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 A thorough analysis of developments in machine learning (ML) and deep learning (DL) 
technologies for skin cancer diagnosis is provided in this research. It investigates how ML and 
DL could improve the precision and effectiveness of melanoma, basal cell carcinoma, and 
squamous cell carcinoma detection. By looking at current studies, the study emphasizes the use 
of neural networks, convolutional neural networks (CNNs), support vector machines (SVM), 
random forests, and k-nearest neighbors (KNN) in the diagnosis of skin cancer. Key findings 
show that DL models, including VGG, ResNet, and Inception benefit from huge datasets and 
sophisticated data augmentation strategies to attain high accuracy, sensitivity, and specificity. 
The paper also discusses the challenges and limitations associated with these technologies, such 
as the requirement for extensive annotated datasets. The study concludes with a call for 
collaboration to overcome current challenges and enhance the practical application of ML and 
DL in skin cancer detection.  
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1. Introduction  
 

     Skin cancer ranks among the most popular malignancies worldwide, with millions of new diagnoses annually. The 
primary types—melanoma, basal cell carcinoma, and squamous cell carcinoma—vary in severity, frequency, and treatment 
complexity. Melanoma, although less frequent, is the deadliest due to its high metastatic potential. Conversely, squamous 
cell carcinoma and basal cell carcinoma are more prevalent but typically less aggressive. Early and precise detection is 
crucial for enhancing patient outcomes, as the likelihood of favorable outcomes significantly increases when skin cancer is 
identified in its initial stages1.  

     Although early diagnosis is essential, traditional diagnostic techniques for skin cancer, such as dermatological visual 
inspections followed by histopathological analysis of biopsied tissues, are not without limitations. These methods are often 
subjective, reliant and time-intensive, on the clinician’s expertise, which can result in variability in diagnostic accuracy. 
Consequently, there is an urgent demand for innovative diagnostic tools that enhance clinicians’ capabilities and offer more 
reliable and efficient diagnostic outcomes2.  
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Fig. 1. Examples of skin cancer3  

    Recent developments in deep learning (DL) and machine learning (ML) have shown great promise for enhancing 
diagnosis processes for various medical conditions, including skin cancer. ML and DL methods utilize large datasets to 
create models that can detect patterns and produce highly accurate predictions. In particular, deep learning techniques, 
especially convolutional neural networks (CNNs), have revolutionized the field of image analysis. These techniques have 
been effectively used in medical imaging, producing excellent outcomes in terms of skin lesion detection and 
categorization4.  

    This paper aims to deliver an in-depth analysis of the latest advancements in machine learning (ML) and deep learning 
(DL) for skin cancer detection. The main objectives are to assess the current landscape of ML and DL technologies, their 
specific applications in diagnosing different types of skin cancer, and the challenges and limitations associated with these 
methods. The ultimate goal is to highlight the transformative potential of these technologies in improving diagnostic 
accuracy, reducing the strain on healthcare systems, and ultimately saving lives through earlier detection5. 

    To achieve these objectives, the paper begins with an overview of skin cancer, its classifications, and traditional 
diagnostic methods. This is followed by an in-depth exploration of ML algorithms commonly employed in skin cancer 
detection, including support vector machines (SVMs), random forests, neural networks, and k-nearest neighbors (KNN). 
The subsequent section focuses on DL techniques, particularly CNN architectures, associated datasets, training strategies, 
and performance evaluation metrics. Ethical and legal considerations are also examined, emphasizing the significance of 
patient privacy, regulatory compliance, and mitigating biases in ML and DL models. the paper emphasizes key findings, 
examines future implications for skin cancer detection, and stresses the importance of ongoing research and development 
in this area. 

1.1 Background 

    Unchecked skin cell development leads to skin cancer, a prevalent cancer in the world. Melanoma, basal cell carcinoma 
(BCC), and squamous cell carcinoma (SCC) are its three main manifestations. Since each type varies in frequency, severity, 
and complexity of therapy, early discovery is crucial to improving treatment results6. Melanoma, although representing a 
smaller fraction of skin cancer cases, is the most lethal form due to its significant metastatic potential and high 
mortality rate7. Excessive and sporadic exposure to ultraviolet (UV) radiation is frequently linked to melanoma, a 
kind of skin cancer that arises in melanocytes, the cells that produce color in the skin. Both artificial sources, such as 
tanning beds, and natural sunshine can contribute to this. Its incidence is notably increasing, particularly among 
fair-skinned individuals in regions with elevated UV radiation. Early detection is paramount, as melanoma can rapidly 
metastasize. When diagnosed in its early stages, surgical excision often results in curative outcomes, achieving a five-
year survival rate exceeding 95%. Conversely, advanced melanoma necessitates complex treatments, such as 
immunotherapy, targeted therapy, or chemotherapy, leading to significantly reduced survival rates8. 
 
     The most prevalent type of skin cancer is basal cell carcinoma (BCC), which makes up about 80% of cases. 
It starts in the basal cells, which are found in the epidermis' lowest layer. Long-term exposure to UV radiation 
is the main cause of BCC, which usually affects parts of the face, neck, ears, shoulders, and back that are exposed 
to the sun8,9. BCC seldom spreads to other parts of the body and grows slowly, but if left untreated, it can cause 
severe local tissue damage and deformity. It often presents as pearly or waxy nodules with visible blood vessels 
or as flat, scar-like patches. Standard treatment usually involves surgical removal, with additional options like 
cryotherapy, topical agents, and radiation therapy for more extensive or hard-to-reach cases10.11.  
 
     The squamous cells that make up the bulk of the skin's outer layers are the source of squamous cell carcinoma 
(SCC), the second most prevalent kind of skin cancer. Compared to basal cell carcinoma (BCC), SCC is more 
aggressive and has a larger chance of spreading if treatment is delayed12. It usually appears on places like the 
head, neck, and arms that are frequently exposed to the sun and is mostly brought on by cumulative exposure to 
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UV radiation. Scaly red patches, open sores, or elevated growths with core depressions that may crust or bleed 
are clinical manifestations of SCC. Early-stage SCC can usually be treated effectively with surgical excision, 
whereas advanced cases often require adjunctive therapies such as radiation or systemic treatments13.  
 
    The global incidence of skin cancer has been steadily increasing, driven by factors such as heightened UV 
exposure due to sunbathing and tanning practices, aging populations, and improvements in detection and reporting 
systems14. In areas with predominantly fair-skinned populations, skin cancer represents a major public health issue, 
leading to considerable healthcare expenses and morbidity. For instance, with over 5 million instances reported 
annually, skin cancer is the most common cancer diagnosed in the US15. Successful treatment outcomes for skin 
cancer depend on early detection. Patients diagnosed at an early stage have significantly better prognoses compared 
to those with advanced disease. For example, melanoma detected early has a five-year survival rate exceeding 95%, 
but this rate drops markedly once the cancer spreads to distant sites16-18. Early diagnosis enables less invasive 
treatments, reduces healthcare costs, and improves patient quality of life. Despite the availability of effective 
treatments for early-stage skin cancer, traditional diagnostic methods face challenges, such as dependence on expert 
clinical evaluation and histopathological confirmation15. Visual examination by dermatologists, followed by biopsy 
and microscopic analysis, remains the diagnostic gold standard. However, this approach is constrained by 
subjectivity, diagnostic variability, and the need for specialized expertise19-21.  
 
    The integration of advanced diagnostic tools, especially ML and DL, presents promising solutions to these 
limitations22. ML and DL techniques leverage extensive datasets to create models that can identify patterns and 
generate highly accurate predictions. Among these techniques, deep learning, particularly convolutional neural 
networks (CNNs), has revolutionized image analysis and demonstrated exceptional effectiveness in detecting and 
classifying skin lesions23. Using techniques including supervised learning, unsupervised learning, and reinforcement 
learning, machine learning uses algorithms to analyze data and produce predictions24-25. In skin cancer detection, these 
ML algorithms scrutinize medical images to recognize features indicative of malignancy. Deep learning, a distinct 
subset of ML, uses multi-layered neural networks to detect complex patterns within data26. CNNs, a prominent deep 
learning architecture, are particularly effective for image analysis tasks and have achieved significant success in 
medical imaging applications. Through early detection, the use of ML and DL in skin cancer detection has the potential 
to significantly improve diagnosis accuracy, lower healthcare costs, and save lives27. These technologies assist 
clinicians by providing supplementary insights, identifying subtle patterns undetectable to the human eye, and 
standardizing diagnostic procedures to minimize variability. Nevertheless, successful implementation in clinical 
practice requires addressing critical challenges, such as the requirement for extensive annotated datasets, the risk of 
overfitting, and the opaque decision-making processes inherent to these models28. 
 
