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 The C3 or O-alkylation of 4-hydroxycoumarin (formation of new C-C and C-O bond) is 
undoubtedly one of the most important and challenging reactions in synthetic chemistry due to 
its pharmaceutical utility. In this communication, we report sulfated tin oxide (STO)-catalyzed 
synthesis of arylated vinyl ethers in moderate to good isolated yields (68-93%) from the reaction 
of substituted phenyl acetylenes (terminal alkynes) with 4-hydroxy coumarin in polyethylene 
glycol (PEG 400) as solvent at 110 oC. The catalyst can be recycled up to 5 times without losing 
the significant yield. 
  
 
 

© 2025 by the authors; licensee Growing Science, Canada. 

Keywords: 
Sulphated tin oxide (STO)  
4-hydroxycoumarine (4-HC) 
Alkynes  
Vinyl ethers  
PEG 400  
Recyclability and catalysis 

 

 
 

 
 

O

OH

O

PEG-400

110 oC, 1-6.5 h
 R1 = alkyl/aryl
 R2 = H

R

+ R1 R2

STO (10 mol%)

O

O
R

O R1

R2

10 examples
68-93% isolated yields

R = H, CH3, Cl
 

 
 

Graphical Abstract 
1. Introduction  
 

     Coumarin and its derivatives are important heterocycles from a pharmacological standpoint. Because of their 
pharmacological and biological properties, including their anticoagulant, anti-HIV, and antifungal properties, coumarin and 
its derivatives are the subject of much research.1-5 Coumarin is an essential ingredient in a number of natural products.6-7 
Furthermore, functionalized coumarin derivatives are widely employed as anticancer and antibacterial medications, which 
have a vast array of uses in biological science.8 Many functionalized coumarin derivatives have been the focus of design 
and synthesis efforts in the realm of medicinal chemistry due to its unique physicochemical characteristics.9-10                            

  
      4-Hydroxycoumarin is a significant member of the coumarin family due to its structure and chemical behavior, which 
have greatly influenced organic synthesis (Fig. 1).11-16 Not only are they important synthetic endpoints, but they also form 
the structural core of many natural products, which has increased interest in them. Additionally, there are increasing reports 
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on the investigation of 4-hydroxycoumarin derivatives as ligands of transition metals and rare earth element metal 
complexes that exhibit bioactivities of their own, such as fluorescence, etc.17-19 
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Fig. 1. Representative 4-hydroxycoumarins in market 

      The reactions involving 4-hydroxycoumarin based on the literature review show great regioselectivity, and their 
progression is readily regulated by altering the starting compounds' molecules' substituents and reaction conditions.20 The 
three tautomeric structures of 4-hydroxy-2H-chromen-2-one (Fig. 2), which are the tautomeric keto-enol forms, 4-hydroxy-
2-chromenone (I), 2,4-chromandione (II), and 2-hydroxy-4-chromenone (III), greatly regulate its reactivity. The 
phenomenon of proton shifting in the three tautomeric structures has been thoroughly studied using spectroscopic, 
thermochemical, computational, and other chemical reactivities. Both nucleophilic and electrophilic sites can be found in 
the structure of 4-hydroxycoumarin. Different kinds of nucleophiles can replace the carbon atom that is attached to the 
hydroxyl group, and this can result in a number of reactions, such as arylation, amination, and halogenations. The 
nucleophilicity of the carbon atom behind the carbonyl group is the most important component of the 4-hydroxycoumarin 
moiety. 
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Fig. 2. Tautomeric and active centres of 4-hydroxycoumarin 
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     The carbonyl carbon is preferentially accessed by the comparatively mild nucleophiles. Several techniques have been 
documented where the hydroxyl group's oxygen atom functions as an excellent nucleophile and is targeted by acylating and 
alkylating chemicals. As previously indicated, the C3 or O-alkylation of 4-hydroxycoumarin (creation of new C-C and C-
O bonds) is unquestionably one of the most significant and difficult reactions in synthetic chemistry because of its potential 
for pharmacological applications. Therefore, a stronger catalyst that will activate the OH group of 4-hydroxycoumarin and 
increase their susceptibility to nucleophilic attack under mild circumstances is desperately needed. The ideal catalyst should 
be easily accessible, affordable, less hazardous, and capable of operating in an environmentally friendly way in order to 
meet the requirements of green chemistry. This will stimulate curiosity about the possible benefits and broad applications 
of the resultant target compounds.  

