rest No work 0 

 
Parameters and Variables Definition 
 
Abbreviated words, mostly three letters long, are used for each variable name, as described below. Number (Num), Hour 
(Hou), Shift (Shi), Day (Day), Dedication (Ded), Nurse (Nur), Average (Ave), Accumulated (Acu), Week (Wee), Period 
(Per), Night (Nig), Rest (Res), Saturday (Sat), Sunday (Sun), Weekend (Wen), Non-Weekend (Nwe), All (All), Current 
(Cur). Using this nomenclature, Table 2 presents the list of parameters, and Table 3 shows the list of variables for week 𝑠𝑠, 
day 𝑘𝑘 for each nurse 𝑖𝑖 (left side) and for all nurses (right side). 
  
These parameters and variables are numbered consecutively for later referencing. They are defined in detail below. Two 
additional sub-index values are used: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, which refers to the current week of programming during the planning 
horizon, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, referring to the current programming day of the current week. Additionally, to refer to a specific day 
𝑘𝑘 of a specific week 𝑠𝑠, the pair (𝑠𝑠, 𝑘𝑘) will be used.   
 
Table 2 
List of Parameters 

Symbol Parameter 
𝑉𝑉1𝑗𝑗 𝑁𝑁𝐶𝐶𝑁𝑁𝐻𝐻𝑁𝑁𝐶𝐶𝑆𝑆ℎ𝑖𝑖𝑗𝑗 
𝑉𝑉2𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐻𝐻𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 
𝑉𝑉31𝑖𝑖 𝐴𝐴𝐶𝐶𝐷𝐷𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖 
𝑉𝑉32𝑠𝑠𝑠𝑠 𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 
𝑉𝑉36 𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐴𝐴𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 
𝑉𝑉39𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 

 
Table 3 
List of Variables 

Symbol For each nurse  Symbol For all nurses 
𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐻𝐻𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠  𝑉𝑉4𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐻𝐻𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝐶𝐶𝑁𝑁𝑠𝑠𝑠𝑠 
𝑉𝑉5𝑖𝑖𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐻𝐻𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠  𝑉𝑉6𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐻𝐻𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 
𝑉𝑉7𝑖𝑖𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠  𝑉𝑉8𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠 
𝑉𝑉9𝑖𝑖𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠  𝑉𝑉10𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠 
𝑉𝑉11𝑖𝑖𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠  𝑉𝑉12𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠 
𝑉𝑉13𝑖𝑖𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠  𝑉𝑉14𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 
𝑉𝑉15𝑖𝑖𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠  𝑉𝑉16𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠 
𝑉𝑉17𝑖𝑖𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠  𝑉𝑉18𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑖𝑖𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠 
𝑉𝑉19𝑖𝑖𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠  𝑉𝑉20𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑖𝑖𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 
𝑉𝑉21𝑖𝑖𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠  𝑉𝑉22𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠 
𝑉𝑉23𝑖𝑖𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠  𝑉𝑉24𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠    
𝑉𝑉25𝑖𝑖𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠  𝑉𝑉26𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 
𝑉𝑉27𝑖𝑖𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠  𝑉𝑉28𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠 
𝑉𝑉29𝑖𝑖𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠  𝑉𝑉30𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠 
𝑉𝑉37𝑖𝑖𝑠𝑠𝑠𝑠 𝐻𝐻𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑠𝑠𝑠𝑠   𝑉𝑉35𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 
𝑉𝑉38𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠 𝑆𝑆ℎ𝑖𝑖𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠    

 
• 𝑉𝑉1𝑗𝑗  (𝑁𝑁𝐶𝐶𝑁𝑁𝐻𝐻𝑁𝑁𝐶𝐶𝑆𝑆ℎ𝑖𝑖𝑗𝑗): numbers of hours of shift 𝑗𝑗, (Table 1). 
 
• 𝑉𝑉2𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝐻𝐻𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠): average number of hours of all shifts for the day (𝑠𝑠, 𝑘𝑘). For example, if a day requires 9 shifts: 3 

days, 2 nights, 1 morning, 1 afternoon, and 2 rests, this average would be (3 ∗ 12 +  2 ∗ 12 +  1 ∗ 6 +  1 ∗ 6 + 2 ∗
0)/9 =  8 hours. 

 
• 𝑉𝑉38𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠  (𝑆𝑆ℎ𝑖𝑖𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑠𝑠𝑠𝑠): shift 𝑗𝑗 assigned to nurse 𝑖𝑖 on day (𝑠𝑠, 𝑘𝑘). 
 
• 𝑉𝑉37𝑖𝑖𝑠𝑠𝑠𝑠�𝐻𝐻𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠�: hours worked by nurse 𝑖𝑖 on day (𝑠𝑠, 𝑘𝑘) depending on the assigned shift 𝑉𝑉38𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠, according to 

last column of Table 1. 
 
• 𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝐻𝐻𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠): average daily hours of nurse 𝑖𝑖 from the start of week 𝑠𝑠 until day 𝑘𝑘. 
  



 462 

𝑉𝑉3𝑖𝑖,𝑠𝑠,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
 ∑ 𝑉𝑉37𝑖𝑖,𝑠𝑠,𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1
𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

,    ∀𝑖𝑖,∀𝑠𝑠,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴  (1) 

 
• 𝑉𝑉4𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝐻𝐻𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠): average daily hours worked by all nurses in week 𝑘𝑘 until the last assigned day 𝑠𝑠. 
  

𝑉𝑉4𝑠𝑠,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ ∑ 𝑉𝑉37𝑖𝑖,𝑠𝑠,𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐼𝐼
𝑖𝑖=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
,   ∀ 𝑠𝑠,∀ 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 (2) 

 
• 𝑉𝑉5𝑖𝑖𝑠𝑠𝑠𝑠  (𝐻𝐻𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠): average daily hours of nurse 𝑖𝑖 from the start of the planning period until day (𝑠𝑠, 𝑘𝑘). 
 

𝑉𝑉5𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ ∑ 𝑉𝑉37𝑖𝑖𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

7 ∗ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
,    ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 (3) 

 
• 𝑉𝑉32𝑠𝑠𝑠𝑠  (𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠): nurse demand on day (𝑠𝑠, 𝑘𝑘). 
 
• 𝑉𝑉39𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠): average daily number of nurses working from the start of the planning period until day 

(𝑠𝑠, 𝑘𝑘). 
 

𝑉𝑉39𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ ∑ 𝑉𝑉32𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

(7 ∗ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴)
, ∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 (4) 

 
• 𝑉𝑉35𝑠𝑠𝑠𝑠(𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠): average daily hours for all nurses working from the start of the planning period until day 

(𝑠𝑠, 𝑘𝑘). 
 

𝑉𝑉35𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑉𝑉5𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 (5) 

 
• 𝑉𝑉36 (𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐴𝐴𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶): maximum number of nurses to schedule during any day, equal to the number of shifts for that day. 

The number of shifts may vary from day to day, implying a change in the assignment matrix size. This size is the maximum 
number of nurses determined by the day with the most shifts, meaning the day with the most nurses working. 