1.2 Motivation  
 
     Despite the effectiveness of current diagnostic methods for skin cancer, they are accompanied by considerable 
limitations. Conventional detection predominantly relies on visual examination by dermatologists, followed by 
histopathological analysis of biopsied tissue samples. While this approach remains the gold standard, it is inherently 
subjective, often resulting in diagnostic variability due to differences in the expertise and perceptual biases of 
clinicians. Such subjectivity can lead to misdiagnoses, manifesting as either unnecessary biopsies or delays in 
initiating treatment. Furthermore, histopathological analysis is a time-intensive, resource-demanding, and invasive 
procedure, often accompanied by significant delays in results, thereby contributing to patient anxiety and potentially 
postponing critical treatment interventions . Considering these challenges, there is a strong need for innovative 
diagnostic tools to supplement and improve current workflows. ML and DL technologies present valuable alternatives 
by utilizing extensive datasets and advanced algorithms to improve diagnostic accuracy, efficiency, and reliability. 
ML algorithms are capable of processing vast amounts of medical imaging data, identifying intricate patterns that 
may indicate malignancy. Likewise, DL models, particularly convolutional neural networks (CNNs), excel at 
analyzing medical images and accurately differentiating between benign and malignant lesions . The integration of 
ML and DL into the diagnostic pipeline offers numerous advantages, including the ability to provide rapid, real-time 
analysis, minimize diagnostic variability, and deliver objective, data-driven evaluations. By facilitating early detection 
and enabling the formulation of personalized treatment strategies, these technologies have the potential to address the 
shortcomings of traditional methods and revolutionize the field of skin cancer diagnostics. Such advancements are 
poised to significantly enhance patient outcomes on a global scale. 
 
1.3 Objective  
 
     This paper's primary objectives are to provide a thorough analysis of recent advancements in machine learning 
(ML) and deep learning (DL) technologies for skin cancer detection, pinpoint the present obstacles to advancement 
in this area, suggest possible research avenues to address these obstacles, and improve the effectiveness of these 
technologies29. To fulfill these objectives, the paper is organized to address the following specific goals: 
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1.3.1 Reviewing Recent Advancements in ML and DL Technologies for Skin Cancer Detection: 
 
     This paper systematically examines the latest developments in the application of ML and DL technologies to skin 
cancer diagnostics. Recent innovations in these fields have demonstrated considerable potential in improving 
diagnostic accuracy and efficiency30. The review focuses on various ML algorithms and DL architectures that have 
been successfully applied in recent studies. The key technologies covered include: 
      
     Neural Networks and Convolutional Neural Networks (CNNs): A detailed analysis of CNNs, renowned for their 
efficacy in image analysis tasks. The discussion includes an exploration of prominent CNN architectures such as 
VGG, ResNet, and Inception, which have exhibited superior performance in classifying skin lesions31-33.  
 
     Support Vector Machines (SVM): This paper explores the application of support vector machines (SVMs) in 
classifying skin cancer images, highlighting their capacity to handle high-dimensional data and their effectiveness in 
differentiating between various types of skin lesions34. 
 
     Random Forests: A summary of how Random Forest algorithms is applied in skin cancer detection, emphasizing 
their capability to manage large datasets and provide robust classification through ensemble learning techniques7.  
 
     K-Nearest Neighbors (KNN): A review of KNN applications in skin cancer classification, emphasizing its 
simplicity and effectiveness in specific diagnostic contexts21.  
Other Emerging Technologies: This paper discusses innovative ML and DL approaches, such as generative adversarial 
networks (GANs) for data augmentation and semi-supervised learning techniques that utilize unlabeled data. Both 
methods have shown promising potential in recent research35. 
 
1.3.2 Identifying Current Challenges in ML and DL Applications: 
 
     Although significant progress has been made, several challenges remain that must be overcome to enable the 
widespread adoption and integration of ML and DL technologies in clinical settings for skin cancer detection36. This 
paper aims to identify and critically examine these challenges: 
 
     Data Requirements: The need for large, annotated datasets to train robust models, including challenges associated 
with obtaining high-quality, diverse datasets that accurately represent varying skin types, demographics, and lesion 
characteristics37. 
 
     Overfitting: Deep learning models have a tendency to overfit, resulting in excellent performance on training data 
but a reduced ability to generalize to new, unseen data. This section explores strategies to mitigate overfitting, 
including data augmentation, dropout methods, and regularization techniques38.  
 
     Model Interpretability: The opaque decision-making processes of deep learning models, often described as the 
“black box” problem, which can hinder clinical acceptance and trust. The paper examines approaches to improve 
interpretability and transparency, such as saliency maps and attention mechanisms39. 
 
    Performance Variability: The inconsistency of model performance across different populations and clinical 
environments, with a focus on addressing biases in ML/DL models to ensure equitable healthcare outcomes across 
diverse patient groups40.  
 
    Ethical and Legal Considerations: Ethical and legal considerations, including patient privacy, data security, and 
adherence to regulatory standards, are crucial. The paper underscores the significance of maintaining ethical and legal 
compliance to ensure the responsible integration of ML and DL technologies in clinical settings41. 
 
2. Skin Cancer: An Overview 
 
    The unchecked growth of aberrant skin cells is an indicator of skin cancer, a common kind of cancer worldwide. 
Melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC) are the three main forms in which it 
typically presents. Each type exhibits unique clinical features, risk factors, and therapeutic implications, necessitating 
a comprehensive understanding for accurate diagnosis and effective management42.  
 
2.1 Types of Skin Cancer 
 
     Skin cancer, as depicted in Fig. 2, represents a major global health concern and typically appears in three primary 
forms: melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Each type exhibits unique 
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characteristics, risk factors, and treatment approaches, highlighting the necessity of a thorough understanding for 
accurate diagnosis and effective management43. Melanoma is the most lethal form of skin cancer due to its high 
metastatic potential and elevated mortality rate. It originates in melanocytes, the cells responsible for producing 
pigment, and commonly develops on men’s trunk and on women’s legs44. Risk factors include excessive ultraviolet 
(UV) exposure, fair skin, family history of melanoma, and atypical moles. Clinically, melanoma is often identified 
through the ABCDE criteria: asymmetry, irregular borders, color variations, diameter greater than 6mm, and evolving 
characteristics45. Additional symptoms may include itching, tenderness, or bleeding. Subtypes such as superficial 
spreading melanoma, nodular melanoma, lentigo maligna melanoma, and acral lentiginous melanoma exhibit unique 
clinical and histological features43. Early-stage melanoma is typically treated with surgical excision, while advanced 
stages may require immunotherapy, targeted therapy, chemotherapy, or radiation therapy. Innovations like immune 
checkpoint inhibitors and BRAF inhibitors have significantly improved survival rates for advanced cases46. About 
80% of all occurrences of skin cancer are basal cell carcinoma (BCC), making it the most prevalent kind. It starts in 
the epidermis' basal cells and is mostly brought on by extended exposure to UV light47. BCC typically appears on sun-
exposed areas and can present in various forms, including nodular BCC, superficial BCC, morpheaform BCC, and 
pigmented BCC48. Although BCC grows slowly and rarely metastasizes, untreated cases can lead to significant local 
tissue damage.  
 

 
 

Fig. 2. Types of Skin Cancer18  

Table 1. Classification of Skin Cancer Types 
Type Description Common Locations Treatment Options 

Melanoma Most dangerous, with high 
metastatic potential. Arises from 
melanocytes. 

Trunk, legs, other sun- 
exposed areas. 

Surgical excision, immunotherapy, 
targeted therapy, chemotherapy, 
radiation therapy. 

Basal Cell Car- 
cinoma (BCC) 

Most prevalent, slow- 
growing, rarely metastasizes. 
Originates in basal cells. 

Face, ears, neck, scalp, 
shoulders, back. 

Surgical excision, Mohs surgery,
 cryotherapy, topical 
treatments, radiation therapy. 

Squamous Cell 
Carcinoma (SCC) 

More aggressive, higher metastasis 
risk. Develops from squamous cells. 

Head, neck, hands, arms, sun-exposed 
areas. 

Surgical excision, Mohs 
surgery, radiation therapy, 
photodynamic therapy, systemic 
treatments. 

