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 Communication is essential for humanity today and in the past. However, some individuals lack 
verbal communication due to their innate disability and physical losses from accidents. There are 
sign-language communication methods developed for such people to communicate. Artificial 
intelligence solutions are offered to remove the disadvantaged situations of people with 
disabilities due to communication in daily life. Nowadays, rapidly developing image processing 
and artificial intelligence methods are proper solutions for the problem focused on in this study. 
Convolution neural network techniques, which have become very popular recently, offer 
solutions to many problems. On the other hand, the YOLO algorithm shows very high 
performance in real-time object detection. In this study, we proposed a method for identifying 
the alphabets which each gesture delivers. This work studied hand detection on images and 
classification according to hand movements. The American Sign Language (ASL) standard was 
used as the sign language. The most recent version of YOLO, known as YOLOv5x, is used for 
gesture detection. Concentrating on the Static Sign-language problem, a study was conducted on 
the definition of hand movements. The letters “J” and “Z” are not included in the data set because 
movable hand signals are required. Apart from these two letters, a total number of 24 letters are 
classified. The proposed model achieved a training performance of 99.45% mAP@.5. Moreover, 
the proposed model has a performance of 97.9% mAP@.5 on the test dataset. The results 
demonstrate that the model's object detection performance is excellent. A statistical analysis of 
the training time shows that the training time has been drastically decreased, 4.5 hours with the 
current model as compared to the existing models in the literature. 
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1. Introduction 

As digital technology and network infrastructure have matured, human-computer interaction (HCI) has become a regular 
part of our lives. People's interest in hand gestures in HCI has grown due to how well-suited they are for computer 
engagement (Wu et al., 2016). Using your fingers and palm, you can express yourself through hand gestures (Ying Wu & 
Huang, n.d.). The requirement for any extra input device can be removed by using a hand gesture to communicate with HCI 
devices. A person's signature must be recognized by a real interaction between a human and a system. In response, hand 
gesture recognition (HGR) has emerged as a hot area in recent times in various capacities (Sagayam & Hemanth, 2017a), 
robotic commands (Tao et al., 2018), virtual games (Kulshreshth et al., 2017), and organic touch screens for small 
applications (Ng et al., 2011). Hand gesture recognition is used daily in the human communication network, especially sign 
language identification (Lichtenauer et al., 2008). Sign language is a visual language that uses an ordered set of expressive 
hand movements to describe concepts (Sharma & Singh, 2020). This is the only mode of communication for people who 
are deaf. As per the World Health Organization (WHO), five percent of the total population of the world (about 360 million) 
suffers from mild to severe hearing problems and can only interact via their geographical gestures' language (WHO, 2015). 
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There is still a language barrier between both the normal and speech-hearing challenged individuals since this interaction is 
hard for the typical person to comprehend. As a result, motion detection with computer assistance may be used to interpret 
across sign languages. Since it would serve as a bridge between groups, this would be advantageous. 
 
A significant worry is the communication obstacle that occurs when deaf and hard-to-hear and voiceless individuals seek 
to engage with normal people who do not understand sign language. This apparent communication gap is typically bridged 
with the assistance of translators who convert sign language to spoken language and conversely. Unfortunately, such a 
device is highly costly and may not be accessible to them throughout their lives. As a result, advancements in automated 
detection of sign language motions would be highly advantageous to the deaf and hard-of-hearing people, as this will help 
to tear down the present communication gap (Sahoo et al., 2014).  
 
Dynamic and static hand movements are possible (Mitra & Acharya, 2007; Rautaray & Agrawal, 2015a). Hand positions, 
also called stable hand signals, are made up of diverse forms and orientations of hands that do not communicate moving 
objects. A series of hand positions with related gesture information make up dynamic hand movements. Hand positions 
primarily comprise the sign language lexicon's fingerspelling, used for word-by-word signing of names, site names, ages, 
numerals, dates, and years that do not have established signals in the glossary. Optical interaction utilizing hand gestures 
has also gained widespread acceptability in a variety of application sectors, such as in human-computer interaction (HCI) 
(Liu & Wang, 2018; Pavlovic et al., 1997), human-robot involvement (HRI) (Jacob et al., 2013; Sagayam & Hemanth, 
2017b), and medical interventions because it eliminates body contact using conventional interacting tools. Therefore, 
automated hand position identification has been a hot research subject, with several studies employing sight and electronic 
signal-based techniques (Cheok et al., 2019; Liu & Wang, 2018). When considering the complexity of the data-gathering 
procedure, vision-based systems appear to be more consumer pleasant and easy than others.  
The application for real-time hand gesture detection primarily focuses on classifying and identifying gestures. In order to 
comprehend how a hand moves, we may employ a variety of methods and concepts from diverse disciplines, including 
image processing and neural networks. Hand gesture recognition has a huge variety of uses in general. For instance, we can 
use sign language to converse with deaf people who are unable to hear. 
  