 
• 𝑉𝑉6𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝐻𝐻𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠): average daily hours worked by all nurses throughout the planning period until day(𝑠𝑠, 𝑘𝑘). 
 

𝑉𝑉6𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑉𝑉5𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑉𝑉36
𝑖𝑖=1

𝑉𝑉39𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 (6) 

 
• 𝑉𝑉7𝑖𝑖𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶R𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠): average weekly rests on saturdays or sundays for nurse 𝑖𝑖 throughout the planning period 

until week 𝑠𝑠. 𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑖𝑖𝑠𝑠 is a variable that takes the value 1 if the assigned shift to nurse 𝑖𝑖 is rest and it is saturday or 
sunday; it takes the value of 0 otherwise. 

 

𝑉𝑉7𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴R𝐶𝐶𝑠𝑠𝑖𝑖𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (7) 

 
• 𝑉𝑉8𝑠𝑠(𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴R𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠): average weekly rests on saturdays or sundays for all nurses throughout the planning period 

until week 𝑠𝑠. 
 

𝑉𝑉8𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑉𝑉7𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,7
, ∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (8) 

 
• 𝑉𝑉9𝑖𝑖𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶R𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠): average weekly weekend rests for nurse 𝑖𝑖 throughout the planning period. 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 

is a variable that takes the value 1 if the assigned shift to nurse 𝑖𝑖 is rest on both saturday and sunday of week 𝑠𝑠; 0 
otherwise. 

 

𝑉𝑉9𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝐶𝐶𝐶𝐶𝑊𝑊R𝐶𝐶𝑠𝑠𝑒𝑒𝐶𝐶𝐶𝐶𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  (9) 

 
• 𝑉𝑉10𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠): average weekly weekend rests for all nurses throughout the planning period. 
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𝑉𝑉10𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑉𝑉9𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,7
, ∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (10) 

 
• 𝑉𝑉11𝑖𝑖𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠):  average weekly rests on sundays for nurse 𝑖𝑖  throughout the planning period. 
𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 is a variable that takes the value 1 if the assigned shift to nurse 𝑖𝑖 is rest on sunday of week 𝑠𝑠; 0 otherwise. 

 

𝑉𝑉11𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ R𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (11) 

 
• 𝑉𝑉12𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠): average weekly rests on Sundays for all nurses throughout the planning period. 
 

𝑉𝑉12𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑉𝑉11𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,7
, ∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (12) 

 
• 𝑉𝑉13𝑖𝑖𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠): average daily rests for nurse 𝑖𝑖  on non-weekend days during the planning period. 
𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠 is a variable that takes the value 1 if the day (𝑠𝑠, 𝑘𝑘) is a rest day; 0 otherwise. This calculation is only done 
for days other than Saturday and Sunday. 

 

𝑉𝑉13𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ ∑ 𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

(7 ∗ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴)
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 (13) 

 
• 𝑉𝑉14𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠): average daily rests for all nurses on non-weekend days during the planning period. This 

calculation is only done for days other than Saturday and Sunday. 
 

𝑉𝑉14𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑉𝑉13𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 (14) 

 
• 𝑉𝑉15𝑖𝑖𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶NurR𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠): average weekly rests for nurse 𝑖𝑖  on Saturday or Sunday during the planning period. 
𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 is a variable that takes the value 1 if in week 𝑠𝑠, nurse 𝑖𝑖 rests on saturday or sunday; 0 otherwise. 

 

𝑉𝑉15𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (15) 

 
• 𝑉𝑉16𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴R𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠): average weekly rests for all nurses on saturday or sunday during the planning period. 
 

𝑉𝑉16𝑠𝑠 =
∑ 𝑉𝑉15𝑖𝑖,𝑠𝑠𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝑠𝑠,7
, ∀𝑠𝑠 (16) 

 
• 𝑉𝑉17𝑖𝑖𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠): average weekly nights worked on weekend days (Friday, Saturday, or Sunday) for nurse 
𝑖𝑖 during the planning period. Here, Friday is included as a weekend day because Friday night extends to Saturday in the 
morning. 𝑁𝑁𝑖𝑖𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 is a variable that takes the value 1 if in week 𝑠𝑠, nurse 𝑖𝑖 rests on Friday, Saturday, or Sunday; 0 
otherwise. 
 

𝑉𝑉17𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑁𝑁𝑖𝑖𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (17) 

 
• 𝑉𝑉18𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑖𝑖𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠): average weekly nights worked for all nurses on weekend nights (Friday, Saturday, or 

Sunday) during the planning period. 
 

𝑉𝑉18𝑠𝑠 =
∑ 𝑉𝑉17𝑖𝑖,𝑠𝑠𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝑠𝑠,7
, ∀𝑠𝑠 (18) 

 
• 𝑉𝑉19𝑖𝑖𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶Nur𝑁𝑁𝑖𝑖𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠): average daily nights worked by nurse 𝑖𝑖 during the planning period. 𝑁𝑁𝑖𝑖𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠  is a variable 

that takes the value 1 if nurse 𝑖𝑖 is assigned night on day (𝑠𝑠, 𝑘𝑘); 0 otherwise. 
 

𝑉𝑉19𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ ∑ 𝑁𝑁𝑖𝑖𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

7 ∗ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐴𝐴𝐴𝐴 (19) 

 
• 𝑉𝑉20𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑖𝑖𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠): average daily nights worked by all nurses during the planning period. 
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𝑉𝑉20𝑠𝑠,𝑠𝑠 =
∑ 𝑉𝑉19𝑖𝑖,𝑠𝑠,𝑠𝑠
𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝑠𝑠,7
, ∀𝑠𝑠,∀𝑘𝑘 (20) 

 
• 𝑉𝑉21𝑖𝑖𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠):  average weekly saturday nights worked by nurse 𝑖𝑖  during the planning period. 
𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 is a variable that takes the value 1 if nurse  𝑖𝑖 is assigned night on saturday of week 𝑠𝑠; 0 otherwise. 

 

𝑉𝑉21𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (21) 

 
• 𝑉𝑉22𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠): average weekly Saturday nights worked by all nurses during the planning period. 
 

𝑉𝑉22𝑠𝑠 =
∑ 𝑉𝑉21𝑖𝑖,𝑠𝑠𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝑠𝑠,7
, ∀𝑠𝑠 (22) 

 
• 𝑉𝑉23𝑖𝑖𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠):  average weekly sunday nights worked by nurse 𝑖𝑖  during the planning period. 
𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 is defined, which takes the value of 1 if nurse 𝑖𝑖 is assigned night on sunday of week 𝑠𝑠; 0 otherwise. 

 

𝑉𝑉23𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (23) 

 
• 𝑉𝑉24𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑖𝑖𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠): average weekly sunday nights worked by all nurses during the planning period, similar to 
𝑉𝑉16𝑠𝑠 but adding the variable 𝑉𝑉23𝑖𝑖𝑠𝑠. 