 
     The size, location, and depth of the tumor will determine the best course of treatment for BCC, which includes surgical 
excision, Mohs micrographic surgery, cryotherapy, topical treatments, and radiation49. The second most common kind of 
skin cancer, squamous cell carcinoma (SCC), develops from the squamous cells in the epidermis24. SCC is more aggressive 
than BCC, with a greater risk of metastasis. It commonly develops on sun-exposed areas and often presents as actinic 
keratosis or Bowen’s disease in its early stages. Invasive SCC appears as red, scaly patches, open sores, or wart-like growths 
that may bleed or crust50,51. Treatment typically involves surgical excision, with additional options such as Mohs surgery, 
radiation therapy, or systemic treatments for advanced cases. Risk factors for squamous cell carcinoma include prolonged 
UV exposure, fair skin, a history of sunburn, and exposure to carcinogens like tobacco or HPV21. The distinct features and 
treatment requirements of melanoma, BCC, and SCC highlight the necessity for tailored diagnostic and therapeutic 
approaches. Accurate identification and differentiation are crucial, given the significant variation in treatment protocols and 
prognostic outcomes among these types. 

2.2   Traditional Diagnostic Methods 

     Conventional diagnostic methods for skin cancer usually include clinical examination and histopathological analysis, 
which, while effective, are associated with notable limitations and challenges52. Dermatologists rely on visual inspection 
using the ABCDE criteria, often supplemented by dermoscopy to improve diagnostic accuracy53. Despite its benefits, 
dermoscopy relies significantly on the clinician’s expertise, leading to variability in diagnosis54. Biopsy, considered the 
gold standard for a definitive diagnosis, involves collecting a tissue sample for histopathological analysis. Although 
accurate, this procedure is invasive and time-consuming, with potential discomfort for patients and delays in treatment 
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planning. Furthermore, histopathological interpretation is subject to variability among pathologists, particularly in complex 
cases55. 

 

Fig. 3. ABCDE criteria56  

     The challenges of traditional diagnostic methods underscore the need for innovative solutions, such as ML and DL, to 
enhance diagnostic accuracy and efficiency. These technologies promise to address the limitations of conventional 
approaches, offering significant potential for improving patient outcomes. 

3. Machine Learning in Skin Cancer Detection 

     Machine learning (ML) has become a transformative tool in medical diagnostics, greatly improving the accuracy and 
efficiency of skin cancer detection, as shown in Fig. 4. By leveraging large datasets and advanced algorithms, ML can 
detect patterns and features in medical images that often surpass human perceptual abilities. This section explores the 
foundational principles of ML, its application in skin cancer detection, and the specific algorithms that show significant 
potential in this field129. 

 

Fig. 4. Machine learning in skin cancer detection57  

3.1  Basic Concepts 

     A collection of methods and algorithms known as machine learning (ML) allow computers to learn from data and provide 
predictions or judgments. Within medical imaging, ML has become instrumental in analyzing complex images, identifying 
patterns, and supporting diagnostic processes. This section offers an overview of widely used ML methodologies in medical 
imaging, including ensemble learning techniques, supervised learning, and unsupervised learning58. 

     Supervised Learning: Training models with labeled datasets—where each input is associated with its matching output—
is known as supervised learning. The goal is to develop a mapping function that can forecast results for new, unobserved 
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data. In medical imaging, supervised learning is commonly used for classification tasks, such as distinguishing between 
benign and malignant skin lesions, and regression tasks, like estimating tumor size49. Among supervised learning 
techniques, Support Vector Machines (SVMs) are particularly efficient for binary classification. SVMs operate by finding 
the best hyperplane in the feature space that optimizes the margin between the two classes. SVMs are ideal for high-
dimensional data because they can handle non-linear interactions by integrating kernel functions59. 

     Neural Networks: A key element of supervised learning, especially in image analysis, are neural networks. These 
networks are made up of layers of linked neurons that are arranged to process information in a hierarchical fashion. A 
specific neural network design called Convolutional Neural Networks (CNNs) excels at tasks involving images. CNNs use 
fully connected layers to do the final classification, pooling layers to reduce the dimensionality of the input, and 
convolutional layers to extract features like edges and textures. CNNs have transformed medical imaging by greatly 
increasing diagnostic task accuracy60. 

     Unsupervised Learning: Unsupervised learning trains models on data without labeled outcomes, aiming to uncover 
hidden patterns or intrinsic structures. In medical imaging, unsupervised learning is applied to clustering and dimensionality 
reduction, helping to uncover patterns in large datasets and streamline data analysis61. Common algorithms include K-means 
clustering, which organizes data into clusters based on similarity, and Principal Component Analysis (PCA), which reduces 
dimensionality by transforming data into orthogonal components that capture the highest variance62. 

     Ensemble Learning: Ensemble learning integrates multiple models to form a composite model that achieves enhanced 
performance. Random Forests, an ensemble method, consist of numerous decision trees trained on data subsets. Predictions 
are aggregated through majority voting (classification) or averaging (regression), resulting in robust and accurate models63. 
Boosting algorithms, such as AdaBoost and Gradient Boosting, sequentially train models, where each new model focuses 
on correcting the errors of its predecessors, yielding highly predictive models64.  

     K-Nearest Neighbors (KNN): KNN is a simple yet effective algorithm that classifies data points by evaluating their 
proximity to labeled neighbors within the feature space. It is particularly effective for small-scale medical imaging tasks65.  

3.2   Applications and Related Work 

     Recent studies have highlighted the efficacy of ML techniques in skin cancer diagnostics: Al-Rakhami et al.36 employed 
deep convolutional neural networks (DCNNs) with federated learning to enhance diagnostic accuracy while preserving data 
privacy. Their system demonstrated robust performance in skin cancer classification. Afroz et al.128 utilized CNNs, 
achieving 93% training accuracy and 100% testing accuracy for melanoma classification, underscoring the diagnostic 
precision of CNNs. Mridha et al. (2023) addressed class imbalance in CNN-based classification and incorporated 
Explainable AI techniques like Grad-CAM, achieving 82% accuracy on the HAM10000 dataset66. Tjahjamoorniarsih et al. 
(2024) applied AlexNet to dermatoscopic images, achieving 80% accuracy, emphasizing the feasibility of CNNs for clinical 
use67. 

Table 2. Skin Cancer Diagnosis, Detection and Classification 
Modality Method Remarks Performance Metrics Ref. 
Skin Cancer 
Diagnosis 

Yolo Deep 
Neural Network 

Classification of nine skin cancer types using YOLOv3 
andYOLOv4 with data augmentation. 

mAP: YOLOv3 88.03%, 
YOLOv4 86.52%. 

68 

Skin Cancer 
Detection 

CNN Comparative analysis of AlexNet, ResNet50, and customized 
CNN for melanoma detection. 

Achieved high classification 
accuracy. 

69 

Skin Cancer 
Classification 

CNN Classified skin cancer into benign and malignant categories with 
a training accuracy of 92%. 

Testing accuracy exceeded 
95%. 

70 

 

      The results highlight how ML has the potential to revolutionize skin cancer screening. To promote broad acceptance 
and optimize efficacy, future studies should concentrate on resolving issues including data constraints, model 
interpretability, and smooth integration into clinical processes. 

3.3  Neural Networks and Convolutional Neural Networks (CNNs) 

      Neural networks are made up of linked nodes (neurons) that process and transmit information; they are modeled after 
the structure and operation of the human brain. These networks are especially effective for applications like image analysis 
because they use training to identify intricate patterns in data. Because CNNs, a specific kind of neural network, can 
automatically and adaptively learn spatial feature hierarchies from input pictures, they are very useful for image analysis 
applications like skin cancer diagnosis71. 

      An input layer, one or more hidden layers, and an output layer make up a neural network. Neurons in each layer are 
coupled to those in the one below. In order to produce outputs, neurons apply activation functions to the weighted sum of 
their inputs, each connection having a corresponding weight. The training process involves modifying these weights through 
backpropagation to reduce the error between predicted outputs and actual labels. Although traditional neural networks can 
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model complex data relationships, they often face challenges with high-dimensional data, such as images, due to their 
computational demands and large number of parameters72,73. 

     CNNs are very successful for image analysis tasks because they address these difficulties using a particular design that 
consists of convolutional layers, pooling layers, and fully connected layers74. Convolutional layers create feature maps that 
emphasize important patterns like edges, textures, and forms by applying filters (kernels) to the input picture. While the 
upper layers record more complex characteristics, the lower levels concentrate on identifying basic patterns. Pooling layers, 
commonly using max pooling, reduce the size of the feature maps, improving computational efficiency and stability while 
retaining essential information. Lastly, fully connected layers integrate the extracted features to make the final classification 
or regression decision75,76.  