Despite encouraging results, traditional approaches cannot extract constant attribute descriptors for hand position 
identification in actual applications because of the variety of troublesome circumstances (Pisharady & Saerbeck, 2015; 
Rautaray & Agrawal, 2015b). The difficulties stem mostly from the inability of traditional machine learning approaches to 
effectively extract distinguishing data of shapes from regular raw input information. The hand position detection technique 
addresses the identification and breakdown of hands from photos acquired with composite background circumstances 
(Stergiopoulou et al., 2014). Another challenge is determining the strong elements that distinguish the geometrical 
differences in the appearance of the unchanged hand position displayed by various people [(Rautaray & Agrawal, 2015b). 
Another difficult issue, particularly in automatic sign language identification, is the high number of motion modules with 
relatively minimal interclass variance (Rautaray & Agrawal, 2015b). To turn the underdone pictures into the most 
discriminative demonstration by which the classifier can recognize and discriminate the patterns properly, statistically 
sophisticated image/video processing processes with extensive domain expertise are required. Another stumbling barrier in 
learning sign linguistic acknowledgment is an absence of widely accessible information with an adequate amount of 
example pictures.  
 
In the literature of today, two basic sorts of methods are prevalent for hand gesture detection. To record and identify the 
gesture, one is utilizing a particular piece of equipment. The second strategy involves using deep learning to identify hand 
gestures. The drawback of this strategy is the high cost of deep learning model creation and processing, as well as the lack 
of readily accessible, reasonably priced, and widely utilizing specialized device tools on the market today. Deep Learning 
techniques are applied in various applications (Kataria et al., 2021; Pillai et al., 2021; S. Srivastava et al., 2021; Arora et al., 
2021). The deep learning methodology is involved in multiple applications. Deep learning methodologies and advances in 
convolutional neural networks (CNN) outperform the traditional methodology to hand action identification because they 
prevent the necessity to derive composite handcrafted attitude descriptors from pictures, which is required in the 
conventional initialization and categorization phases (Li et al., 2019; Neto et al., 2018; Xing et al., 2018). CNN accelerates 
the feature extraction method by acquiring high-level picture assumptions and capturing the utmost discriminative attribute 
value in classified style (Affonso et al., 2017; Traore et al., 2018). As a result, it eliminates the issue of receiving irregular 
characteristic descriptions while functioning with a huge quantity of movement classes with very modest interclass 
variances. To generate quick and accurate object recognition, YOLO was built using Convolutional Neural Networks 
(CNN). According to the state-of-the-art, it is a very quick end-to-end object identification technique. YOLO is frequently 
used to forecast object detection tasks such as real-time pedestrian detection, traffic sign recognition, mask detection, etc. 
 
In this work, we suggested a method for determining the alphabet which each gesture delivers. This work investigated hand 
detection on images and classification based on hand gestures. Concentrating on the Static Sign-language issue, a study was 
undertaken on the definition of hand movements. This work presents the following list of contributions:  
 
• Instead of a regular classification task, here object detection, and recognition method is applied, which is a quite rare 

method in hand gesture tasks in the literature. 
• The most recent version of YOLO, known as YOLOv5x, is used to enable future researchers to comprehend the model's 

utility for the task by comparing it to earlier efforts in ASL. In addition, the images were augmented before model 
training, which considerably improved the model's performance. 
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• For object detection tasks, intersection over union parameters can be chosen lower to get better results. In this work, the 
0.45 IoU threshold is used, which is the default value for YOLOv5 to understand better whether the model is trained 
well or not. 

 
The paper is organized as follows: Section 2 gives a brief description of various techniques applied for Hand Gesture 
Recognition in the Literature review, then section 3 gives details about the dataset used in this study and preprocessing 
methods applied to images, section 4 gives the details about the proposed methodology, section 5 gives the results, and 
section 6 gives discussion and comparison and section 7 with conclusions followed by the list of references.  

2. Literature Review 
 
ASL uses PCA-based elements, a Gabor filter, and an orientation-based hash code to represent the various ASL alphabets. 
An artificial neural network (ANN) is subsequently used to categorize the obtained traits. The efficacy of their database of 
24 static motions was examined in this study. The authors of this work (Kang et al., n.d.) developed a CNN-based prototype 
for recognizing human gestures. The framework has been tested and trained on 31 different ASL alphabet and number 
classes. Similar to how the authors here (Ameen & Vadera, 2017) used another method of ASL alphabet identification, a 
CNN model fed both color and depth images of motions. To extract characteristics from each input in this model, two 
convolutional layers are used. The data from these layers are then merged and sent to an entirely associated layer for 
categorization. Numerous researchers have investigated employing depth sensors, such as the Microsoft Kinect, in addition 
to RGB photographs. A method for sign language recognition using CNN with multi-view growth and implication synthesis 
was demonstrated in another work. 
 