 

𝑉𝑉24𝑠𝑠 =
∑ 𝑉𝑉23𝑖𝑖,𝑠𝑠𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝑠𝑠,7
, ∀𝑠𝑠 (24) 

 
• 𝑉𝑉25𝑖𝑖𝑠𝑠𝑠𝑠(𝐴𝐴𝐴𝐴𝐶𝐶NurR𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠) : average daily rests on non-weekend days for nurse 𝑖𝑖  during the planning period. 
𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠  is a variable that takes the value 1 if nurse 𝑖𝑖  rests on day (𝑠𝑠, 𝑘𝑘) other than saturday and sunday; 0 
otherwise. 

 

𝑉𝑉25𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ ∑ 𝐴𝐴𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

7 ∗ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 (25) 

 
• 𝑉𝑉26𝑠𝑠𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴R𝐶𝐶𝑠𝑠𝑁𝑁𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠): average daily rests on non-weekend days for all nurses during the planning period. 
 

𝑉𝑉26𝑠𝑠𝑠𝑠 =
∑ 𝑉𝑉25𝑖𝑖,𝑠𝑠,𝑠𝑠
𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝑠𝑠,7
, ∀𝑠𝑠,∀𝑘𝑘 (26) 

 
• 𝑉𝑉27𝑖𝑖𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶NurR𝐶𝐶𝑠𝑠𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠): average weekly Saturday rests for nurse 𝑖𝑖 during the planning period. 𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐴𝐴𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 is a 

variable that takes the value 1 if nurse 𝑖𝑖 rests on Saturday of week 𝑠𝑠; 0 otherwise. 
 

𝑉𝑉27𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐴𝐴𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (27) 

 
• 𝑉𝑉28𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠): average saturday rests for all nurses during the planning period. 
 

𝑉𝑉28𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑉𝑉27𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,7
, ∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (28) 

 
• 𝑉𝑉29𝑖𝑖𝑠𝑠  (𝐴𝐴𝐴𝐴𝐶𝐶Nur𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠): average weekly Sunday rests for nurse 𝑖𝑖 during the planning period. 𝐴𝐴𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 is a 

variable that takes the value 1 if nurse 𝑖𝑖 rests on Sunday of week 𝑠𝑠; 0 otherwise. 
 

𝑉𝑉29𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ R𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑠𝑠=1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
, ∀𝑖𝑖,∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (29) 

 
• 𝑉𝑉30𝑠𝑠 (𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴R𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑠𝑠): average sunday rests for all nurses during the planning period. 
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𝑉𝑉30𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ 𝑉𝑉29𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐼𝐼
𝑖𝑖=1

𝑉𝑉39𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,7
, ∀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (30) 

 
• 𝑉𝑉31𝑖𝑖  (𝐴𝐴𝐶𝐶𝐷𝐷𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖): weekly work dedication of nurse 𝑖𝑖  in hours. The usual dedication of 48 weekly hours is assumed by 

default. For halftiime nurses, this value is 24, but another value may be used according to the signed contract with the 
nurse. 

 
Observation: some variables mentioned above are calculated only on Sundays: 𝑉𝑉7𝑖𝑖𝑠𝑠 - 𝑉𝑉12𝑠𝑠, 𝑉𝑉15𝑖𝑖𝑠𝑠 - 𝑉𝑉18𝑠𝑠, 𝑉𝑉20𝑠𝑠𝑠𝑠, 𝑉𝑉22𝑠𝑠 - 
𝑉𝑉24𝑠𝑠, and 𝑉𝑉27𝑖𝑖𝑠𝑠 - 𝑉𝑉30𝑠𝑠. 

 
3.1.1 Nurses' "Work Well-being" Criteria 
 
Table 4 defines the 20 proposed criteria in this work to form the nurses' preference structure in various hospital centers 
where this methodology has been implemented to estimate a multi-criteria function of their work well-being. These criteria 
can be modified or adjusted according to the context and particular conditions of each institution. 
 
Table 4 
Nurses' Work Well-being Criteria and Related Variables. 

Symbol Criteria and Related Variables 

𝐶𝐶1 Balance the number of hours worked by all nurses during the week (𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠, 𝑉𝑉4𝑠𝑠𝑠𝑠). 
𝐶𝐶2 Balance the number of hours worked by all nurses during the planning period (𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠). 
𝐶𝐶3 Balance rests on holidays for all nurses (𝑉𝑉7𝑖𝑖𝑠𝑠𝑠𝑠 ,𝑉𝑉8𝑠𝑠𝑠𝑠). 
𝐶𝐶4 Meet personal needs of nurses by avoiding certain shifts (𝑉𝑉38𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠). 
𝐶𝐶5 Penalize excess weekly dedication of a nurse (𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠). 

𝐶𝐶6 
Diversity and variation in shift assignment. Some institutions may desire the opposite situation, assigning blocks of consecutive 
days doing the same shift. In this case, as indicated later, it is possible to assign zero score to shift parameters, thus nullifying 
the criterion's cost (𝑉𝑉38𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠). 

𝐶𝐶7 
Assign the entire weekend as two continuous days (Saturday and Sunday) either both work or both rest. It is considered better 
to rest a full weekend and then work another full weekend rather than resting twice in two weekends only on Saturday or Sunday, 
as two continuous rest days allow greater flexibility to enjoy the weekend (𝑉𝑉38𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠). 

𝐶𝐶8 Rest after a night shift (𝑉𝑉38𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠). 
𝐶𝐶9 Balance sunday rests for all nurses (𝑉𝑉11𝑖𝑖𝑠𝑠𝑠𝑠 ,𝑉𝑉12𝑠𝑠𝑠𝑠). 

𝐶𝐶10 Penalize excess weekly dedication of a nurse plus a margin. This criterion is similar to C5 but uses an additional larger penalty 
when not only the nurse's work dedication is exceeded but also her dedication plus a margin (𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠). 

𝐶𝐶11 Balance the number of non-holiday daily rests for all nurses during the planning period (𝑉𝑉13𝑖𝑖𝑠𝑠𝑠𝑠, 𝑉𝑉14𝑠𝑠𝑠𝑠). 

𝐶𝐶12 Balance the number of holiday daily rests for all nurses during the planning period. Similar to 𝐶𝐶11, but for holidays (𝑉𝑉15𝑖𝑖𝑠𝑠𝑠𝑠 , 
𝑉𝑉16𝑠𝑠𝑠𝑠). 

𝐶𝐶13 
Balance the number of nights worked during weekends for all nurses. Weekend days are considered Fridays, Saturdays, and 
Sundays, as Friday night extends to Saturday morning, and it is assumed the nurse cannot use that Saturday since she must rest 
(𝑉𝑉17𝑖𝑖𝑠𝑠𝑠𝑠 ,  𝑉𝑉18𝑠𝑠𝑠𝑠). 

𝐶𝐶14 Balance the total number of nights for all nurses (𝑉𝑉19𝑖𝑖𝑠𝑠𝑠𝑠 ,  𝑉𝑉20𝑠𝑠𝑠𝑠). 

𝐶𝐶15 Balance the number of Saturday nights worked for all nurses. A night shift on a Saturday is considered less desirable than a 
night shift on a weekday (𝑉𝑉21𝑖𝑖𝑠𝑠𝑠𝑠  𝑉𝑉22𝑠𝑠𝑠𝑠). 