     Notable CNN architectures, such as VGG, ResNet, and Inception, have been widely applied to skin cancer detection. 
VGG networks are characterized by their simplicity and depth, using small convolutional filters and multiple layers. ResNet 
introduces residual learning with shortcut connections, enabling deeper architectures without vanishing gradient issues. 
Inception networks employ convolutional filters of different sizes within a single layer, allowing them to capture features 
at multiple scales. In image classification tasks, variants such as VGG-16, ResNet-50, and Inception-v3 have demonstrated 
remarkable performance53, 77.  

     CNNs have become widely utilized in dermoscopic image analysis for skin cancer detection, as shown in Fig. 5. 
Dermoscopic images contain intricate lesion structures, and CNNs are capable of automatically extracting the relevant 
features for analysis, such as textures, color patterns, and shapes, aiding in distinguishing between skin cancer types. 
Training CNNs involves large datasets of annotated dermoscopic images, enabling the network to learn patterns indicative 
of benign or malignant lesions. These trained models serve as powerful tools to assist dermatologists in early and accurate 
skin cancer diagnosis78,79.  

 

Fig. 5: Classification of skin cancer using deep convolutional neural networks10,11  

    The special benefits of CNNs in tackling the difficulties of skin cancer diagnosis are highlighted in this section. CNNs 
provide intriguing ways to increase the precision and effectiveness of dermatological diagnostics by leveraging 
sophisticated designs and huge datasets. 

3.4   Support Vector Machines (SVM) 

      Strong supervised learning techniques called Support Vector Machines (SVMs) are frequently employed in regression, 
classification, and outlier identification.  

Table 3. Comparison of Neural Network Types 
Feature Neural Networks Convolutional Neural Net- 

works (CNNs) 
Architecture Composed o f  interconnected nodes (neurons) with layers: input, 

hidden, and output. Each neuron processes inputs using an 
activation function. 

Specialized for grid data like 
images. Includes convolutional layers, pooling 
layers, and fully connected layers. 

Core 
Components 

Layers of neurons, each connected to subsequent layer neurons, 
weights associated with connections. 

Convolutional layers apply filters to input, creating 
feature maps. Pooling layers reduce dimensionality, 
and fully connected layers make predictions. 

Function Can model complex relationships in data and perform 
classification, regression, and clustering. 

Particularly effective for image 
analysis by learning spatial hierarchies of 
features automatically. 

Challenges Requires significant computational resources and parameters for 
high-dimensional data like images. 

Designed to reduce computational load through 
structured layering and pooling, still requires large 
datasets for effective training. 

Applications Broad applications across various domains due to its flexibility 
in modeling data relationships. 

Extensively used in image analysis, such as skin 
cancer detection, through the analysis of detailed 
features in images. 
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     SVMs have demonstrated exceptional effectiveness in identifying benign and malignant lesions in medical imaging and 
in the identification of skin cancer. The capacity of SVMs to efficiently handle high-dimensional data and choose the best 
separating hyperplane that optimizes the margin between classes, which raises classification accuracy, is one of its main 
advantages80. Input data is mapped into a high-dimensional feature space via SVMs, where a linear hyperplane effectively 
divides the various classes. Finding the hyperplane that maximizes the margin—the distance between the hyperplane and 
the closest data points from each class—as well as splits the data is the goal. A key component of the SVM method, these 
crucial points—also referred to as support vectors—are essential for figuring out the position and orientation of the 
hyperplane81. 

      In skin cancer image classification, SVMs are particularly effective because of their ability to manage the high-
dimensional and complex nature of medical imaging data. Features like texture, color, and shape descriptors extracted from 
lesion images are used as inputs to the SVM, allowing for accurate differentiation between benign and malignant lesions82.  

     One of the main characteristics of SVMs is their capacity to capture non-linear correlations in the data by mapping input 
data into higher-dimensional regions using kernel functions. The linear kernel, polynomial kernel, radial basis function 
(RBF) kernel, and sigmoid kernel are examples of frequently used kernel functions. Because of its ability to capture non-
linear patterns, the RBF kernel is frequently used for medical imaging applications like skin cancer diagnosis83. 

 

Fig. 6. Support Vector Machine-based early diagnosis of skin cancer87,88  

Table 4. The summary of modality and methods 
Modality Method Remarks Performance Metrics and Results Ref. 
Skin Cancer 
Classification 

CNN vs SVM Comparison of accuracy CNN: 95.03%, SVM: 93.04% 89 

Skin Cancer 
Classification 

ANN vs SVM Comparison of classifiers ANN: 98.32%, SVM: 86.17% 90 

Skin Cancer 
Detection 

Bendlet Transform with SVM Feature extraction and 
classification 

High performance using Bendlet 91 

Melanoma 
Diagnosis 

SVM with GLCM Rapid diagnosis system 83% accuracy, 17% error rate 92 

Skin Cancer 
Detection 

Mobile-enabled system with SVM Early detection tool Sensitivity: 80%, Specificity: 75% 93 

Skin Cancer 
Detection 

Bag of Features 
with SVM 

Early diagnosis approach Accuracy: 85.7%, Sensitivity: 100% 88 

Melanoma 
Detection 

SVM-based classification Image analysis 
and classification 

92.1% accuracy 94 

Skin Cancer 
Detection 

SVM vs KNN Performance comparison SVM: 94.30%, KNN: 93.99% 95 

Skin Cancer 
Classification 

Hybrid CNN and SVM Model optimization for 
accuracy 

91.5% accuracy with SVM-TPOT 96 

Skin Cancer 
Diagnosis 

Bendlet Transform with SVM Superior to other systems High accuracy 71 

Skin Cancer 
Detection 

SVM vs CNN Comparison based on accuracy  CNN: 95.91%, SVM: 94.30% 95  

 

     An SVM classifier for skin cancer detection goes through a number of phases during training. To improve picture quality 
and identify pertinent characteristics, preprocessing is first conducted to a labeled collection of skin lesion images. The 
SVM is trained using feature vectors, which are created by compiling these features. By adjusting the hyperplane to 
maximize the margin during training, the SVM algorithm gains the ability to differentiate between classes and achieve high 
classification accuracy84. However, challenges in using SVMs for skin cancer detection include selecting appropriate 
features and tuning hyperparameters. Feature selection is crucial as it directly impacts classifier performance. Commonly 
used features include color histograms, texture descriptors, and shape features, which capture critical visual attributes of 
skin lesions. Hyperparameter tuning, involving parameters such as the regularization parameter (C) and kernel-specific 
parameters, is typically performed using cross-validation to ensure generalizability to unseen data85. Another consideration 
is addressing imbalanced datasets, a common issue in medical imaging where benign cases often outnumber malignant 
ones. To mitigate this, techniques such as data augmentation, synthetic minority over-sampling technique (SMOTE), and 
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cost-sensitive learning are employed to balance the dataset and improve classifier reliability86. SVMs have been effectively 
used in skin cancer detection, yielding promising results in accuracy, sensitivity, and specificity, as illustrated in Figure 6. 
Studies have shown that integrating SVMs with advanced feature extraction methods and ensemble learning techniques 
further enhances their performance, making them a valuable tool in diagnostic workflows30. 

3.5   Random Forest 

     An ensemble learning method called Random Forest is frequently used for classification and regression problems and 
has shown great promise in medical imaging applications like the diagnosis of skin cancer. Its strengths lie in handling large 
datasets, mitigating overfitting, and providing robust and accurate classifications. This section delves into the application 
of Random Forest in skin cancer detection, highlighting its advantages and implementation process20. 

     During the training stage, the Random Forest algorithm builds many decision trees and aggregates their results to provide 
final recommendations. This approach addresses limitations of single decision trees, such as overfitting and high variance, 
by introducing randomness in the tree construction process and combining results from multiple trees for more stable and 
accurate predictions. The ensemble approach of Random Forest improves its ability to generalize to unseen data, making it 
a dependable tool for medical diagnostics31. 

     There are numerous crucial elements involved in using Random Forest to the diagnosis of skin cancer. The first step is 
gathering a dataset of pictures of skin lesions and labeling them with diagnoses like benign or malignant. To enhance picture 
quality and extract significant elements including color histograms, texture indicators, and shape attributes, preprocessing 
techniques are employed. These characteristics provide a thorough depiction of the visual characteristics of the lesions72. 