In another study, Ansari and Harit suggested CNN model training using augmented data. The Microsoft Kinect camera was 
used to take depth photos of the actions. This method has significant computing requirements but achieves outstanding 
detection performance. Another hand gesture recognition method for ISL identification using the Kinect sensor has been 
seen in the research (ANSARI & HARIT, 2016). In this study, hand motions were correctly identified using a unique 
combination of feature extraction and machine learning techniques. Many scientists in the field used contact-based 
techniques for gesture recognition. Here, Chong and Kim described a method for identifying ASL using a wireless gadget 
(Chong & Kim, 2020).  
 
28 ASL words were produced using six inertial measurement units (IMUs), and they were then categorized using the LSTM 
algorithm. Xiao et al. suggest a gesture detection technique based on recurrent neural networks (RNN) for a system that 
translates Chinese sign language. The signer's skeleton pattern is used for two-way communication in this piece. The 
effectiveness of this strategy is evaluated using common RGB-depth images of various stationary movements (Xiao et al., 
2020).  
 
Abraham et al. (2019) showed a sensor-based real-time hand gesture detection mechanism for ISL translation. Hand posture 
and finger motions were retrieved from sensor data and electronically transferred to the processing equipment in this work. 
Finally, for classification, an LSTM model is used. This model has been evaluated on 26 regularly used ISL motions 
(Abraham et al., 2019). For detecting ISL, Gupta and Kumar proposed a unique sensor-based system. Electromyograms and 
IMUs were placed on both signers' forearms to collect sign detail. This approach was classified with a 2.73 % error rate 
utilizing a multi-label model that focuses on the linguistic features of signals (Gupta & Kumar, 2021). Finally, a contact-
based process for identifying ISL and ASL alphabets and numbers was presented by (Kakoty & Sharma, 2018). Finger and 
wrist joint angles are obtained and preprocessed with a rolling normal filtration mechanism after sign data is collected 
utilizing data gloves. For segmentation, SVM with 10-fold cross-validation is used, and a precision of 96.7 % is achieved. 
Ameen and Vadera suggested a CNN-based acknowledgment system for ASL alphabet symbols. They used two concurrent 
CNNs to extract features from both color and depth photos of motions and obtained a cognitive efficiency of 80.34 on the 
ASL finger-writing benchmark dataset. In another approach, (Rastgoo et al., 2018) used RBMs (Restricted Boltzmann 
Machines) to detect ASL fingerspelling with RGB and distance pictures in a deep learning technique. This approach used 
CNNs to identify hands, and the discovered hand pictures were passed into the RBM store to identify the sign tags. Their 
prototype was evaluated on four openly accessible databases (Massey University Gesture Dataset, ASL, and Fingerspelling 
Dataset from the Center for Sight, Language, and Signal Processing at the University of Surrey, NYU, and ASL 
Fingerspelling datasets) and outperformed the competition. 
 
Mohanty et al. (2017) introduced another deep learning technique based on CNN with the availability of a complicated 
environment and variable lighting conditions to detect static hand motions (Mohanty et al., 2017). Their developed 
framework, which consists of two obscurity operations covered with a ReLu initiation role, was assessed with three publicly 
accessible standard databases, namely the NUS hand position database with a complex background (Daniels et al., 2021; 
Dima & Ahmed, 2021). Trish hand position database with a consistent dark framework and the Marcel hand position 
database produced decent identification performance on all three. In an another study, A rapid, precise fine-grain object 
identification framework based on YOLOv4 deep neural network was developed by (Roy et al., 2022). With DenseNet in 
the backbone to maximize feature transfer and reusable, two novel remaining blocks in the backbone and neck enhance 
feature extraction and lower computing costs, the SPP helps improve receptive field, a modified Path Aggregation Network 
(PANet) preserves fine-grain localized information, and a modified PANet improves feature fusion, the modified network 
architecture maximizes both detection accuracy and speed. This study offers a practical and efficient way for identifying 
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numerous plant illnesses in challenging situations, which may be expanded to identifying various fruits and crops, 
identifying general diseases, and utilizing numerous technological agricultural detection methods. A deep learning (DL)-
based automated detection accuracy model for real-time endangered wildlife identification is presented by the author in a 
related paper called WilDect-YOLO (Roy et al., 2023). In the model, we include DenseNet blocks to enhance the 
preservation of crucial feature information and introduce a residual block in the CSPDarknet53 backbone for powerful and 
discriminating deep spatial feature extraction. A modified PANet and SPP have been used to increase feature fusion, 
maintain fine-grain localized information, and improve receptive field representation, leading to better identification in a 
variety of difficult settings. 
 