𝐶𝐶16 Balance the number of Sunday nights worked for all nurses (𝑉𝑉23𝑖𝑖𝑠𝑠𝑠𝑠, 𝑉𝑉24𝑠𝑠𝑠𝑠). 
𝐶𝐶17 Penalize the Friday night shift if Saturday and Sunday are rest (𝑉𝑉38𝑖𝑖𝑠𝑠𝑠𝑠). 
𝐶𝐶18 Assign at least one rest day per week to all nurses (𝑉𝑉38𝑖𝑖𝑠𝑠𝑠𝑠). 
𝐶𝐶19 Balance Saturday rests for all nurses (𝑉𝑉27𝑖𝑖𝑠𝑠𝑠𝑠, 𝑉𝑉28𝑗𝑗𝑠𝑠𝑠𝑠). 
𝐶𝐶20 Balance Sunday rests for all nurses (𝑉𝑉29𝑖𝑖𝑠𝑠𝑠𝑠, 𝑉𝑉30𝑠𝑠𝑠𝑠). 

 
3.1.2 Calculation of Coefficient Matrix for Each Criterion 
 
Quantifying the value of a well-being coefficient directly is not easy. It may be more convenient to estimate it through 
indirect, objective, and impartial methods than leaving it in the hands of the person assigning shifts subjectively. Instead of 
maximizing nurses' work well-being, this work estimates their level of "aversion" to certain shifts by assigning cost or 
penalty coefficients for undesirable situations and then minimizing the global aversion level. The calculation of the 
coefficient matrix considering this proposal is detailed below, applied to a real case. 
 
Let (𝑁𝑁𝑠𝑠𝑠𝑠) be the assignment coefficient matrix for day 𝑘𝑘 of week 𝑠𝑠. Its rows (𝑖𝑖) represent the nurses, and its columns (𝑗𝑗) 
represent the shifts; its elements are represented by 𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠, if shift 𝑗𝑗 were assigned to nurse 𝑖𝑖 on day (𝑠𝑠, 𝑘𝑘). Let 𝐶𝐶𝐴𝐴𝑠𝑠𝑠𝑠ℎ be the 
ℎ criterion matrix, such that each element (𝑖𝑖, 𝑗𝑗) is represented by 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠ℎ, if shift 𝑗𝑗 were assigned to nurse 𝑖𝑖 on day (𝑠𝑠, 𝑘𝑘) for 
criterion ℎ. To calculate 𝑁𝑁𝑠𝑠𝑠𝑠 for a particular day 𝑘𝑘 of a week 𝑠𝑠, the calculation of 𝐶𝐶𝐴𝐴𝑠𝑠𝑠𝑠ℎ  is required based on all previous 
days and weeks up to 𝑠𝑠 and 𝑘𝑘 dynamically. For example, to calculate matrix 𝑁𝑁2,3, previous assignments up to day 3 of week 
2 for each criterion ℎ are required. This way, criteria values are re-estimated, and the new 𝐶𝐶𝐴𝐴2,3,ℎ is built. Finally, the 
calculation of 𝑁𝑁𝑠𝑠𝑠𝑠 is shown in equation (31). Note that both matrices 𝑁𝑁 and 𝐶𝐶𝐴𝐴 are square matrices 𝐼𝐼 ∗ 𝐽𝐽. 
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𝑁𝑁𝑠𝑠𝑠𝑠 = �𝐶𝐶𝐴𝐴𝑠𝑠𝑠𝑠ℎ ,
𝐻𝐻

ℎ=1

   ∀𝑠𝑠, 𝑘𝑘   or equivalently   𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠 = �𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠ℎ ,
𝐻𝐻

ℎ=1

 ∀s, k, 𝑖𝑖, 𝑗𝑗 (31) 

Each element 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠ℎ  of nurse 𝑖𝑖 , in shift 𝑗𝑗 , on day (𝑠𝑠, 𝑘𝑘)  criterion ℎ  has an associated coefficient 𝐴𝐴ℎ  representing an 
adjustment value to the criterion according to the shift assignment expert. This value is detailed later in this section. Below 
is the estimation of the 20 criteria defined earlier. 
  
• Criterion 1 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠1: cost of assigning a long shift (longer than the average of all nurses) to a nurse if the nurse has a higher 

average daily hour than all nurses. The cost increases by summing two differences corresponding to the two previous 
conditions: 𝑉𝑉1𝑗𝑗 – 𝑉𝑉2𝑠𝑠𝑠𝑠, and 𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠  - 𝑉𝑉4𝑠𝑠𝑠𝑠. This cost is calculated if 𝑉𝑉1𝑗𝑗 > 𝑉𝑉2𝑠𝑠𝑠𝑠 and 𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠 > 𝑉𝑉4𝑠𝑠𝑠𝑠. 

 
𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠1 = 𝐴𝐴1 ∗ �𝑉𝑉1𝑗𝑗 − 𝑉𝑉2𝑠𝑠𝑠𝑠 + 𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠 − 𝑉𝑉4𝑠𝑠𝑠𝑠�, ∀ 𝑠𝑠, 𝑘𝑘, 𝑖𝑖, 𝑗𝑗 (32) 

 
• Criterion 2 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠2: similar to criterion 1 but taking the averages for the entire period 𝑉𝑉5𝑖𝑖𝑠𝑠𝑠𝑠 and 𝑉𝑉6𝑠𝑠𝑠𝑠 until the assignment 

time. It is calculated if 𝑉𝑉1𝑗𝑗 > 𝑉𝑉2𝑠𝑠𝑠𝑠 y 𝑉𝑉5𝑖𝑖𝑠𝑠𝑠𝑠 >  𝑉𝑉6𝑠𝑠𝑠𝑠. 
 

𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠2 = 𝐴𝐴2 ∗ �𝑉𝑉1𝑗𝑗 − 𝑉𝑉2𝑠𝑠𝑠𝑠 + 𝑉𝑉5𝑖𝑖𝑠𝑠𝑠𝑠 − 𝑉𝑉6𝑠𝑠𝑠𝑠�, ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑘𝑘 (33) 
 
• Criterion 3 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠3 (equations (34) and (35)): cost of assigning a different shift than rest on a holiday to a nurse if her 

accumulated rests on holidays are less than the average of all nurses. Equations (34), if 𝑗𝑗 is a rest shift, and (35), if 𝑗𝑗 is 
different from rest. 

 
𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠3 = 𝐴𝐴3 ∗ (𝑉𝑉7𝑖𝑖𝑠𝑠𝑠𝑠 − 𝑉𝑉8𝑠𝑠𝑠𝑠), 𝑖𝑖𝐴𝐴 𝑉𝑉7𝑖𝑖𝑠𝑠𝑠𝑠 > 𝑉𝑉8𝑠𝑠𝑠𝑠 ,   ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑘𝑘 

 
𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠3 = 𝐴𝐴3 ∗ (𝑉𝑉8𝑠𝑠𝑠𝑠 − 𝑉𝑉7𝑖𝑖𝑠𝑠𝑠𝑠), 𝑖𝑖𝐴𝐴 𝑉𝑉7𝑖𝑖𝑠𝑠𝑠𝑠 < 𝑉𝑉8𝑠𝑠𝑠𝑠 ,   ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑘𝑘 

  (34) 
 

(35) 
 

This criterion has a dual effect: penalizing the rest shift for a nurse if her accumulated rests are higher than the average of 
all nurses (34) and penalizing shifts different from rest for a nurse if her accumulated rests are lower than the average of 
all nurses (35). 