     Through a technique known as bootstrap aggregating, or bagging, the algorithm uses several subsets of data and attributes 
to generate numerous decision trees. In order to create bootstrap samples, the training data is randomly sampled with 
replacement. A random subset of characteristics is chosen at each split in order to construct each tree. By ensuring the model 
does not rely too much on any one characteristic or subset of data, this use of randomization helps avoid overfitting97.  

     During training, each decision tree independently learns to classify lesions based on the selected features. The diversity 
among the trees results in varying predictions for the same input, and the final classification is made by combining the 
predictions from all the trees—usually through majority voting for classification tasks or averaging for regression tasks. 
This ensemble approach improves the model’s robustness and accuracy by utilizing the collective insights of multiple 
trees98.  

     Random Forest is highly effective at managing high-dimensional data and large feature sets, as it selects the most relevant 
features during tree construction. This helps reduce dimensionality and emphasizes the most informative aspects of the data. 
This capability is especially valuable in medical imaging, where irrelevant or redundant features can degrade classifier 
performance50.  

     Another key advantage is its ability to estimate feature importance, analyzing each feature’s contribution to the overall 
classification performance. This information provides insights into the critical attributes for differentiating between benign 
and malignant lesions, aiding researchers and clinicians in developing more effective diagnostic tools92. 

     Imbalanced datasets, common in medical imaging due to the higher prevalence of benign cases, present a challenge in 
skin cancer detection. Random Forest addresses this issue through techniques like balanced random forests, which adjust 
sampling processes to ensure adequate representation of minority classes. This adjustment improves classification 
performance across all classes, enabling accurate detection of malignant lesions even in imbalanced datasets99. As shown 
in Fig. 7, Random Forest has proven effective in skin cancer detection, delivering promising outcomes. Multiple studies 
have demonstrated high accuracy, sensitivity, and specificity in distinguishing between benign and malignant lesions. Its 
flexibility and strength make it an essential tool for medical image analysis, capable of managing the complexity and 
variability found in skin lesion data100. 

3.6 Related Work 

     The incorporation of ML and DL techniques has greatly enhanced skin cancer detection and classification, enabling 
improvements in diagnostic accuracy and efficiency. Numerous studies have explored diverse methodologies and 
algorithms to enhance these outcomes.  

      Kavitha et al.102  proposed a hybrid approach that combines Partial Differential Equation (PDE) with Fuzzy Clustering 
(FC) for segmenting skin cancer images. The model obtained a classification accuracy of 97.7% with Support Vector 
Machine (SVM) classifiers on the ISIC dataset by employing the ABCD scoring approach for feature extraction. Saravanan 
et al.101 developed an active hybrid machine learning technique that combines neural networks with additional classifiers to 
predict and classify melanoma. By employing majority voting, their ensemble approach leveraged the strengths of different 
classifiers to achieve enhanced precision. 
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Fig. 7: Classification of skin lesions using decision trees and Random Forest algorithms103  

     Mazhar et al.104reviewed the application of ML and deep learning in dermatology, highlighting their role in assisting 
dermatologists from diagnosis to personalized care. Their comprehensive survey emphasized the importance of lesion 
segmentation and tracking in the development of effective skin cancer detection systems. 

     Using machine learning algorithms on datasets of skin conditions, Kaushal et al.105 created a cloud-based mobile 
application for real-time skin cancer prediction. Their Näive Bayes-based model achieved high accuracy, demonstrating the 
practical applicability of ML in accessible diagnostic tools. Singh et al.106 performed a comparative analysis of different 
convolutional neural networks (CNNs), including VGG16, InceptionV3, ResNet152V2, and a custom 12-layer CNN. Their 
results demonstrated how well deep learning architectures work to improve diagnostic precision for automated skin cancer 
diagnosis. With AUROCs of 0.67 and 0.71, respectively, Tighe et al.107 demonstrated significant discriminating for basal 
cell carcinoma (BCC) and squamous cell carcinoma (SCC) when using machine learning (ML) models to evaluate surgical 
margins after curative surgery for non-melanoma skin cancer. 

Table 5. The modality and method of different cancer deceases  
Modality Method Remarks Performance Metrics and 

Results 
Ref. 

Skin Cancer 
Segmentation 

Hybrid Partial Differential Equation 
with Fuzzy Clustering 

Feature extraction focus 97.7% accuracy using SVM 102 

Melanoma Classification Active Hybrid Machine Learning 
Technique 

Enhanced accuracy through 
ensemble methods 

Improved  precision with majority 
voting 

101 

Skin Cancer Detection ML and DL Approaches Comprehensive 
survey 

Insights into deep learning applications 104 

Skin Cancer Prediction Machine Learning and Cloud-Based 
Mobile App 

Real-time  application 96.61% accuracy with Naive Bayes 105 

Skin Cancer 
Recognition 

Comparative CNN Analysis VGG16, InceptionV3, 
ResNet152V2 

Improved diagnostic accuracy 106 

Post-Surgery 
Audit 

ML for Surgical Margin Prediction Predictive modeling for BCC 
and SCC 

AUROC = 0.67 for BCC, 0.71 for 
SCC 

107 

Skin Cancer Detection Convolutional Kernel Extreme
 Learning Machine 

Feature extraction with 
GLCM 

98% accuracy 110 

Skin Cancer Detection OCT and Raman Spectroscopy 
Integration 

High accuracy using dual 
modalities 

85% accuracy overall, near 100%
 with Raman 

108 

Skin Cancer Detection Single-Cell Transcriptomic Data 
Analysis 

Insights into PD- 
1 blockade resistance 

Identified distinct resistance mechanisms 73 

Skin Cancer 
Prediction 

Ensemble Machine Learning 
Techniques 

Comparison of various  ML 
models 

85.02% accuracy with voting ensemble 109 

Skin Cancer Diagnosis Quantum ML for CAD Performance comparison with 
classical methods 

Emerging potential with quantum 
approaches 

17 

Skin Cancer 
Classification 

Stacking Ensemble Approach Combination of DL and ML 
methods 

99.97% accuracy 111 

Skin Cancer 
Classification 

CNNs with Transfer 
Learning 

Emphasis on high-quality 
datasets 

Accuracy range: 85–95% 69 

Skin Cancer Detection Polarimetric Imaging 
and ML 

Mueller matrix imaging 
Integration  

94% accuracy with SVM 112 

Skin Cancer Detection CNNs with Transfer 
Learning 

Focus on AI-based systems Promising diagnostic outcomes 113 
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     A technique for detecting skin cancer using the Convolutional Kernel Extreme Learning Machine (CKELM) was 
presented by Sarkar et al. in 2023. By combining Otsu's thresholding with the Grey-Level Co-occurrence Matrix (GLCM) 
for feature extraction, this method achieved 98% accuracy, outperforming conventional CNN and KELM techniques. In 
order to classify cells, You et al.108 combined optical coherence tomography (OCT) with Raman spectroscopy, showing 
almost flawless accuracy when using Raman data. Their study highlighted the value of combining spatial and spectroscopic 
features to differentiate cancerous cells from normal ones. Liu et al.73 utilized ML on single-cell transcriptomic data to 
reveal resistance mechanisms in skin cancer and pancreatic ductal adenocarcinoma (PDAC), providing insights into 
responses to immunotherapy. Duraisamy et al.109 compared various ML algorithms, including XGBoost, Random Forest, 
and Logistic Regression, achieving 85.02% accuracy using a voting ensemble method, thereby emphasizing the potential 
of ensemble techniques in diagnostic tasks. 

4. Deep Learning in Skin Cancer Detection 

     A specific type of machine learning called deep learning (DL) uses deep neural networks to find complex patterns in 
data. With the growth of large datasets and improvements in computational power, DL has become a key component in 
medical imaging, especially for skin cancer detection. The main ideas of deep learning (DL) are explained in this part, with 
an emphasis on CNNs and neural networks, which are essential for medical picture processing114. 

     DL models extract hierarchical features from raw data by applying a series of transformations. At their core, the artificial 
neural networks that underpin these models were motivated by the architecture of the human brain. These networks are 
made up of linked nodes, or neurons, organized in three levels: input, output, and one or more hidden layers. Weighted 
connections connect the neurons, and iterative learning is used to modify the weights in order to enhance the model's 
predictions. This adjustment occurs via backpropagation, a technique that uses gradient descent to minimize errors, allowing 
the network to progressively refine its mapping of inputs to outputs2, 115.  