According to the literature study, YOLO is an object detection model, therefore it would be effective not only for detecting 
and localizing the hand in an image/video but also for identifying the gesture. As a result, we present a hand gesture 
recognition model based on YOLOv5, which is detailed in detail in the next section. 
 
3. Materials and Methods 

3.1 Dataset 
 
American Sign Language (ASL) is a sign language dataset widely used by deaf communities in the United States. It is a 
form of expression created by hand gestures and is commonly used in many countries. ASL has a set of 26 signs, as shown 
in Fig. 1, known as the manual alphabet, for spelling words from the English language.  In this work, fingerspelling has 
been studied using object detection and classification methods based on Deep Learning Models. The American Sign 
Language Letters Dataset (“American Sign Language Letters Dataset,” 2021), provided by the Roboflow platform as a 
public dataset is used for our task. This dataset consists of images with 720 or 1080p resolution and 26 English letters of 
the alphabet. Since "J" and "Z" letters require dynamic movements, most research and datasets do not include these letters, 
especially if the task is based on a classification. These 720 images are in RGB format and have a size of 416 x 416 to 
process on the YOLOv5 model. The dataset is labeled with corresponding bounding boxes on the Roboflow website, a quite 
popular website for labeling datasets. This website makes it easy to annotate and create data tags in the desired format. 

3.2 Pre-processing 
 
The selected ASL dataset contains 720 images collected by an ordinary camera; however, the number of images is quite 
scarce for training. To train the model with more images, the images were reproduced by applying the augmentation method 
to the images. Horizontal flip, ±10% hue change, ±15% saturation application, ±10% brightness change, ±10% exposure, 
and 1.5px blur application were performed to differentiate the images from their original state. Seven hundred twenty images 
were reproduced up to 1638 images. In Fig. 2, a few examples of the images reproduced for the letter 'A' are given. The 
letters 'Z' and 'J', which are emotional in ASL, were removed from the data set. 

 
Fig. 1. Fingerspelling for letters (Wikipedia Web Page, American Manuel Alphabet, Https://En.Wikipedia.Org/Wiki/American_manual_alphabet, 

11/12/2021., n.d.). 

The data was labelled using a very well-known website called Roboflow online. Images were labeled with bounding boxes 
for use in the YOLOv5 model. 24 classes were labeled to represent 24 letters without 'Z' and 'J' letters. The input size of the 
YOLOv5 model is 416x416. Therefore, images of different sizes in the dataset were converted to 416x416 by reshaping. 
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The new data set created by data augmentation was divided into train, validation, and testing. The dataset was set as 1392 
(85%) training, 180 (11%) validation, and 66 (4%) testing. 

 

 

 

 

 

 

 

 

 

 

Fig/ 2. Examples of Augmentation Images. 

4. Research Methodology 
 
In this part, the model architecture and the dataset are explained in detail. 
 
4.1 Model Architecture 
 
Since our main objective is to detect hands and estimate the corresponding letter, YOLO (You Only Look Once) algorithm 
is preferred because the effectiveness of this algorithm is relatively high, and it is a widely used algorithm for object 
detection. This algorithm is a one-stage object detection algorithm that considers the problem as a regression problem. 
Rather than subtracting the Region of Interest (RoI), it directly generates the bounding box coordinates of each class and 
their probability by using the regression method as shown in Fig. 3. YOLO is especially used for real-time object detection 
tasks as an object detection algorithm. It can predict the class and coordinates of all objects in a frame by passing them 
through the neural network at once. This feature is a high-speed algorithm compared to other real-time object detection 
methods such as Fast R-CNN, Single-Shot MultiBox Detector (SSD), etc. YOLO splits the input into S×S grids for object 
detection, and each grid is responsible for finding out whether there is an object in the area. The algorithm checks the 
following arguments; if its midpoint is in it, its length, height, and what class it is in. The anchor box, first used in the Faster 
R-CNN model, is used even though there is more than one object in each grid. Its logic is that the prediction of the box is 
performed around the object with the help of specific hand-picked patterns. Additionally, predictions are made for each 
grid's predetermined number of anchor boxes. 
 