      In synthetic chemistry, solid heterogeneous catalysts are recognized to provide expected benefits such as easy 
regeneration, reduced corrosiveness, affordability, ease of handling, and efficient reusing.21 Because of its huge surface area, 
high efficiency, non-corrosive nature, low cost, and wide surface area, sulfated tin oxide, commonly known as SO4

-2/SnO2, 
has gained popularity and efficiency as a catalyst. Composed of sulfated and sulfonic acid moieties on a range of 
heterogeneous solid bases, it is extensively used in chemical and industrial settings.22-42 We have just now been able to 
successfully utilize STO's applications in the synthesis of β-amino alcohols and 4-aryl-NH-1,2,3-triazoles.41-42 Following 
Majee and colleagues' initial discovery of this type of O-alkylation at the C2 atom of 4-HC, we describe here the effective 
synthesis of arylated vinyl ethers in keeping with our attempts to develop novel methodologies.43   

     The use of atom-efficient catalytic processes in the manufacturing of pharmaceuticals and fine chemicals has attracted 
attention as the pressing need for more sustainable, greener technologies becomes increasingly apparent. One such 
component that is receiving increasing attention is the use of alternative reaction media, which circumvents the problems 
associated with many of the traditional volatile organic solvents. Over time, a variety of suitable and eco-friendly alternative 
reaction media have been studied, such as supercritical fluids, ionic liquids, and polyethylene glycol.44-46 According to this 
perspective, polyethylene glycol (PEG) functions as an environmentally friendly solvent and alternative reaction medium.47-

52 PEG has been studied as a solvent for chemical synthesis for more than 20 years. PEG is frequently used in chemical 
synthesis instead of hazardous organic solvents because of its biodegradable, biocompatible, non-toxic, and benign 
properties. PEG has reportedly been utilized as a solvent in a number of heterocyclic molecule synthesis processes, 
oxidations and reductions, heteroatom-heteroatom bond-forming events, and carbon-carbon and heteroatom-heteroatom 
bond-forming reactions.53-62 

2. Results and Discussion 
 
     In continuation of our efforts in the development of C-C and C-heteroatom bond formation reactions,41-42, 63 we have 
studied the reaction of 4-hydroxycoumarin (1a) and phenyl acetylene (2a) in a variety of solvents was the first step in the 
investigation (Scheme 1).  
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Scheme 1. Optimization of the reaction conditions 

 
     In the target reaction, tin oxide was found to be ineffective (entry 1). The reaction was first conducted using 20 mol% 
STO in CH3CN at 80 °C with ambient air. Fortunately, after a brief reaction period of one hour, the product, 2-((1-
phenylvinyl)oxy)-4H-chromen-4one (3a), was obtained in good yield (65%) (entry 2). Motivated by this outcome, we 
conducted a number of reactions to improve the reaction circumstances; Scheme 1 provides a summary of the outcomes. 
Common solvents including acetonitrile, THF, and CHCl3 were initially used in the procedure, however the yields of the 
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intended products were lower (entries 2, 4, and 5). The intended product has a 78% isolated yield in toluene (entry 3). The 
reaction yield (entry 6) indicates that the reaction was ineffective when there was no solvent present. To our surprise, the 
yield of the intended product rose significantly (entry 8, 89%) when the reaction was carried out using 10 mol% STO in 
PEG 400. In contrast to the reaction condition from entry 8, altering the catalyst loading (entries 7 and 9) did not improve 
the reaction yield. The substrate scope of this protocol was examined when the optimal reaction conditions (10 mol% STO 
in PEG 400 at 110 oC in air) were determined. We concentrated on how different terminal alkynes interacted with 4-
hydroxycoumarin (1a) (Scheme 2). Excellent yields of the required products (3b-d) were obtained by substituting electron-
donating groups (CH3, OCH3) into phenyl acetylenes. With an electron-withdrawing substituent, phenol acetylene yielded 
the intended product 3e in a high yield of 81%. Furthermore, at the ideal reaction circumstances, terminal alkyne replaced 
with a heterocyclic moiety also performed well (3f, 73%). Notably, aliphatic alkynes 2g also reacted well with 1a, yielding 
good yields (68%) of the corresponding products 3g.  
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Scheme 2. Substrate scope of the reaction between 4-hydroxycoumarin and alkyne 

