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 Dye-sensitized solar cells (DSSCs) offer several advantages over traditional silicon-based solar 
cells, such as lower cost, versatility, and transparency. Titanium dioxide (TiO2) is widely used 
as a photocatalyst in DSSCs due to its chemical stability, high photocatalytic activity, 
photostability, and non-toxicity. This study provides a computational analysis of the geometric, 
electronic, optical, and photovoltaic properties of ten novel dyes using Density Functional 
Theory (DFT) and Time-Dependent DFT (TD-DFT). To our knowledge, these dyes have not 
been previously explored in the literature. Our findings indicate that structural modifications can 
significantly enhance the electronic, optical, and photovoltaic properties of these dyes. The 
B3LYP functional was identified as the most effective for predicting the geometric and electronic 
properties, while TD-DFT calculations with the CAM-B3LYP functional and the 6-31G(d,p) 
basis set accurately predicted the absorption properties. The absorption maxima of the dyes 
ranged from 427.82 nm to 755.93 nm, with strong UV-Vis absorption attributed to delocalized 
π-π* transitions. The calculated band gaps varied from 1.928 eV to 2.425 eV, showing that 
increased conjugation leads to reduced band gaps and improved dye performance. Open-circuit 
voltage (Voc) values for TiO₂ ranged from 0.893 eV to 1.38 eV, suggesting good potential for 
efficient electron injection into the TiO2 conduction band. In conclusion, the ten novel dyes 
studied exhibit significant potential for use in DSSCs, and the theoretical methods employed here 
offer a reliable framework for predicting the properties of other materials. This approach can 
guide the development of new materials designed to improve the performance of DSSCs. 

© 2025 by the authors; licensee Growing Science, Canada. 
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1. Introduction  
 
    Dye-sensitized solar cells (DSSCs) are type of photovoltaic solar cells that are considered as a third-generation which 
efficiently converts sunlight into electrical power. They are particularly promising due to their low cost, ease of fabrication, 
and impressive efficiency in harnessing solar energy1-3. 

     DSSCs were first developed by Grätzel and O’Regan in 1991, marking a significant leap forward in the field of 
photovoltaic technology. Since then, these cells have been the focus of extensive research and development, further 
improving their performance and application potential. Structurally, DSSCs are composed of several key components, 
including a transparent conductive substrate, an electrolyte, a counter electrode, and a photoanode4-7. The photoanode, which 
is crucial to the cell’s function, consists of a layer with a porous nanoparticles coated with a light-sensitive dye. The photons 
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of sunlight are captured by the dye and resulting in the generation of electron-hole pairs, which are essential for the cell’s 
operation8-10. 

     In DSSCs, the movement of charge carriers is crucial for the conversion of sunlight into electrical power11,12. Holes 
generated in the photoanode move toward the electrolyte, while electrons are directed to the transparent conductive 
substrate13-15. The electrolyte plays a key role as a redox mediator, facilitating the transfer of electrons to the counter 
electrode and recharging the dye16,17. The process is completed when electrons and holes recombine at the counter electrode, 
closing the electrical circuit. The performance of DSSCs is influenced by many factors, such as the characteristics of the 
dye used, the structure of the photoanode, and the composition of the electrolyte. In this context, inorganic or organic metal 
complex dyes are favored due to their tunable electrical properties and good coefficients of absorptions18,19. Additionally, 
semiconductors like tin oxide (SnO2), zinc oxide (ZnO), and TiO2 are particularly suitable for constructing flexible and 
efficient photoanodes20,21. 

     DSSCs present several features over traditional silicon solar cells, including cost-effectiveness, versatility, and 
transparency22-25. Titanium dioxide (TiO2) is commonly employed as a photocatalyst in DSSCs, especially in initiatives 
aimed at mitigating freshwater shortages26,27, due to its chemical durability, high photocatalytic activity, photostability, and 
non-toxicity28-30. However, anatase TiO2 has inherent drawbacks, such as low activity and a wide band gap of 3.2 eV, which 
limits its sensitivity to visible light and reduces its solar energy absorption efficiency31,32. Recent advancements in DSSC 
technology have addressed some of these challenges by developing a new photoanode composite that includes hollow TiO2 
spheres for improved light scattering, gold nanoparticles with significant surface plasmon resonance effects, and up-
conversion nanoparticles capable of converting near-infrared photons into visible photons. These innovations highlight the 
significant potential of DSSCs to revolutionize the photovoltaic industry by offering an efficient means of converting solar 
energy into electrical power. Nevertheless, more development and research are required to enhance the efficiency, 
durability, and lifespan of these systems, ensuring they can meet future energy demands33-26. 

     Optimizing the efficiency of DSSCs heavily relies on the careful selection of light-sensitive dye molecules and 
nanocrystalline materials for the photoanode electrodes. An effective strategy for enhancing DSSC efficiency involves using 
donor-acceptor molecules, which consist of an acceptor component, such as carboxylate, and a donor component, such as 
amine. Hybrid alizarin-based dyes, which combine an acceptor moiety (alizarin) with an electron-donating moiety 
(carbazole), exemplify this approach. These dyes leverage the charge transfer of photo-induced features of the donors 
organic dye, which are crucial for the enhancement of efficient DSSCs. A thorough analysis of the optical absorption 
characteristics of ten alizarin-based dyes has been performed, with their molecular structures depicted in Fig. 1. 