 
• Criterion 4 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠4: cost or "aversion" for assigning an undesirable shift. The criterion value is taken equal to the same 

weight (𝐴𝐴4), meaning a very high value. For example, if a nurse studies on tuesday mornings, she would not want the 
morning or day shift assigned on those days. Possible imbalances in these days' assignments could be corrected in 
subsequent days since other balance criteria operate permanently. 

 
• Criterion 5 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠5: cost of exceeding the weekly hours for a nurse according to her dedication. 
 

𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠5 = max�𝐴𝐴5 ∗ �𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠 ∗ 𝑘𝑘 + 𝑉𝑉1𝑗𝑗 − 𝑉𝑉31𝑖𝑖�, 0� , ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑘𝑘 (36) 
 

This cost is only assigned if its value is greater than zero. This criterion has practically no effect during the first 4 days of 
the week for persons with a 48-hour dedication if the maximum shift duration is 12 hours. 

 
• Criterion 6 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠6 =  𝐴𝐴6 : cost of repeating the previous shift. If nurse 𝑖𝑖  is assigned to shift 𝑗𝑗  on day (𝑠𝑠, 𝑘𝑘)  means 
𝑉𝑉38𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠 = 𝑗𝑗 and it is intended to reassign shift 𝑗𝑗 the next day. This criterion is used to force variation in the assignment. 

 
• Criterion 7 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠7: cost of not assigning rest on both saturday and sunday. Eq. (37) and Eq. (38). 
 
𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠7 =   

𝐴𝐴71, if the previous day (Saturday) was not rest and the current day is rest, (37) 
 

𝐴𝐴72, if the previous day (Saturday) was rest and the current day is not rest, for both ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑘𝑘 (38) 
 
This criterion seeks to have the weekend complete in rest instead of having a rest on two consecutive Saturdays. 
 
• Criterion 8 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠8  = 𝐴𝐴8: cost of assigning a shift other than rest or night after night. A nurse should have rest or another 

night shift after working a night shift; in the latter case, she would have the entire day to rest. This criterion is to avoid 
working more than 12 hours continuously. 
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• Criterion 9 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠9: cost of assigning rest on a sunday to a nurse whose accumulated sunday rests are higher than all nurses' 
average. The goal is to balance sunday rests for all nurses. If 𝑉𝑉11𝑖𝑖𝑠𝑠 > 𝑉𝑉12𝑠𝑠, 𝑗𝑗 = 5 and 𝑘𝑘 = 7, then 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠9 = 𝐴𝐴9. 

 
• Criterion 10 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(10): similar to criterion 5, it is the cost of exceeding a nurse's weekly dedication above a margin (𝐶𝐶𝑁𝑁). 

This generates two cases: when 𝐶𝐶𝑁𝑁 = 0, equation (39) and when 𝐶𝐶𝑁𝑁 =  ℎ𝑁𝑁𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 equation (40). 
 

𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(10)
1 = max�𝐴𝐴(10)

1 ∗ �𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠 ∗ 𝑘𝑘 + (𝑉𝑉1𝑗𝑗) − 𝑉𝑉31𝑖𝑖�, 0� , ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑘𝑘 (39) 
  

𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(10)
2 = max�𝐴𝐴(10)

2 ∗ �𝑉𝑉3𝑖𝑖𝑠𝑠𝑠𝑠 ∗ 𝑘𝑘 + (𝑉𝑉1𝑗𝑗 + 𝐶𝐶𝑁𝑁) − 𝑉𝑉31𝑖𝑖�, 0� , ∀ 𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑘𝑘 (40) 
 
• Criterion 11 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(11): cost to enforce rest on Monday to Friday during the planning period for the nurse if her accumulated 

rests is lower than the accumulated average of all nurses during the period. If 
𝑉𝑉13𝑖𝑖𝑠𝑠𝑠𝑠 < 𝑉𝑉14𝑠𝑠𝑠𝑠, 𝑗𝑗 ≠ 5 and 𝑘𝑘 = (1, . . . ,5), then 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(11) = 𝐴𝐴(11). 

 
• Criterion 12 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(12) : cost to enforce weekend rest during the planning period for the nurse if her corresponding 

accumulated rest is lower than the accumulated average of all nurses during the period. If 
𝑉𝑉15𝑖𝑖𝑠𝑠 < 𝑉𝑉16𝑠𝑠,  𝑗𝑗 ≠ 5 and (𝑘𝑘 = 6 𝑁𝑁 𝑘𝑘 = 7), then 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(12) = 𝐴𝐴(12). 

 
• Criterion 13 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(13): cost to balance weekend nights. Penalizes the weekend night shift for nurses with an accumulated 

(weekend night) higher than the accumulated average for all nurses. If 𝑉𝑉17𝑖𝑖𝑠𝑠 > 𝑉𝑉18𝑠𝑠, 𝑗𝑗 = 2 and (𝑘𝑘 = 6 𝑁𝑁 𝑘𝑘 = 7), then 
𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(13) = 𝐴𝐴(13). 

 
• Criterion 14 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(14): cost to balance the total number of nights during the planning period. To seek equity, penalizes 
𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(14) = 𝐴𝐴(14) in any of two cases: 𝑉𝑉19𝑖𝑖𝑠𝑠𝑠𝑠 < 𝑉𝑉20𝑠𝑠𝑠𝑠 y 𝑗𝑗 ≠ 2; or, 𝑉𝑉19𝑖𝑖𝑠𝑠𝑠𝑠 > 𝑉𝑉20𝑠𝑠𝑠𝑠 and 𝑗𝑗 = 2.   

 
• Criterion 15 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(15): cost to balance the total number of Saturday nights during the planning period. If 𝑉𝑉21𝑖𝑖𝑠𝑠 > 𝑉𝑉22𝑠𝑠, 
𝑗𝑗 = 2 and 𝑘𝑘 = 6, then 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(15) = 𝐴𝐴(15). 

 
• Criterion 16 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(16): cost to balance the total number of Sunday nights during the planning period. If 𝑉𝑉23𝑖𝑖𝑠𝑠 > 𝑉𝑉24𝑠𝑠, 
𝑗𝑗 = 2 and 𝑘𝑘 = 7, then 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(16) = 𝐴𝐴(16). 

 
• Criterion 17 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(17)  = 𝐴𝐴(17): penalize if the Friday shift was different from night and Saturday was rest, and Sunday is 

different from rest. If 𝑉𝑉38𝑖𝑖𝑠𝑠5 ≠ 2, 𝑉𝑉38𝑖𝑖𝑠𝑠6 = 5 and 𝑉𝑉38𝑖𝑖𝑠𝑠7 ≠ 5. If the nurse did not work night on Friday and rested on 
Saturday, she should also rest on Sunday to enjoy the full weekend. 