      In addition, we have exploited the utility of substituted 4-hydroxycoumarins (1b and 1c) to establish the general 
applicability of the reaction conditions and the desired products were obtained in good yields (3h, 80%; 3i, 71%). The mild 
reaction conditions prevent the products from breaking down or the starting materials from polymerizing. The recycling of 
the STO catalyst in the reaction between 4-HC (1a) and phenyl acetylene (2a) was then examined (Fig. 3). After the reaction 
was finished, the STO was cleaned with diethyl ether, and the solution was vacuum-filtered through a glass funnel that had 
been sintered. Immediately after drying, the recovered catalyst was used once more without requiring additional 
purification. The catalyst may be extracted and used up to five additional times without seeing a discernible decrease in its 
catalytic activity (85% isolated yield for 3a after the fifth run).  
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Fig. 3. Reusability chart of STO for the compound 3a 

      In summary, using STO under mild reaction conditions has resulted in O-vinylation of 4-hydroxycoumarin from the 
reaction of 4-hydroxycoumarin and alkynes. Using this atom-efficient approach, a small library of 2-(vinyloxy)-4H-
chromen-4-one derivatives (3) has been synthesized. PEG was determined to be the ideal solvent of choice to execute the 
reaction during optimization. Notable benefits of the current procedure include its rapid reaction time, recyclable 
heterogeneous catalyst and tolerance for a broad variety of functional groups. 
 
3. Experimental procedure 
 
      A Bruker 400 (400 MHz) spectrometer was used to determine the 1H and 13C NMR spectra of solutions in CDCl3. The 
signals are recorded as s (singlet), d (doublet), t (triplet), and m (multiplet), while the coupling constants J are supplied in 
Hz. Chemical shifts are indicated in parts per million (ppm, δ). A glass slide coated with silica gel (Merck, Silica gel G for 
TLC) was used for TLC. For column chromatography, silica gel (60-120 mesh) was utilized. Prior to usage, every solvent 
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was dried and distilled. All of the starting materials, including terminal alkynes 2 and 4-hydroxycoumarin 1a, substituted 
4-hydroxycoumarins (1b and 1c), as well as other reagents, catalysts, and solvents, were acquired from commercial vendors 
such as Spectrochem Chemicals, Sigma-Aldrich, and Merck. 
 
General procedure for the synthesis of 3a-i 
 
        A mixture of 4-hydroxycoumarin, 1a or substituted 4-hydroxycoumarins, 1b-c (1 mmol), terminal alkyne 2 (1 mmol) 
and STO (10 mol%) in PEG-400, stirred at 110 °C for the time specified. Following the conclusion of the reaction, which 
was observed by thin-layer chromatography, the mixture was diluted with anhydrous diethyl ether and allowed to stir for 
fifteen minutes. Subsequently, the layers were allowed to separate and the ether layer was decanted. The mother liquor 
(PEG) was set aside for subsequent runs, and this procedure was performed twice to provide the crude products in diethyl 
ether. Following solvent evaporation, the crude product was refined using column chromatography on silica gel with 1:1 
petroleum ether/ethyl acetate to produce the pure corresponding products (3a-i). 
 