 

Fig. 1. Dye structures QA, QAref and Pi (i=1-10)] 
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    In applications such as solar cells, the transfer of intramolecular charge—referring to the internal electron’s movement 
in a molecule as they shift between different electronic states—is crucial. A key characteristic in this context is the energy 
gap, or band gap, which determines a material’s capability to absorb photon and generating the photocurrent. The gap energy 
is the difference in energy between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular 
orbital (HOMO). A narrow band gap facilitates the creation of charge carriers (holes and electrons) as it indicates that the 
energy required for an electron to transition from the low-level HOMO to the high level LUMO is relatively. 

    For solar cell applications, organic compounds with elevated HOMO levels and reduced LUMO levels are highly 
effective37. The efficiency of these substances in photovoltaic cells and other optoelectronic systems is strongly impacted 
by an optimal structural configuration, effective internal charge migration, and a suitable energy gap. Understanding the 
geometric and electronic properties of organic dyes in both their neutral and excited states. requires the application of 
theoretical methods like Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT)38,29. 

2. Theoretical study of alizarin-based the solar cells 

     Modeling a molecule generally starts with generating a visual representation of its molecular geometry or atomic 
arrangement. Subsequently, a theoretical framework, such as quantum mechanics or molecular dynamics, is employed to 
refine the electronic structure and assess the molecule’s physical properties. In this paper, DFT was chosen as the modeling 
method. The calculations were conducted using the Gausian 09 software on our personal computers. 

2.1 Calculation function selection 

     The electronic characteristics of new chromophores investigated by quantum computing, such as the energy levels of 
their frontier orbitals (HOMO and LUMO) and the gap energy, need experimental validation. As shown in Fig. 2, this 
procedure allowed us to compare such properties that were derived theoretically and experimentally. In the alizarin (AQ) 
family, anthraquinone (AQref) is utilized as a reference molecule (Fig. 1). 

     A comparison of the energy gap, HOMO, and LUMO values determined experimentally with those obtained using 
various quantum computing techniques (B3LYP, WB97XD, B3PW91, PBEPBE, BPV89, and CAM-B3LYP)40 is shown in 
Fig. 2. This comparison method is commonly used in the literature to determine the most suitable functional for a given 
study41-43.  

     The findings demonstrate that B3LYP produces results that closely resemble the experimental data when used with the 
6-31G(d,p) basis set44-47. Therefore, we selected the B3LYP functional, as it provided the closest energy gap, HOMO, and 
LUMO values to the experimental result. 

 

Fig. 2. Comparison of energy gap (a), LUMO molecular orbital energy (b) and HOMO molecular orbital energy (c) 
simulated by different quantum methods and experimental (CV: Cyclic Voltammetry data). 

     Based on measurements of the energy gap, the LUMO and HOMO molecular orbital of the reference dye, we remark 
that the B3LYP function in the 6-31G(d, p) base is in agreement with experimental values48. After determining the most 
appropriate function, the designed dyes are optimized by TD-DFT computations. In particular, the TD-DFT-B3LYP method 
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is used to examine the optical, electronic, and photovoltaic proprieties with the 6-31G(d,p) basis set. The lack of imaginary 
frequencies in all dyes signifies that the optimized geometries have an overall minimum (Table S1). 

2.2 Calculation Procedure and Geometric Structure of Dyes 

     First, the optimization procedure was applied to identify the stable conformation of the dyes. Several structures were 
optimized using the 6-31G (d,p) basis set, which was found to be the most reliable for our system48,49. Concurrently, we 
performed similar calculations using Becke's B3 three-parameter hybrid function combined with non-local Lee-Yang-Parr 
(LYP) correlation, generally referred to as the B3LYP method. The same 6-31G (d,p) basis set was utilized for this approach. 
Subsequently, the B3LYP-optimized geometries for the Pi dyes (i = 1-10) were analyzed using TD-DFT with the CAM-
B3LYP functional and the 6-31G (d,p) basis set to determine ground-state energies, excited-state energies, and oscillator 
strengths43. This analysis provided insights into the HOMO and LUMO levels, the HOMO-LUMO gap, and the absorption 
maximum (λmax). The most stable conformations were obtained after optimization in both ground and excited states using 
the DFT method with the B3LYP functional and the 6-31G (d,p) basis set. The molecular structures of the optimized dyes 
(QA and Pi, with i = 1-10) are presented in Fig. 3, which explains more clearly the structural changes made and illustrates 
in greater detail the molecular configurations obtained after the optimization procedure was completed. 