    CNNs form of neural network designed specifically for image analysis tasks, such as skin cancer detection. CNNs 
incorporate convolutional and pooling layers, which enable efficient handling of image data’s spatial structure116. 

     Convolutional layers use filters (kernels) to process input images, creating feature maps that emphasize important 
characteristics like edges, textures, and patterns. These filters move across the image, performing element-wise 
multiplications to capture various features. As the image passes through successive convolutional layers, CNNs learn 
progressively more abstract and complex representations117. The feature maps are downsampled, or have their spatial 
dimensions reduced, via pooling layers, which are often positioned in between convolutional layers. This procedure 
improves the model's resilience to changes in the input data while reducing processing needs. The most popular pooling 
method, max pooling, chooses the greatest value from a specific area of the feature map81.  

     In order to do classification or regression tasks, the last levels of a CNN are fully linked layers that combine the high-
level information that were retrieved by previous layers. These layers provide probabilities that aid in the classification of 
skin lesions as either benign or malignant in the diagnosis of skin cancer118.  

     Various CNN architectures have been developed to optimize performance for specific tasks. Early breakthroughs include 
AlexNet, which demonstrated the potential of deep CNNs in image classification, and VGGNet, which introduced smaller 
convolutional filters and deeper networks. Inception networks (e.g., GoogLeNet) used multi-scale filters to record 
information at different resolutions, and ResNet fixed the vanishing gradient issue in deep neural networks by including 
residual connections119.  

     CNNs have achieved remarkable success in analyzing dermoscopic images, which provide detailed views of skin lesions. 
By training CNNs on extensive datasets of labeled dermoscopic images, these networks can distinguish subtle differences 
between benign and malignant lesions, significantly improving diagnostic accuracy. Training involves preprocessing the 
images (e.g., normalization and augmentation) to enhance data quality and diversity, followed by iterative weight 
optimization to minimize classification errors. Once trained, CNNs can classify new images, offering valuable diagnostic 
support to clinicians19, 120. 

4.1  DL Architectures for Skin Cancer Detection 

     Deep learning architectures have become indispensable in skin cancer detection, driving advancements in diagnostic 
precision and efficiency, as illustrated in Fig. 8. These architectures autonomously learn meaningful features from complex 
datasets, making them ideally suited for medical image analysis. 

      Convolutional Neural Networks (CNNs) remain the most prominent DL architecture for skin cancer detection. CNNs 
excel in capturing spatial hierarchies of features through convolutional and pooling layers. While activation functions like 
Rectified Linear Units (ReLU) offer non-linearity to describe complex patterns, convolutional layers capture elements like 
edges, textures, and colors. By decreasing the size of feature maps, pooling layers preserve important data while lowering 
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computational complexity. Using CNNs' hierarchical learning structure, fully linked layers combine these characteristics to 
categorize lesions as benign or malignant116. 

     Transfer learning is another impactful technique in DL applications for skin cancer detection. This approach uses pre-
trained models, such as VGGNet, ResNet, or InceptionNet, trained on large datasets like ImageNet, to perform specialized 
tasks with smaller datasets. By replacing the final classification layer with one tailored to skin lesion categories, transfer 
learning enables models to utilize previously learned features while adapting to new tasks. Freezing earlier layers ensures 
retention of general features, while newly added layers are trained on the target dataset, reducing training time and data 
requirements while enhancing performance119. 

      Ensemble learning improves performance and reliability by combining the results of several models. The drawbacks of 
individual models are addressed by combining predictions using techniques like bagging, boosting, and stacking. While 
boosting trains models sequentially, with each new model aiming to rectify the mistakes of the preceding ones, bagging 
trains many models on distinct subsets of the data and combines their predictions by averaging. Stacking creates a more 
reliable and accurate diagnostic system by efficiently combining the predictions of base models using a meta-model121.  

     Attention mechanisms have further enhanced DL architectures, improving both accuracy and interpretability. These 
mechanisms focus on the most relevant image regions, highlighting areas indicative of skin cancer. Advanced architectures, 
such as Transformer models, which rely on attention mechanisms, have demonstrated effectiveness in capturing long-range 
dependencies in data and analyzing complex image features, making them suitable for nuanced diagnostic tasks in skin 
cancer detection. 

 

Fig. 8: Classification of Skin Cancer Lesions Using Deep Learning121  

4.2  Dataset and Training 

     The effectiveness of DL models in detecting skin cancer is strongly influenced by the quality and volume of 
datasets, as well as the rigor of the training processes. Well-known datasets like the archive of International Skin 
Imaging Collaboration (ISIC) and HAM10000 have significantly contributed to this field by providing large 
collections of annotated dermoscopic images. These datasets include a diverse array of skin lesion types diagnosed 
by expert dermatologists. The ISIC archive, one of the most extensive publicly available repositories, aggregates 
images from numerous international sources, each accompanied by meticulous annotations essential for supervised 
learning. Similarly, the HAM10000 dataset comprises 10,015 dermoscopic images, capturing a wide spectrum of 
lesion types to ensure model generalizability across various skin conditions and demographics. 

      Before training, these images are preprocessed to improve quality and standardize inputs. The preprocessing 
steps involve resizing the images to consistent dimensions, facilitating batch processing and reducing computational 
demands. Pixel normalization scales the data uniformly, expediting convergence during training. Data augmentation 
techniques—such as flipping, rotation, color alterations, and cropping—artificially increase the dataset size, helping 
models learn invariant features and improving robustness and generalization capabilities. 

     The dataset is frequently divided into three subsets throughout the training process: test, validation, and training 
sets. The model is trained using the training set, which enables it to recognize characteristics and patterns in the 
photos. By evaluating performance on unseen data during training, the validation set adjusts hyperparameters and 
avoids overfitting. The model's objective performance is assessed using the test set, which is maintained apart from 
the training phase to guarantee that it can generalize to new, untested datasets. 

     CNNs' outstanding image processing capabilities make them the most popular architecture for skin cancer 
diagnosis. A CNN is made up of fully connected layers that do classification, pooling layers that shrink the spatial 
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size of the input, and convolutional layers that detect spatial characteristics. CNNs' layered architecture enables 
progressive learning, with deeper layers collecting more intricate, abstract patterns and early levels concentrating 
on basic properties. 

     Transfer learning has become a common method for improving deep learning models' performance, particularly 
when data is scarce. It entails using pre-trained models that have been learned on large datasets like ImageNet, such 
as VGGNet, ResNet, or InceptionNet. These pre-trained models capture robust, generalizable features that can be 
fine-tuned for specific datasets, like those with skin lesions, leading to substantial performance improvements and 
reduced training time. Regularization methods are critical for preventing overfitting and improving generalization. 
In order to encourage the model to create redundant representations and increase its resilience, dropout is a technique 
that randomly disables a portion of neurons during training. By normalizing the inputs inside each layer and assisting 
in the reduction of internal covariate changes, batch normalization increases training speed and stability. 

     To guarantee diagnostic reliability, model performance is evaluated using a number of measures. While 
sensitivity (also known as recall) gauges the model's capacity to accurately detect malignant lesions, accuracy 
assesses the total percentage of accurate predictions. Specificity evaluates how well benign lesions are identified. A 
comprehensive scalar statistic for assessing performance across different categorization thresholds is provided by 
the area under the receiver operating characteristic curve (AUC-ROC). When taken as a whole, these indicators 
offer a comprehensive evaluation of the diagnostic accuracy of the model. 

     By utilizing high-quality datasets, rigorous preprocessing, robust training methods, and advanced architectures 
such as CNNs enhanced with transfer learning and regularization, DL models achieve exceptional accuracy and 
efficiency. These advancements support improved clinical outcomes by delivering reliable and accurate diagnostic 
tools. 

4.3    Performance Metrics 

     Evaluating the performance of deep learning models in skin cancer detection requires the use of thorough metrics 
to assess their diagnostic reliability in clinical settings. These metrics are essential for determining the model's ability 
to provide accurate and trustworthy detection results. 

     Accuracy evaluates the ratio of correctly classified samples to the total number of samples, providing a general 
assessment of the model’s performance. However, accuracy may be misleading in cases of imbalanced datasets, 
where benign lesions significantly outnumber malignant ones. 