Spectral data for the synthesized compounds 
 
2-((1-Phenylvinyl)oxy)-4H-chromen-4-one (3a): 89%, light yellow solid; mp. 59-61 °C. IR (KBr): 1680 (-C=O), 1221 (-
C-O) 832, 751 cm–1. 1H NMR (CDCl3, 400 MHz): δ = 8.13-8.15 (m, 1 H, Ar), 7.63-7.67 (m, 1 H, Ar), 7.53-7.56 (m, 2 H, 
Ar), 7.35-7.46 (m, 5 H, Ar), 5.70 (s, 1 H, -CH=), 5.55 (d, J = 2.8 Hz, 1 H, -CH2), 5.21 (d, J = 2.8 Hz, 1 H, CH2). 13C NMR 
(CDCl3, 100 MHz): δ = 179.40 (-C=O), 166.37, 154.29, 153.89, 133.57, 132.43, 129.96, 129.02, 125.95, 125.60, 125.34, 
123.05, 117.50, 102.39 (-CH2=), 91.06 (-CH=).  
2-((1-(p-Tolyl)vinyl)oxy)-4H-chromen-4-one (3b): 91%, yellow gum. IR (KBr): 1637, 1373, 1060, 616 cm–1. 1H NMR 
(CDCl3, 400 MHz): δ = 8.15–8.12 (m, 1 H), 7.67–7.62 (m, 1 H), 7.45–7.37 (m, 4 H), 7.16 (d, J = 8.4 Hz, 2 H), 5.69 (s, 1 
H), 5.49 (d, J = 2.8 Hz, 1 H), 5.14 (d, J = 2.8 Hz, 1 H), 2.34 (s, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 179.37 (-C=O), 
166.45, 154.41, 153.90, 140.16, 133.51, 129.69, 129.63, 125.94, 125.55, 125.29, 123.08, 117.49, 101.47 (-CH2=), 91.01 (-
CH=), 21.41 (CH3).  
2-((1-(m-Tolyl)vinyl)oxy)-4H-chromen-4-one (3c): 88%, yellow gum. IR (KBr): 1684, 1274, 816, 768 cm–1. 1H NMR 
(CDCl3, 400 MHz): δ  = 8.15–8.13 (m, 1 H), 7.67–7.63 (m, 1 H), 7.46–7.34 (m, 4 H), 7.27–7.23 (m, 1 H), 7.18 (d, J = 7.6 
Hz, 1 H), 5.70 (s, 1 H), 5.52 (d, J = 2.8 Hz, 1 H), 5.17 (d, J = 2.8 Hz, 1 H), 2.35 (s, 3 H). 13C NMR (CDCl3, 100 MHz): δ  
= 179.39 (-C=O), 166.44, 154.49, 153.91, 138.76, 133.53, 132.42, 130.78, 128.90, 125.99, 125.94, 125.56, 123.10, 122.52, 
117.50, 102.23, 91.01, 21.57 (CH3).  
2-((1-(4-Methoxyphenyl)vinyl)oxy)-4H-chromen-4-one (3d): 93%, yellow gum. IR (KBr): 1685, 1260, 832, 763 cm–1. 
1H NMR (CDCl3, 400 MHz): δ = 8.15–8.13 (m, 1 H), 7.67–7.62 (m, 1 H), 7.49–7.37 (m, 4 H), 6.89–6.87 (m, 2 H), 5.71 (s, 
1 H), 5.41 (d, J = 2.4 Hz, 1 H), 5.08 (d, J = 2.8 Hz, 1 H), 3.81 (s, 3 H, -OCH3). 13C NMR (CDCl3, 100 MHz): δ = 179.40 (-
C=O), 166.51, 160.92, 154.18, 153.93, 133.52, 126.89, 125.96, 125.56, 124.97, 123.10, 117.49, 114.39, 100.38, 91.02, 
55.50 (OCH3).  
2-((1-(4-Fluorophenyl)vinyl)oxy)-4H-chromen-4-one (3e): 81%, yellow gum. IR (KBr): 1685, 1229, 833, 753 cm–1. 1H 
NMR (CDCl3, 400 MHz): δ = 8.15–8.13 (m, 1 H), 7.67–7.63 (m, 1 H), 7.56–7.52 (m, 2 H), 7.44–7.38 (m, 2 H), 7.08–7.04 