 
Fig. 3. Bounding Boxes (Redmon & Farhadi, 2016) 
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The algorithm generates so many prediction boxes for one object. Non-max Suppression algorithm is used to select the 
correct box among these prediction boxes. This algorithm consists of 3 steps. Firstly, all boxes with a confidence score 
below a certain level are removed from the prediction. Print the box with the highest confidence score if there are still boxes. 
Finally, all other boxes are excluded from the prediction, except the box with the highest confidence score. When this 
operation is performed for each object, we are left with one box for each object due to the process. 
 
The YOLOv5 network architecture is based on a single convolutional neural network (CNN) that is trained to predict 
bounding boxes and class probabilities directly from full images in one evaluation. The architecture of YOLOv5 is divided 
into three parts: the backbone network, the neck network, and the head network. The backbone network is responsible for 
extracting features from the input image. YOLOv5 uses a variety of backbone architectures, such as ResNet, Darknet, and 
EfficientNet, which are pre-trained on the ImageNet dataset to improve the accuracy of the model. The backbone network 
is followed by the neck network, which is responsible for fusing the features from the backbone network and creating a 
feature pyramid. The neck network is implemented using the SPADE (SPatially Adaptive Normalization) module and a 
lightweight convolutional network. The head network is responsible for predicting the bounding boxes and class 
probabilities. YOLOv5 uses anchor boxes to predict the bounding boxes. Anchor boxes are pre-defined boxes of different 
aspect ratios and scales that are used to detect objects of different sizes and shapes. The head network is implemented using 
a lightweight convolutional network with multiple layers of 3x3 convolutions and a 1×1 convolutional layer that predicts 
the bounding boxes and class probabilities. In terms of computational complexity, YOLOv5 requires more computational 
resources than its predecessor YOLOv4. However, it is still relatively fast and can run in real-time on a standard GPU. The 
model size of YOLOv5 is also smaller than YOLOv4, which makes it more suitable for deployment on edge devices. The 
exact computational complexity of the YOLOv5 model depends on the specific architecture and the size of the input image. 
Overall, YOLOv5 is a powerful object detection system that is able to detect and classify objects in real-time with high 
accuracy. Its architecture is composed of a backbone, neck and head network, which work together to extract features, fuse 
them and make predictions. The computational complexity and model size are relatively high but still manageable for most 
use-cases. 

 

Fig. 4. The pipeline of YOLOv5 Architecture (Fang et al., 2021). 
 
Analytics presented YOLOv5 in 2020, giving much better results than previous versions of the YOLO algorithm in terms 
of speed and performance. Fig. 4 displays the pipeline of YOLOv5 Architecture. The structure is like the YOLOv4 
algorithm. It consists of three main parts: head, spine, and neck. The backbone section was created with CSPDarknet for 
feature extraction. CSPDarknet was created by incorporating CSPNet s (Cross Stage Partial Networks) into the Darknet.  

 
 

Fig. 5. Different sizes of YOLOv5 with Pretrained Models (“YOLOv5,” 2021). 
 

The neck section is used to build feature pyramids to help YOLO-v5 generalize object scaling to describe the same item in 
various sizes and scales. In the neck area, PANet is utilized. For feature maps, the head section generates junction boxes. 
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The final output vectors are produced together with class probabilities and bounding boxes for nodes that have been 
discovered. With just around one-fourth of the computational complexity, YOLOv5 s achieves the very same accuracy as 
YOLOv3-416. YOLOv5 has different versions depending on the width and depth of the backbone network. Some of the 
versions are shown in Fig. 5. These are YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x. In this study, a deeper version, the 
YOLOv5x version, was chosen. 

5. Results 

This part considers and explains the dataset preprocessing, metrics evaluation for the model training process, and results for 
the train, validate, and test procedures. To match our model architectures with the chosen dataset, preprocessing is required. 
In consideration of our model architecture, the evaluation measures are chosen. 

5.1 Evaluation Metrics 
 
5.1.1 Precision and Recall Metrics 
 
As a model evaluation, accuracy is not enough to check the correctness of this kind of task. The modeled ratio calculates 
the predicted areas' accuracy value to the entire data set. Model accuracy alone is sufficient, especially in unbalanced 
distributed data sets. However, just looking at the accuracy metric can be misleading in object detection and recognition 
cases. The Confusion Matrix table in Fig. 6 is often used in model evaluation. The Confusion matrix table shows the actual 
and predicted values in a classification problem. True Positives represent a situation where the model correctly predicts the 
true classes. True Negative describes a situation where the model predicts false, and it is false. False Positive refers to the 
situation where the model says the prediction is true but false. False Negative, on the other hand, refers to the case where 
the model says it is wrong as a prediction, but it is correct. 

 

 

 

 

 

Fig. 6. Predicted Training Data Set. 