     Sensitivity, or recall, evaluates the proportion of actual malignant lesions correctly identified, reflecting the 
model’s ability to detect cancerous lesions. Conversely, specificity measures the proportion of benign lesions 
correctly classified, indicating the model’s effectiveness in avoiding false positives. High sensitivity ensures 
malignant lesions are not missed, while high specificity reduces unnecessary medical interventions. Precision 
measures the proportion of true positives among all predicted positives, which is especially crucial in clinical 
settings to minimize the occurrence of false positives. The F1 score, which is the harmonic mean of precision and 
recall, combines both false positives and false negatives into a single metric, providing a balanced evaluation. 

     The trade-off between sensitivity and specificity across various thresholds is represented by the Receiver 
Operating Characteristic (ROC) curve. The AUC-ROC provides a single measure summarizing performance, where 
values close to 1 indicate superior model accuracy. AUC-ROC is particularly valuable for comparing multiple 
models. 

     Confusion matrices offer a detailed breakdown by showing the counts of true positives, true negatives, false 
positives, and false negatives. These matrices identify areas where the model may be underperforming, guiding 
targeted improvements. 

     Additional metrics like Negative Predictive Value (NPV) and Positive Predictive Value (PPV) provide 
probabilities of correctness for negative and positive predictions, respectively, enhancing reliability in clinical 
contexts. The Matthews Correlation Coefficient (MCC) accounts for all confusion matrix quadrants, offering a 
balanced measure of performance, especially for imbalanced datasets. 

4.4   Challenges and Limitations 

      Despite their promise, deep learning models for detecting skin cancer encounter various challenges and 
limitations. One primary challenge is the scarcity of high-quality annotated datasets. The creation of such datasets 
requires expert dermatological input, which is both time-intensive and costly. Variability in imaging conditions, 
including lighting and resolution, further complicates the consistency required for robust model performance. Class 
imbalance, where benign lesions outnumber malignant ones, introduces bias, reducing sensitivity to malignancies. 
While techniques like data augmentation and weighted loss functions help, they are not definitive solutions. The 
interpretability of deep learning models continues to be a significant limitation. Complex architectures often 
function as “black boxes,” limiting transparency in decision-making. This lack of explainability can hinder 
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acceptance in clinical environments. Research into interpretability techniques, such as saliency maps and attention 
mechanisms, aims to address this issue. 

     Generalization across diverse clinical environments is challenging. Variations in skin types, imaging conditions, 
and lesion characteristics affect model performance. Extensive validation on diverse datasets is necessary but often 
difficult to achieve. 

    Regulatory and ethical concerns, including compliance with healthcare regulations like HIPAA and ensuring data 
security, are critical considerations. Additionally, the responsibility for AI-driven diagnostic errors raises ethical 
questions about accountability in clinical practice. 

    The computational demands of training DL models present another limitation. Deep neural networks require 
substantial resources, including high-performance GPUs, which may not be accessible to all institutions. 

    Finally, integrating DL models into existing clinical workflows requires technical compatibility and user-friendly 
interfaces. Continuous learning to adapt models to new data and evolving medical knowledge adds further 
complexity. 

    Tackling these challenges is essential for the broader adoption of DL models in skin cancer detection, ensuring 
they deliver accurate, reliable, and ethically sound diagnostic support. 

4.5  Related Work 

     The combination of ML and DL techniques has driven notable advancements in skin cancer detection and 
classification. Diverse methodologies have been proposed to enhance diagnostic accuracy and operational efficiency 
in this critical domain. 

      In 2024, Al-Rakhami et al.36 created a federated learning-based skin cancer diagnostic system that incorporates 
deep convolutional neural networks (DCNNs). This method effectively addressed data privacy concerns by enabling 
collaborative learning without direct data sharing, achieving high diagnostic accuracy across multiple datasets and 
underscoring its potential to support dermatological decision-making. 

     Hossain et al.122 proposed an innovative method that combines advanced pre-trained deep learning models using 
a Max Voting Ensemble technique. By using models like VGG16, MobileNetV2, ResNet50, and AlexNet, their 
approach achieved a diagnostic accuracy of 93.18% on the ISIC 2018 dataset, highlighting the effectiveness of 
ensemble learning in improving model performance. 

     Mazhar et al.104 provided a review of ML and DL applications in dermatology. Their study highlighted the utility 
of these technologies in tasks ranging from diagnosis to personalized care, emphasizing the importance of full lesion 
segmentation and tracking to develop robust skin cancer detection systems. 

     Murugan et al.43 employed transfer learning and dropout techniques for multi-class skin lesion classification 
using Convolutional Neural Networks (CNNs). Their model achieved an accuracy of 90% on the ISIC dataset, with 
the study exploring practical applications such as cloud-based solutions and API deployment for clinical use. 

     Zhang et al.32 presented a deep learning system that makes use of an improved Orca Predation Algorithm (OPA) 
and Gated Recurrent Unit (GRU) networks. This technique demonstrated improved overall accuracy, sensitivity, 
and specificity, providing a viable means of detecting skin cancer early. 

      Shruthishree123 developed an automated classification system leveraging deep transfer learning and dermoscopy. 
Their model achieved diagnostic accuracy comparable to expert dermatologists, underscoring its potential to reduce 
healthcare costs and improve early detection outcomes. 

     Pyun et al.124 investigated the application of deep learning-based diagnostic algorithms in conjunction with laser-
induced plasma spectroscopy (LIPS) for real-time, in vivo triage of skin cancer. Their system achieved high 
sensitivity (94.6%) and specificity (88.9%), demonstrating its effectiveness as a non-invasive diagnostic tool. 

     Subramanian et al.125  utilized transfer learning with pre-trained architectural models to identify and classify 
malignant skin lesions. Tested on the ISIC dataset, their approach achieved 85% classification accuracy, illustrating 
the efficiency of transfer learning in reducing training requirements and enhancing model performance. 

     Bappi et al.126 introduced the Mix Conv Dense GRU (MCD-GRU) model, which demonstrated exceptional 
accuracy rates of 99.90% during training and 99.13% during testing, highlighting its efficacy in classifying various 
skin cancer types. 

     Manju et al.127 designed a computer-assisted detection system integrating 3D CNN with Inception V3 networks. 
Their model achieved high levels of accuracy (96%), sensitivity (97%), and specificity (97%), surpassing many 
state-of-the-art detection systems. 
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Table 6. The modality and methods 
Modality Method Remarks Performance Metrics and 

Results 
Ref. 

Skin Cancer Diagnosis Federated Learning and Deep 
Convolutional Neural Networks 

Privacy-preserving 
classification system 

High accuracy across multiple datasets 36 

Skin Cancer Detection Max Voting Ensemble with Pre-
Trained Models 

Ensemble method combining 
multiple architectures 

93.18% accuracy, 0.9320 AUC 122 

Skin Cancer Detection Deep Learning and Machine 
Learning Techniques 

Comprehensive analysis of 
methodologies 

Emphasis on segmentation and tracking 104 

Skin Cancer 
Classification 

CNNs with Transfer Learning Multi-class classification using 
dropout integration 

90% accuracy on ISIC dataset 43 

Skin Cancer Detection GRU Networks and  Enhanced 
Orca Predation Algorithm 

Optimized sequential learning 
approach 

High sensitivity and specificity 21 

Skin Cancer Detection Deep Transfer Learning Automated detection 
leveraging dermoscopy 

Accuracy com parable to dermatologists 123 

Skin Cancer Triage LIPS and Deep Neural 
Networks 

Non-invasive, real-time 
diagnostic system 

94.6% sensitivity, 88.9% specificity 124 

Skin Cancer 
Identification 

Transfer Learning with 
Pre-Trained Models 

Efficient classification using 
transfer learning  

85% accuracy on ISIC dataset 125 

Skin Cancer Detection Mix Conv Dense GRU (MCD-
GRU) Model 

Robust model for skin cancer 
classification 

99.13% testing accuracy 126 

Skin Cancer Detection 3D CNN and Inception V3 
Integration 

Enhanced detection with 
advanced CNNs 

96% accuracy, 97% sensitivity and 
specificity 

127 

 

5. Ethical and Legal Considerations 

     The rapid advancement of ML and DL technologies in skin cancer detection has introduced complex ethical and 
legal challenges. These challenges include potential biases in algorithmic decision-making, along with issues related 
to informed consent, data security, and patient privacy. Simultaneously, the evolving regulatory landscape for 
medical AI necessitates strict compliance to ensure high standards of patient care. This section examines the ethical 
dilemmas and legal frameworks associated with ML and DL in skin cancer detection, highlighting the 
responsibilities of researchers, developers, and healthcare providers in ensuring these technologies adhere to ethical 
principles and legal requirements. 