(m, 2 H), 5.70 (s, 1 H), 5.48 (d, J = 2.8 Hz, 1 H), 5.17 (d, J = 2.8 Hz, 1 H). 13C NMR (CDCl3, 100 MHz): δ = 179.33 (-
C=O), 166.13, 164.90, 162.41, 153.90, 153.46, 133.64, 128.72, 127.40, 125.97, 125.67, 123.04, 117.48, 116.14, 102.0, 
91.18. 
2-((1-(Thiophen-3-yl)vinyl)oxy)-4H-chromen-4-one (3f): 73%, brown gum. IR (KBr): 1695, 1275, 949, 747 cm–1. 1H 
NMR (CDCl3, 400 MHz): δ = 8.17–8.14 (m, 1 H), 7.68–7.64 (m, 1 H), 7.46–7.39 (m, 3 H), 7.35–7.33 (m, 1 H), 7.24–7.22 
(m, 1 H), 5.77 (s, 1 H), 5.42 (d, J = 2.8 Hz, 1 H), 5.11 (d, J = 2.8 Hz, 1 H). 13C NMR (CDCl3, 100 MHz): δ = 179.46 (-
C=O), 166.42, 153.91, 150.60, 134.58, 133.61, 127.32, 125.97, 125.65, 124.95, 123.35, 123.08, 117.52, 101.35, 90.84.  
2-((1-(Cyclohex-1-en-1-yl)vinyl)oxy)-4H-chromen-4-one (3g): 68%, yellow gum. IR (KBr): 1680, 1220, 828, 753 cm–1. 
1H NMR (CDCl3, 400 MHz): δ = 8.16–8.14 (m, 1 H), 7.65–7.61 (m, 1 H), 7.43-7.36 (m, 2 H), 6.12 (t, J = 8.4 Hz, 1 H), 5.67 
(s, 1 H), 5.03 (d, J = 2.4 Hz, 1 H), 4.9 (d, J = 2.4 Hz, 1 H), 2.19–2.16 (m, 2 H), 2.12–2.08 (m, 2 H), 1.73–1.67 (m, 2 H), 
1.60–1.54 (m, 2 H). 13C NMR (CDCl3, 100 MHz): δ = 179.60 (-C=O), 167.27, 155.13, 153.84, 133.41, 128.78, 128.00, 
125.86, 125.45, 123.07, 117.44, 100.56, 89.65, 25.40, 24.85, 22.22, 21.71. 
6-Methyl-2-((1-phenylvinyl)oxy)-4H-chromen-4-one (3h): 80%, yellow gum. IR (KBr): 1681, 1275, 815, 772 cm–1. 1H 
NMR (CDCl3, 400 MHz): δ = 7.92 (d, J = 1.6 Hz, 1 H), 7.56–7.53 (m, 2 H), 7.46–7.43 (m, 1 H), 7.37–7.32 (m, 4 H), 5.69 
(s, 1 H), 5.54 (d, J = 2.4 Hz, 1 H), 5.18 (d, J = 2.8 Hz, 1 H), 2.43 (s, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 179.56 (-C=O), 
166.32, 154.38, 152.13, 135.58, 134.65, 132.54, 129.94, 129.00, 125.40 (2C), 122.72, 117.22, 102.22, 91.04, 21.00 (CH3). 
6-Chloro-2-((1-phenylvinyl)oxy)-4H-chromen-4-one (3i): 71%, yellow gum. IR (KBr): 1682, 1261, 817, 771 cm–1. 1H 
NMR (CDCl3, 400 MHz): δ = 8.10 (d, J = 2.4 Hz, 1 H), 7.60–7.57 (m, 1 H), 7.55–7.52 (m, 2 H), 7.41–7.36 (m, 4 H), 5.71 
(s, 1 H), 5.56 (d, J = 2.8 Hz, 1 H), 5.20 (d, J = 2.8 Hz, 1 H). 13C NMR (CDCl3, 100 MHz): δ = 178.06 (-C=O), 166.52, 
154.38, 152.18, 133.69, 132.34, 131.66, 130.10, 129.09, 125.56, 125.36, 124.22, 119.15, 102.48, 91.09. 
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