When the accuracy metric is insufficient in model evaluation, the concepts of recall and precision emerge. The precision 
metric displays the proportion of positive values that match our estimates. When a False Positive estimation costs high, 
precision value is crucial. Contrarily, recall is a statistic that demonstrates the proportion of operations that we must estimate 
as positive; we estimate as positive. The recall value is the statistic that aids us in situations where the cost of estimating as 
a False Negative is high. The precision and recall formulas are listed below. 

Precision=  TP/(TP+FP) (1) 

Recall=  TP/(TP+FN) (2) 

where TP = True Positive, FP= False Positive and FN= False Negative. 

5.1.2 Mean Average Precision 
 
Mean Average Precision (mAP) is a widely used metric in object detection problems. It compares object detection models 
such as YOLO, R-CNN, etc. It has also been used to evaluate applications in competitions such as the COCO and PASCAL 
VOC competitions. The Intersection Over Union (IoU) ratio is a popular metric for assessing an input's correctness in object 
detection algorithms. Many object detection algorithms employ a measure known as Intersection-Over-Union or Jaccard 
Index. IoU is a relatively straightforward and highly effective metric. The connected region between the predicted bounding 
box and the real area divides the overlap area between the anticipated bounding box area and the underlying real area by 
the IoU. IoU metrics have a scale from 0 to 1. Between 0 and 1, there is a complete overlap. With a preset threshold, 
intersection over union rate predicts the outcome. A graph showing precision as a recall function is known as the precision-
recall (PR) curve. The graph shows the balance between the two measurements for various model detection confidence 
levels. High sensitivity results from low FP. However, more occurrences of items may be overlooked, leading to high FN 
and low recall. Conversely, the recall will increase if more positives are taken into account by lowering the IoU threshold, 
but false positives may also rise, lowering the precision score. A good model should still have excellent sensitivity and 
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recall even if the confidence threshold shifts. Ideally, AP @ is the Area Under the PR Curve (AUC-PR). The definition of 
AP in mathematics 

𝐴𝐴𝐴𝐴@𝛼𝛼11 =   
1
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𝑖𝑖ℇ𝑅𝑅

 (3) 

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝(𝑟𝑟′) (4) 

Each class's AP score is determined separately. This indicates that there is roughly the same number of (loose) AP values 
as there are classes. Next, the average of these AP values yields the measurement: Mean Average Precision (mAP). Finally, 
the AP values across all classes are averaged to create the Mean Average Precision. 
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𝑓𝑓𝑓𝑓𝑟𝑟 𝑛𝑛 𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑐𝑐𝑟𝑟𝑚𝑚𝐴𝐴𝑐𝑐 𝐴𝐴𝑟𝑟𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑐𝑐𝑃𝑃𝑓𝑓𝑛𝑛 , I ℮ R 
 
5.2 Train, Validate, and Test Results 
 
After preprocessing, the data set is ready for training. The Google Collaboratory (Colab) platform was used for training. 
Google Colab is a cloud service to assist machine learning research and studies. The Google Brain team developed it. It 
allows you to work on the cloud in the Python programming language. Google Colab offers you GPU and TPU usage 
services on the cloud. The Graphics Process Unit (GPU) helps them perform quickly in training and inference. Its parallel 
processing power and wide bandwidth are very effective in matrix and vector operations. Tesla P100-PCIEE series 16 GB 
model is used as Colab Pro GPU. Python 3.9 version was used as the coding language. Stochastic Gradient Descent (SGD) 
was chosen as the optimizer of the YOLOv5 model. The model is customized for 24 classes, each representing a letter. 
mAP@.5, precision and recall were used as evaluation metrics. The model was trained with 16 batch sizes and 300 epochs. 
An increasing success rate was observed throughout the training. The algorithm records two different training weights. One 
of them has the highest success rate. The other one records the latest training parameters. In Fig. 7, the metric values 
recorded in each epoch are graphically visualized. 
 

 

 

 
Fig. 7. Train History Fig. 8. Confusion Matrix of Test Dataset. 