 
• Criterion 18 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(18) = 𝐴𝐴(18) : assign at least one rest day per week to each nurse. If 𝑉𝑉25𝑖𝑖𝑠𝑠1 + 𝑉𝑉25𝑖𝑖𝑠𝑠2 + 𝑉𝑉25𝑖𝑖𝑠𝑠3 +
𝑉𝑉25𝑖𝑖𝑠𝑠4 + 𝑉𝑉25𝑖𝑖𝑠𝑠5 + 𝑉𝑉27𝑖𝑖𝑠𝑠 + 𝑉𝑉29𝑖𝑖𝑠𝑠 =  0 and 𝑗𝑗 diferent 5. See definition of variables before. 

 
• Criterion 19 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(19) =𝑤𝑤(19): balance the number of Saturday rests for each nurse during the planning period. If 𝑉𝑉27𝑖𝑖𝑠𝑠 >
𝑉𝑉28𝑠𝑠, 𝑗𝑗 = 5 and 𝑘𝑘 = 6. 

 
• Criterion 20 𝐴𝐴𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠(20)  = 𝐴𝐴(20): balance the number of Sunday rests for each nurse during the planning period. If 𝑉𝑉29𝑖𝑖𝑠𝑠 >
𝑉𝑉30𝑠𝑠, 𝑗𝑗 = 5 and 𝑘𝑘 = 7. 

 
3.2. Mathematical Model Formulation 
 
Parameters: 
• 𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠: cost or penalty coefficients for the day (𝑠𝑠, 𝑘𝑘) (calculated in section 3.1.2). 
 
Decision variables: 
 

• 𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠 = �1, if the nurse 𝑖𝑖 𝐴𝐴𝐴𝐴𝑘𝑘𝐶𝐶𝑠𝑠 𝑠𝑠ℎ𝑖𝑖𝐴𝐴𝐴𝐴 𝑗𝑗 𝑁𝑁𝐴𝐴 𝐷𝐷𝐴𝐴𝐴𝐴 (𝑠𝑠, 𝑘𝑘)
0, otherwise  

 
Mathematical model for each day (𝑠𝑠, 𝑘𝑘):  
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minimize  𝑧𝑧𝑠𝑠𝑠𝑠 = ��𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

∗ 𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠  (41) 

s.t. 

�𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠

𝐼𝐼

𝑖𝑖=1

= 1, ∀𝑗𝑗 ∈ 𝐽𝐽 (42) 

 

�𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠

𝐽𝐽

𝑗𝑗=1

= 1, ∀𝑖𝑖 ∈ 𝐼𝐼 (43) 

 

𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠𝑠𝑠  ∈ {0,1}, ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽 (44) 
 

The objective function equation (41) minimizes the penalty coefficients depending on the nurse assignments. Constraints 
(42) and (43) ensure respectively that each shift is assigned to a single nurse and each nurse is assigned to a single shift. 
Constraints (44) define the binary nature of the variables. 
 
3.3 Parameter Calibration 
 
The model parameters are adjusted, day after day, based on the previously daily assignment results. A reinforcement 
learning method was implemented based on the perception of each assignment by an expert, who could be the person 
responsible for shift assignment in the hospital center, dynamically adjusting the weights of each 𝐴𝐴ℎ in each daily iteration. 
 
This section shows 20 cost coefficients taken from a particular case of a colombian hospital center and describes the most 
relevant ones. Values range from 2 to 68,000, a scale adjusted based on data training. This scale may vary for each 
institution; the important thing is that the relationship between their values allows adjusting an indicator according to 
dynamically obtained results. 
 
The weights assigned to criteria as described ahead look subjective, they are initially chosen assigning greater values for 
the criteria considered more important. Once the weights assigned to criteria are completed, the problem is solved, and its 
solution is shown to the person in charge of the assignment process. In this way a stage of readjusting the values of weights 
is made up to the point when the person agrees with the solution. At this point the weights are considered ready to be applied 
to the real hospital. It is not discarded that eventually could be further corrections in the value of the weights as the conditions 
change. Although the definition of the initial weights can be made using a subjective logical criterion, as the model 
undergoes the adjustment phase, the algorithm converges to the same optimal solution. Therefore, the scale of the weights 
is irrelevant, as is the value of the objective function. What matters in the solution is the assignment of shifts to the nurses 
(decision variable values), minimizing their total level of aversion (objective function) regardless of its value. 
 
• 𝐴𝐴ℎ = 2, arbitrarily selected minimum value. This criterion is considered one of the least important in the assignment 

process. 
• 𝐴𝐴2 = 40 balancing the entire planning period is considered more important than balancing a week. An unbalanced week 

could be balanced inversely in the following week. 
• 𝐴𝐴3 = 3 this criterion is considered only slightly more important than the first. 
• 𝐴𝐴4 = 60.000 a very high value to try to avoid that shift. Preferences can be made for any number of shifts. 
• 𝐴𝐴5 = 2.000 cost for each hour exceeding the weekly dedication value. 
• 𝐴𝐴61 = 1.000  and 𝐴𝐴62 = 2.000 doing two nights is considered less desirable than repeating any other shift for two 

consecutive days. The Nig-Res-Nig sequence is equivalent to repeating the night shift since a night must be followed by 
rest. Assigning night on both days is considered a repetition of the night shift. The Nig-Nig (two consecutive nights) 
sequence is considered in the parameter 𝐴𝐴4. 

• 𝐴𝐴71 = 2, 𝐴𝐴72 = 7. 
• 𝐴𝐴8 = 68.000 working during the day after a night ending at 7:00 AM would be assigning more than 12 working hours in 

a 24-hour period, which is very undesirable. 
• 𝐴𝐴9 = 3.600. 
• 𝐴𝐴(10)

1 = 2.000 y 𝐴𝐴(10)
2 = 5.000 if the shift exceeds 52 hours (48-hour work dedication plus a 4-hour margin), an 

additional penalty is incurred. Therefore, two values exist. 
• 𝐴𝐴11 = 5 penalizes shifts other than rest for nurses. 
• 𝐴𝐴12 = 5,𝐴𝐴13 = 8,𝐴𝐴14 = 8. 
• 𝐴𝐴15 = 1.600 penalizes the Saturday night shift for nurses with accumulated Saturday nights higher than the average for 

all nurses. 
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• 𝐴𝐴16 = 1.600 penalizes the Sunday night shift for nurses with accumulated Sunday nights higher than the average for all 
nurses. 

• 𝐴𝐴17 = 1.600. 
• 𝐴𝐴18 = 800 penalizes a shift other than rest for a nurse who has not had any rest during the week. 
• 𝐴𝐴19 = 3 penalizes the Saturday rest shift for nurses with accumulated Saturday rests higher than the corresponding 

average for all nurses during the planning period. 
• 𝐴𝐴20 = 4 penalizes the Sunday rest shift for nurses with accumulated Sunday rests higher than the corresponding average 

for all nurses during the planning period. 
 