5.1  Patient Privacy 

     Patient privacy remains a fundamental ethical consideration in deploying ML and DL technologies for skin 
cancer detection. The reliance on large datasets containing sensitive patient information for training and validating 
models underscores the importance of maintaining data confidentiality and compliance with legal standards. 

     In order to ensure patient privacy, anonymization and de-identification are essential processes. In order to prevent 
direct identification, anonymization involves removing personally identifying information (PII) from databases, 
such as names, addresses, and social security numbers. De-identification extends this protection by eliminating 
indirect identifiers, such as unique patient codes or demographic combinations, that could potentially trace data back 
to individuals. However, re-identification risks persist, particularly when datasets are cross-referenced with publicly 
available information. 

     Protecting data security is equally essential. Strong cybersecurity protocols are needed to protect both stored and 
transmitted data from unauthorized access, breaches, and leaks. These protocols involve using advanced encryption 
methods for data at rest and in transit, implementing access controls to restrict data usage to authorized personnel, 
and ensuring secure data-sharing practices. Ongoing security audits and compliance reviews are crucial for detecting 
and addressing potential vulnerabilities. 

      Informed consent is a fundamental principle of ethical data usage. Patients need to be completely informed about 
the ways in which their data will be used, including the objectives of data collection, associated risks, and the privacy 
measures implemented. Consent must be obtained transparently, ensuring patients understand their rights to 
withdraw consent at any stage without impacting their medical care. Simplifying the complexities of ML and DL 
technologies for laypersons is crucial for truly informed consent. 

      Data governance frameworks play an essential role in managing data responsibly. These frameworks define 
policies for data access, use, and sharing while ensuring compliance with ethical and legal standards. Research 
protocols should be supervised by institutional review boards (IRBs) or ethics committees to ensure that patient 
privacy is maintained throughout the data lifecycle. 

      It is essential to comply with laws like the General Data Protection Regulation (GDPR) in the European Union 
and the Health Insurance Portability and Accountability Act (HIPAA) in the United States. Strict guidelines for data 
protection and processing openness are enforced by HIPAA and GDPR. Serious legal and financial repercussions 
as well as harm to one's image may arise from noncompliance. Finally, maintaining transparency and accountability 
in ML and DL model usage is critical for building public trust. Organizations must clearly communicate the purposes 
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and outcomes of data usage and the steps taken to protect privacy. Mechanisms for addressing privacy breaches and 
ethical violations, including reporting and grievance redressal systems, should be in place. 

5.2   Regulatory Compliance 

     Regulatory compliance is a cornerstone of incorporating ML and DL technologies into healthcare, particularly 
in sensitive applications like skin cancer detection. Complying with legal and ethical standards is crucial to 
safeguarding patient rights, building public trust, and ensuring the effective and safe implementation of AI in clinical 
practice. 

     Strict guidelines are enforced by the Health Insurance Portability and Accountability Act (HIPAA) in the US to 
safeguard patient data. To guarantee the availability, integrity, and confidentiality of protected health information 
(PHI), HIPAA requires administrative, technological, and physical measures, including frequent risk assessments, 
secure data storage, and encryption. Serious consequences, like as fines and legal action, may follow noncompliance 
with HIPAA. 

     A comprehensive foundation for data privacy and protection is offered by the European Union's General Data 
Protection Regulation (GDPR). It is applicable to every organization, regardless of location, that manages the 
personal data of EU people. Core principles include data minimization, accuracy, and accountability. GDPR grants 
data subjects explicit rights, such as access to their data, the right to correct inaccuracies, and the right to request 
data erasure. Compliance for ML and DL applications involves rigorous anonymization, explicit patient consent, 
and robust data protection mechanisms. 

     Various regulatory bodies supervise the use of AI in healthcare. In the United States, the Food and Drug 
Administration (FDA) governs AI-driven diagnostic tools as medical devices. The FDA framework emphasizes 
safety, effectiveness, and transparency through premarket reviews and post-market surveillance. Similarly, the 
European Medicines Agency (EMA) mandates comprehensive clinical evidence for AI applications, emphasizing 
algorithmic transparency and explainability. 

      Ethical considerations are integral to regulatory compliance. Developers must ensure algorithms are free from 
biases and perform equitably across diverse demographic groups. This requires thorough testing, validation, and 
strict adherence to ethical standards, such as those set by the IEEE Global Initiative on Ethics of Autonomous and 
Intelligent Systems, which prioritize human well-being, fairness, and accountability. 

5.3  Bias and Fairness 

      Bias and fairness are crucial ethical issues when applying ML and DL technologies in skin cancer detection. 
Bias in these systems can arise from multiple sources, such as algorithm design, training data, and outcomes 
interpretation. Addressing these biases is imperative to ensure equitable benefits of ML and DL technologies across 
diverse patient demographics. 

      A primary source of bias is the training data. If the dataset used to develop an ML model lacks representation of 
the population diversity intended for the system’s application, the model may underperform for underrepresented 
groups. For instance, a dataset predominantly comprising images of skin lesions from lighter-skinned individuals 
may result in suboptimal diagnostic accuracy for darker-skinned patients. Such disparities can exacerbate existing 
healthcare inequalities. To mitigate this, training datasets must be diverse and inclusive, encompassing a wide 
spectrum of skin tones, ages, genders, and lesion types. 

       Algorithmic design also plays a significant role in introducing or amplifying biases. Decisions made during 
model development, such as selecting features or designing the neural network architecture, may unintentionally 
encode biases. To address this, researchers should thoroughly evaluate and refine these design choices, employing 
techniques like fairness aware ML, which integrates fairness constraints into the model training process, to develop 
more equitable systems. 

       The interpretation and utilization of results can further influence the perpetuation or mitigation of bias. 
Clinicians and healthcare providers must recognize that ML and DL models serve as decision-support tools rather 
than replacements for human judgment. Training healthcare professionals to critically evaluate AI outputs and 
remain vigilant about potential biases is essential. Additionally, transparently reporting model performance across 
diverse demographic groups can help identify and rectify disparities. 

       Ensuring fairness requires regular auditing and iterative updating of ML models. As new data emerges and 
population demographics evolve, continuous monitoring and retraining are necessary to preserve model accuracy 
and equity. Performance evaluations should include subgroup-specific analyses to ensure no demographic is 
disproportionately affected by the system’s outputs. 

       Regulatory frameworks and ethical guidelines provide a structured basis for addressing bias and promoting 
fairness. Regulatory authorities such as the FDA and EMA mandate rigorous validation and safety assessments for 
ML and DL systems in healthcare. These evaluations often include specific requirements to identify and mitigate 
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bias. Ethical frameworks, such as those offered by the IEEE Global Initiative on Ethics of Autonomous and 
Intelligent Systems, further emphasize principles of fairness, accountability, and human-centered AI development. 

6. Conclusion 

      The integration of ML and DL technologies into the detection and diagnosis of skin cancer signifies a 
transformative advancement in dermatology. These innovative methods have demonstrated significant potential to 
enhance diagnostic accuracy, facilitate early detection, and streamline clinical workflows. By leveraging extensive 
datasets and sophisticated algorithms, ML and DL systems can discern subtle patterns in dermoscopic images that 
may elude human clinicians. This capability not only augments diagnostic processes but also holds promise for 
reducing missed diagnoses and improving patient outcomes through timely intervention. 

       Nonetheless, the successful deployment of these technologies requires addressing critical ethical, legal, and 
practical challenges. Respecting legal frameworks like HIPAA and GDPR, as well as protecting patient privacy and 
guaranteeing data security, are critical. Additionally, preventing the escalation of already-existing healthcare 
inequities requires minimizing biases in training data and guaranteeing equity in algorithmic judgments. 

       This section synthesizes the study’s findings, highlighting the transformative benefits of ML and DL in skin 
cancer detection, including their precision in analyzing large datasets and their role in supporting clinical decision-
making. It also underscores existing limitations, such as the dependence on extensive, diverse, and annotated 
datasets, the risk of algorithmic bias, and challenges related to integrating these technologies into current clinical 
workflows. 

       Future progress in this field should aim at creating more robust and interpretable models, improving data 
diversity and quality, and establishing comprehensive frameworks for ongoing monitoring and model updates. 
Collaboration among technologists, clinicians, and regulatory bodies will be essential to ensure that ML and DL 
technologies in dermatology remain innovative while adhering to ethical, transparent, and patient-centered 
principles. These technologies have the potential to transform the field of skin cancer diagnosis and treatment by 
providing safe, efficient, and fair healthcare solutions with further study and development. 
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