When the graphs are examined, it is observed that very successful learning is obtained. It is seen that the mAP@.5 evaluation 
metric performed on the validation data set increases up to 99.45%. At the same time, a 97.9% mAP@ 0.5:0.95 evaluation 
metric is seen following this. Box and Objectless evaluation parameters represent the loss concerning the labeled and 
predicted bounding boxes. These evaluation metrics are performed on both training and validation datasets, therefore val 
Box and val Objectless correspond to the evaluation on the validation dataset. The classification part considers the class of 
the object detected in the predicted bounding box concerning the actual label in the actual predicted box. Since the training 
dataset contains augmented data, the classification metric is not reaching zero quickly. Instead, it takes a long time to 
increase the number of epochs. However, it can be easily said that the model can classify the validation dataset after a short 
time, around 50 epochs. It can be said that quite high performance is achieved by using this model for classification tasks 
with high precision and recall values. Figure 8 shows the model output in the random images selected from the training 
dataset. It is observed that the prediction is performed correctly in the images containing hand movements representing the 
letters Q, R, and S. There are also versions of an image with the augmentation method applied in the images. However, the 
training dataset should not be used for evaluating the model. Fig. 9 displays some of Predicted Training Data Set. 
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The test data set consisting of 509 images is not evaluated only with the confusion matrix table. Precision, recall, and 
mAP@.5 metrics were also calculated. In addition, the values of these metrics were calculated for each letter and as the 
mean of all classes. These values are given in Table 1. It is seen that the metric values of precision, recall, and mAP@.5 are 
pretty high. The visualization of the test dataset evaluation results on each Letter for Precision-Recall and Map@.5 are 
displayed in figure 10. It is observed that the prediction success of the model is relatively high. To evaluate the prediction 
success of the model, visuals that the model did not see during the training are used. These images were previously reserved 
as the test dataset. By making estimations on the model test data set, evaluation metrics are created based on the accuracy 
of these estimations. The confusion matrix table is the most widely used evaluation tool. Table 1 shows the confusion matrix 
table on the test data set of the model. When the table is examined, it is observed by deviation for the letters “G” and “Y”. 
The model either makes these letters look like other letters or does not make any predictions. However, it is seen as a fair 
margin of error. Looking at the table generally, the model can also make successful predictions on visuals it has not seen 
before. It shows that this model is very successful in education and also shows that the model is generalizable. 
 

   

   

Fig. 9. Predicted Training Data Set. 
Table 1  
Evaluation Metrics for Test Dataset. 

Class Precision recall map@.5 
a 0.968 0.969 0.992 
b 0.997 0.996 0.994 
c 0.962 0.984 0.974 
d 0.908 0.954 0.994 
e 0.993 0.969 0.996 
f 0.987 1.00 0.995 
g 0.996 0.976 0.996 
h 0.924 1.00 0.995 
ı 0.940 1.00 0.996 
k 0.999 1.00 0.996 
l 1.00 0.947 0.994 
m 0.997 1.00 0.996 
n 0.998 1.00 0.996 
o 0.997 1.00 0.996 
p 0.948 0.960 0.996 
q 0.979 1.00 0.995 
r 0.815 0.965 0.985 
s 0.997 1.00 0.996 
t 0.992 1.00 0.995 
u 0.940 0.939 0.989 
v 1.00 0.884 0.995 
w 0.988 0.789 0.989 
x 0.995 1.00 0.995 
y 0.878 0.897 0.968 

 



 986 

 

Fig. 10. Test Dataset Evaluation Results on each Letter for Precision-Recall and Map@.5 

6. Discussion and Comparison 
 
Detection and recognition tasks are prevalent, with much work on American Sign Language. Many different methods have 
been tried to provide a solution to this problem. Many of them offer artificial intelligence solutions. Especially nowadays, 
studies on such issues have increased with the popularization of deep learning methods. On the other hand, the model 
architecture used here, YOLOv5, is also a pretty popular model for detection and recognition tasks. This model has several 
applications on different types of datasets, both test datasets and real-time applications. The performance is critically better 
than other proposed state-of-art model structures on these object detection and recognition tasks. So far, the number of 
works done using YOLO on sign language detection problems is relatively low. Therefore, in this study, the performance 
is measured by using several evaluation metrics. The successful results are obtained using different datasets, data-
augmentation methods, and preprocessing methodologies based on the dataset and YOLOv5 model architecture. Here, a 
comparison is made with similar works that offer deep-learning solutions to the problem. 

6.1 Comparative Analysis 

In 2021, Tasnim Ferdous Dima and his team described their ASL work in their article “Using YOLOv5 Algorithm to Detect 
and Recognize American Sign Language” (“American Sign Language Letters Dataset,” 2021). The YOLOv5m model was 
used to detect and describe the ASL language. Finger-spelled vocabulary, a subset of the ASL language, was chosen as the 
data set. The data consists of a total of 2515 RGB images collected manually. These data were replicated to 6033 images 
using different augmentation methods. The background of the images consists of a black pattern, as can be seen in Fig. 11. 

 

Fig. 11. Example of Image's Dataset. 

mailto:Map@.5
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Model training was carried out on Google Colab, a cloud service. Model Python version 3.8 was used, and the Tesla K80 
model with 12GB memory was used as the graphics card model. The learning rate value was selected as 0.01 and the model 
was trained for 300 epochs with a 16-batch size. Precision, recall, and mAP@.5 metrics were used to evaluate model 
training.  
Table 2  
Hardware and Software Comparison. 