4. Computational Results 
 
The proposed dynamic multi-criteria optimization model for solving the NSP incorporated the Hungarian method for the 
daily scheduling. Additionally, an interface was created to interact with the program. Before starting the shift scheduling, 
the software identifies Sundays and fixed and movable holidays according to Colombian legislation, i.e., moving movable 
holidays to the following Monday. 
 
The proposed methodology was implemented in more than 20 hospital centers in Colombia with highly efficient results, 
showing improvements in the following aspects: 
 
• Equity in shift assignment: A more equitable distribution of nurses' shifts is guaranteed, as although the optimization 

criteria are subjective and specific to the institution, overloads or underutilization of personnel are avoided. This results 
in better shift rotation among personnel, contributing to a fairer distribution of workloads and greater employee 
satisfaction. 

• Positive impact on service quality: Greater patient satisfaction and reduced waiting times are evidenced as this solution 
allows for better human resource planning, resulting in more time dedicated to patient care and more timely service. 

• Resource optimization: The model contributed to better utilization of available human resources (nurses), reducing the 
need for overtime and minimizing personnel underutilization as it balances supply with demand for resources more 
objectively. 

• Model flexibility: The dynamic model's ability to adapt it to changes in work demand and personnel preferences was 
demonstrated. The model allowed for quick and precise adjustments to shift assignments in unforeseen situations, as its 
execution time was less than 30 seconds in case of sudden changes. 

• Resource release: Routine work for personnel responsible for nurse shift assignment, a highly tedious and time-
consuming activity due to the numerous conditions and requirements to be programmed for their needs' satisfaction, 
was released. Thus, the institution can use the released resources to focus on their primary task of patient care and 
attention in the hospital center rather than the shift scheduling. 

 
Although there is not a detailed comparison between the results obtained in the manual and the automated process, since 
for the manual process there were not a measure for the value of the objective function, the satisfaction level shown by all 
the institutions was very high with the application of this proposed approach. 
 
5. Conclusions and contributions 

 
This work emphasizes developing and formulating a "work well-being" matrix for nurses, i.e., a proposal for criteria to 
estimate their preference structure, experimental and dynamic heuristic estimation of the planning process considering 
numerous changing factors over time, and the inclusion of non-linear criteria since some factors may be much less desirable 
if their values deviate significantly from given parameters such as averages. Estimating the "work well-being" matrix could 
be considered an Artificial Intelligence (AI) application since as time progresses, the software "trains" or "learns" to make 
more accurate decisions for satisfying the optimization criteria according to the system's dynamics, as its values are 
accumulated or averaged daily to maximize the total well-being of all nurses throughout the planning period. An outstanding 
contribution of this work is the management of a very large number of criteria used to balance the "work well-being". For 
the case presented in this paper 20 criteria have been used, but this number could be much greater, since the difficulty of 
the proposed model rises in a liner way with the number of criteria. To the best of our knowledge, such a large number of 
criteria have not been used in the literature for this problem. 
 
For the daily model solution, the hungarian method is used with a square matrix guaranteeing the existence of a feasible 
solution. In this case, any optimization package can be used; however, in this work, the optimization algorithm was 
developed, programmed, and incorporated into the software used by the hospital center for automatic nurse shift assignment 
to use the institution's own resources. This solution procedure was implemented in more than 20 hospitals in Colombia, 
obtaining satisfactory and efficient results. 
 
The methodology presented in this work could be used to generally solve the shift assignment problem for nurses, medical 
and paramedical personnel in any hospital center. Moreover, this is a flexible and dynamic methodology that could be 
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applied to the particular conditions of any work area, such as manufacturing or services. The results obtained demonstrate 
the value and effectiveness of the dynamic multi-criteria optimization model for nurse shift assignment in health institutions, 
contributing to improving the staff well-being, operational efficiency, and the quality of service provided to patients. 
 
This work could be a starting point for exploring new applications of Operations Research to real systems, helping to close 
the gap between scientific development and its practical implementation. 
 
Acknowledgements 
 
This work was supported by the Facultad de Minas at Universidad Nacional de Colombia. 
 
References 
 
Adhikari, R. S., Aste, N., & Manfren, M. (2012). Multi-commodity network flow models for dynamic energy management 

– Smart Grid applications. Energy Procedia, 14, 1374–1379. https://doi.org/10.1016/j.egypro.2011.12.1104 
Akbari, M., Zandieh, M., & Dorri, B. (2013). Scheduling part-time and mixed-skilled workers to maximize employee 

satisfaction. The International Journal of Advanced Manufacturing Technology, 64(5–8), 1017–1027. 
https://doi.org/10.1007/s00170-012-4032-4 

Amindoust, A., Asadpour, M., & Shirmohammadi, S. (2021). A Hybrid Genetic Algorithm for Nurse Scheduling Problem 
considering the Fatigue Factor. Journal of Healthcare Engineering, 2021, 1–11. https://doi.org/10.1155/2021/5563651 

Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W., & Vanden Berghe, G. (2012). One hyper-heuristic approach to 
two timetabling problems in health care. Journal of Heuristics, 18(3), 401–434. https://doi.org/10.1007/s10732-011-
9192-0 

Boland, N., Kalinowski, T., & Rigterink, F. (2016). New multi-commodity flow formulations for the pooling problem. 
Journal of Global Optimization, 66(4), 669–710. https://doi.org/10.1007/s10898-016-0404-x 

Burke, E. K., & Curtois, T. (2014). New approaches to nurse rostering benchmark instances. European Journal of 
Operational Research, 237(1), 71–81. https://doi.org/10.1016/j.ejor.2014.01.039 

Burke, E. K., Li, J., & Qu, R. (2010). A hybrid model of integer programming and variable neighbourhood search for highly-
constrained nurse rostering problems. European Journal of Operational Research, 203(2), 484–493. 
https://doi.org/10.1016/j.ejor.2009.07.036 

Ceschia, S., Di Gaspero, L., Mazzaracchio, V., Policante, G., & Schaerf, A. (2023). Solving a real-world nurse rostering 
problem by Simulated Annealing. Operations Research for Health Care, 36, 100379. 
https://doi.org/10.1016/j.orhc.2023.100379 

Chen, Z., De Causmaecker, P., & Dou, Y. (2023). A combined mixed integer programming and deep neural network-
assisted heuristics algorithm for the nurse rostering problem. Applied Soft Computing, 136, 109919. 
https://doi.org/10.1016/j.asoc.2022.109919 

Constantino, A. A., Landa-Silva, D., de Melo, E. L., de Mendonça, C. F. X., Rizzato, D. B., & Romão, W. (2013). A 
heuristic algorithm based on multi-assignment procedures for nurse scheduling. Annals of Operations Research. 
https://doi.org/10.1007/s10479-013-1357-9 

Di Martinelly, C., & Meskens, N. (2017). A bi-objective integrated approach to building surgical teams and nurse schedule 
rosters to maximise surgical team affinities and minimise nurses’ idle time. International Journal of Production 
Economics, 191, 323–334. https://doi.org/10.1016/j.ijpe.2017.05.014 