 Referred Study (Roy et al., 2022, 2023) This Study 
Model Architecture YOLOv5m YOLOv5x 
GPU Tesla K80 Tesla P100 
Memory 12 GB 16 GB 
Python version 3.8 3.9 
Training Process 9 hours 4.5 hours 

The critical part here, in our study the size of the model, is increased by selecting YOLOv5x instead of YOLOv5m and the 
required training time is reduced to 4.5 hours by using Google Colab Pro version which provides better hardware facilities 
as it can be seen in table 2. Result comparison of the proposed model with the referred study of (“American Sign Language 
Letters Dataset,” 2021) in terms of batch size, epoch, and mAP are shown in Table 3. 
Table 3  
Result comparison with respect to the referred study. 

 Referred Study (Dima & Ahmed, 2021) This Study 

Batch Size 16 16 
Epoch 300 300 
mAP 0.4 0.5 
mAP Results 0.987 0.992 

 
However, only the value of the mAP@.5 metric is shared in the article. The mAP@.5 value, on the other hand, has a very 
high value of 0.987. When compared with the YOLOv5x model used in this study, it is seen that the results are close to 
each other. Higher performance is shown with the YOLOv5x model. At the same time, different environmental 
environments were selected as the background of the data set used in this study so that the model could be generalized. 
Another study was carried out by Daniels et al. (2021) in 2021. Unlike this study, it was carried out on the Indonesian Sign 
Language (ISL) standard. The study was carried out on a data set consisting of 160-200 images per class and 4,547 images 
in 640x480 dimensions and RGB format. The letters “J” and “R” have been omitted because they contain movable hand 
signs. YOLOv3 was chosen as the model, the older version of the YOLO architecture used in this study. Additionally, they 
have applied the Transfer Learning method by using pre-trained weights for ImageNet. 
 
Mainly changing the intersection threshold over the union evaluation metric is tested in this study since they have tested the 
results for different threshold values of IoU. As they decreased the threshold, they reached higher evaluation metrics results. 
Therefore, our study here selects the IoU threshold as 0.45. Since there is not much information about the evaluation process 
of the study, only a few metrics were able to compare. Also, recall, precision, and F1 score were used as evaluation metrics 
on video data. The maximum recall value of the model trained with different parameters is 93.1%, and the precision value 
is 80.56%. A very high-performance difference is observed when YOLOv5 and YOLOv3 are compared. 

7. Conclusions 
 
Sign language is crucial for bridging the communication gap between hearing and deaf individuals. This study focused on 
American Sign Language (ASL) and was conducted on the perception and identification of hand-written letters using 
artificial intelligence. This study utilized an open-source American Sign Language (ASL) dataset. Compared to earlier 
studies, the size of the data set was expanded using various augmentation techniques. The procedure is applied at the 
preprocessing stage of the YOLOv5 model training, which has a 416x416 input shape. At the evaluation stage, it is seen 
that this dataset has reached high mAP@.5 values. The mAP@.5 measure is a crucial criterion for comparing the trained 
model's performance to that of other models. With a high mAP@. With five scores, this study demonstrates that the model's 
object detection performance is excellent. Similarly, high recall and precision levels are also seen. It is possible to say that 
the evaluation metrics of the test and training data sets are comparable. The proposed model achieved a training performance 
of 99.45% mAP@.5. Moreover, the proposed model has a performance of 97.9% mAP@.5 on the test dataset. The results 
demonstrate that the model's object detection performance is excellent. A statistical analysis of the training time shows that 
the training time has drastically decreased, 4.5 hours with the current model as compared to the existing models in the 
literature. 
 
Based on this parallelism, it can be concluded that the model does not overfit the training and validation datasets. As a result 
of this study, individuals with disabilities can successfully utilize deep learning approaches. Overall, it is anticipated that 
this study will promote the collection of knowledge and the development of intelligent-based SLR, as well as provide 
readers, researchers, and practitioners with a road map for future direction. In the future, we will concentrate on hybrid 
solutions including smart mobile applications or robotics in many circumstances. The dataset can be expanded to enable the 
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system to recognize additional gestures. Also, comparisons can be conducted using various YOLOv5 architectures, 
including small, medium, and big versions. The system can be constructed for multiple sign languages by modifying the 
dataset.  
 
Limitations 
 
The important limitation of the model is that, unlike previous YOLO versions, YOLOv5 has not been the subject of an 
official formal publication. Additionally, YOLO v5 is still under development, and as we frequently receive updates from 
Ultralytics, developers may later tweak various parameters 
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