El Adoly, A. A., Gheith, M., & Nashat Fors, M. (2018). A new formulation and solution for the nurse scheduling problem: 
A case study in Egypt. Alexandria Engineering Journal, 57(4), 2289–2298. https://doi.org/10.1016/j.aej.2017.09.007 

EL-Rifai, O., Garaix, T., Augusto, V., & Xie, X. (2015). A stochastic optimization model for shift scheduling in emergency 
departments. Health Care Management Science, 18(3), 289–302. https://doi.org/10.1007/s10729-014-9300-4 

Hamid, M., Tavakkoli-Moghaddam, R., Golpaygani, F., & Vahedi-Nouri, B. (2020). A multi-objective model for a nurse 
scheduling problem by emphasizing human factors. Proceedings of the Institution of Mechanical Engineers, Part H: 
Journal of Engineering in Medicine, 234(2), 179–199. https://doi.org/10.1177/0954411919889560 

Jafari, H., Bateni, S., Daneshvar, P., Bateni, S., & Mahdioun, H. (2016). Fuzzy Mathematical Modeling Approach for the 
Nurse Scheduling Problem: A Case Study. International Journal of Fuzzy Systems, 18(2), 320–332. 
https://doi.org/10.1007/s40815-015-0051-2 

Jafari, H., & Salmasi, N. (2015). Maximizing the nurses’ preferences in nurse scheduling problem: mathematical modeling 
and a meta-heuristic algorithm. Journal of Industrial Engineering International, 11(3), 439–458. 
https://doi.org/10.1007/s40092-015-0111-0 

Jiang, Y., Zhang, X., Rong, Y., & Zhang, Z. (2014). A Multimodal Location and Routing Model for Hazardous Materials 
Transportation based on Multi-commodity Flow Model. Procedia - Social and Behavioral Sciences, 138, 791–799. 
https://doi.org/10.1016/j.sbspro.2014.07.262 

Legrain, A., Bouarab, H., & Lahrichi, N. (2015). The Nurse Scheduling Problem in Real-Life. Journal of Medical Systems, 
39(1), 160. https://doi.org/10.1007/s10916-014-0160-8 



L. F. Moreno-Velásquez et al. / Decision Science Letters 14 (2025) 
 

471 

Letchford, A. N., & Salazar-González, J.-J. (2016). Stronger multi-commodity flow formulations of the (capacitated) 
sequential ordering problem. European Journal of Operational Research, 251(1), 74–84. 
https://doi.org/10.1016/j.ejor.2015.11.001 

Liang, B., & Turkcan, A. (2016). Acuity-based nurse assignment and patient scheduling in oncology clinics. Health Care 
Management Science, 19(3), 207–226. https://doi.org/10.1007/s10729-014-9313-z 

Lin, C.-C., Kang, J.-R., Liu, W.-Y., & Deng, D.-J. (2014). Modelling a Nurse Shift Schedule with Multiple Preference 
Ranks for Shifts and Days-Off. Mathematical Problems in Engineering, 2014, 1–10. 
https://doi.org/10.1155/2014/937842 

Maharjan, B., & Matis, T. I. (2012). Multi-commodity flow network model of the flight gate assignment problem. 
Computers & Industrial Engineering, 63(4), 1135–1144. https://doi.org/10.1016/j.cie.2012.06.020 

Mesquita, M., Moz, M., Paias, A., & Pato, M. (2015). A decompose-and-fix heuristic based on multi-commodity flow 
models for driver rostering with days-off pattern. European Journal of Operational Research, 245(2), 423–437. 
https://doi.org/10.1016/j.ejor.2015.03.030 

M’Hallah, R., & Alkhabbaz, A. (2013). Scheduling of nurses: A case study of a Kuwaiti health care unit. Operations 
Research for Health Care, 2(1–2), 1–19. https://doi.org/10.1016/j.orhc.2013.03.003 

Ohki, M., Uneme, S., & Kawano, H. (2010). Effective Mutation Operator and Parallel Processing for Nurse Scheduling. In 
Intelligent Systems: From Theory to Practice (pp. 229–242). https://doi.org/10.1007/978-3-642-13428-9_10 

Rahimian, E., Akartunalı, K., & Levine, J. (2017). A hybrid Integer Programming and Variable Neighbourhood Search 
algorithm to solve Nurse Rostering Problems. European Journal of Operational Research, 258(2), 411–423. 
https://doi.org/10.1016/j.ejor.2016.09.030 

Rudi, A., Fröhling, M., Zimmer, K., & Schultmann, F. (2016). Freight transportation planning considering carbon emissions 
and in-transit holding costs: a capacitated multi-commodity network flow model. EURO Journal on Transportation and 
Logistics, 5(2), 123–160. https://doi.org/10.1007/s13676-014-0062-4 

Stimpfel, A. W., Sloane, D. M., & Aiken, L. H. (2012). The Longer The Shifts For Hospital Nurses, The Higher The Levels 
Of Burnout And Patient Dissatisfaction. Health Affairs, 31(11), 2501–2509. https://doi.org/10.1377/hlthaff.2011.1377 

Svirsko, A. C., Norman, B. A., Rausch, D., & Woodring, J. (2019). Using Mathematical Modeling to Improve the 
Emergency Department Nurse-Scheduling Process. Journal of Emergency Nursing, 45(4), 425–432. 
https://doi.org/10.1016/j.jen.2019.01.013 

Tassopoulos, I. X., Solos, I. P., & Beligiannis, G. N. (2015). Α two-phase adaptive variable neighborhood approach for 
nurse rostering. Computers & Operations Research, 60, 150–169. https://doi.org/10.1016/j.cor.2015.02.009 

Yahia, Z., Eltawil, A. B., & Harraz, N. A. (2016). The operating room case-mix problem under uncertainty and nurses 
capacity constraints. Health Care Management Science, 19(4), 383–394. https://doi.org/10.1007/s10729-015-9337-z 

Yilmaz, E. (2012). A Mathematical Programming Model for Scheduling of Nurses’ Labor Shifts. Journal of Medical 
Systems, 36(2), 491–496. https://doi.org/10.1007/s10916-010-9494-z 

Zhang, X., Yang, Y., Zhu, Q., Lin, Q., Chen, W., Li, J., & Coello, C. A. C. (2024). Multi-agent deep Q-network-based 
metaheuristic algorithm for Nurse Rostering Problem. Swarm and Evolutionary Computation, 87, 101547. 
https://doi.org/10.1016/j.swevo.2024.101547 

Zhang, Z., Hao, Z., & Huang, H. (2011). Hybrid Swarm-Based Optimization Algorithm of GA &amp; VNS for Nurse 
Scheduling Problem. In Information Computing and Applications (pp. 375–382). https://doi.org/10.1007/978-3-642-
25255-6_48 

Zolfagharinia, H., Najafi, M., Rizvi, S., & Haghighi, A. (2024). Unleashing the Power of Tweets and News in Stock-Price 
Prediction Using Machine-Learning Techniques. Algorithms, 17(6), 234. https://doi.org/10.3390/a17060234 

  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 



 472 

               

 

 
© 2025 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 
license (http://creativecommons.org/licenses/by/4.0/). 

 