 

Aizarin (QA) 

   

 P1                                                                     P2                                                                      P3           

             

                     P4                                                                                 P5                                                                                                                                                                               
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                                P6                                                                                                                  P7   

          

                                   P8                                                                                                            P9      

 

P10 

Fig. 3. The optimized structures of dyes (QA, and Pi with i = 1–10) obtained using  

B3LYP/6-31G(d,p) level 

2.3 Computational details 

     Understanding the HOMO and LUMO orbitals is essential to comprehending how all chemical compounds behave 
physicochemically. In this context, the DFT/B3LYP/6-31G(d,p) method was employed to optimize the structures of these 
molecules. To investigate the electronic characteristics of compounds, the energy gap (Eg) was calculated. As is well 
knowledge, the energy gap has the following definition and can be connected to certain molecular characteristics like 
electrical conductivity and kinetic stability (reactivity)50. 

Eg  = ELUMO - EHOMO (1) 

     ELUMO and EHOMO represent the LUMO energy level and the HOMO energy level, respectively. Employing the 
DFT/B3LYP/6-31G(d,p) approach on the optimized structures, we calculated several chemical properties, including 
electronegativity (χ), electronic chemical potential (μ), overall hardness (η), and overall softness (S). Zhou et al. notes that 
electronegativity is represented as the negative of the Lagrange multiplier, which corresponds to the electronic chemical 
potential51. 

𝛍𝛍 = �
𝛛𝛛𝛛𝛛
𝛛𝛛𝛛𝛛

�
𝐕𝐕

= −𝛘𝛘 
(2) 

where E represents the electronic energy, N the number of electrons and V corresponds to the potential generated by the 
nuclei. The electronic chemical potential μ and the global hardness ŋ are calculated from the energies of the boundary 
molecular orbital’s EHOMO and ELUMO as follows51,52. 
 
𝝁𝝁 = (𝑬𝑬𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 +  𝑬𝑬𝑳𝑳𝑳𝑳𝑯𝑯𝑯𝑯 )/𝟐𝟐 (3) 
η = (ELUMO - EHOMO)/2 (4) 

     The system’s sensitivity to perturbations is quantified by softness (S) and electrophilicity power (ω), which are related 
to changes in electron density in response to variations in the external potential or electron count. Softness is the inverse of 
hardness (η) and is frequently used in density functional theory (DFT) calculations. It can be mathematically expressed as 
follows. 

S=  𝟏𝟏
𝟐𝟐𝟐𝟐

 (5) 

𝛚𝛚 =
𝛍𝛍𝟐𝟐

𝟐𝟐𝟐𝟐
 

(6) 



 6 

     The density of short-circuit current (Jsc) in DSSCs is given by the Eq. (7)53. 

𝐉𝐉𝐒𝐒𝐒𝐒 = �𝐋𝐋𝐋𝐋𝛛𝛛(𝛌𝛌) 𝛗𝛗𝐢𝐢𝐢𝐢𝐢𝐢 𝟐𝟐𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐝𝐝𝛌𝛌 (7) 

where Фinject is the efficiency of electron injection, ηcollect the efficiency of charge collection, and LHE(λ) is the light 
harvesting efficiency. To attain a high, short-circuit current (Jsc), the effective dyes utilized in the DSSCs necessitate a 
substantial light harvesting efficiency (LHE) as specified by Eq. (8)54. 

𝐋𝐋𝐋𝐋𝛛𝛛 = 𝟏𝟏 − 𝟏𝟏𝟏𝟏−𝐟𝐟 (8) 

     The dye’s oscillator strength (ƒ), especially when it comes to wavelength (λmax), is unquestionably essential for effective 
light harvesting in dye-sensitized solar cells (DSSCs). An increased value of ƒ signifies a more robust absorption of light, 
thereby augmenting the sensitizer’s capacity to harvest light and ultimately enhancing the DSSC’s overall efficiency. 
Moreover, the injection efficiency (Φinject) is a significant factor that also contributes to a high JSC. A higher Jsc is the 
outcome of a larger Φinject. The injection driving force (ΔGinject), which is defined in detail in reference55, is related to this 
injection efficiency. Understanding and maximizing the performance of DSSCs requires an understanding of the 
fundamental relationship between Δinject and ΔGinject. 

ΔGinject =  Edye* - ECB (9) 

      The notation Edye
* represents the dye’s excited state oxidation potential, whereas the notation ECB represents the 

semiconductor TiO2’s ground state reduction potential. Comprehending the transfer of electron mechanisms in DSSCs 
requires an understanding of these values.The value for Edye

* was calculated using Eq.10 from reference54, whereas the 
conduction band edge potential of TiO2 (ECB) used is 4.00 eV, as reported in reference56,57. 

Edye*= Edye – Eexp    (10) 

      The formula Edye= -EHOMO represents the potential oxidation of the dye’s ground state. Moreover, the potential is 
determined by the absorption energy Eexp, which is associated with the maximum wavelength λmax in the UV-visible and 
near-IR domains. In addition, equation 11 provides a basis for estimating open-circuit photovoltaic Voc

58,59.  

VOC = ELUMO - ECB (11) 
 

where ECB denotes the band conduction of TiO2 and ELUMO denotes the energy level of the dye’s LUMO60. 

2.4 Results and discussion 

2.4.1 Frontier molecular orbital 

 The energy gap of a compound significantly influences its photocurrent. A smaller band gap facilitates the movement 
of electrons from the HOMO to the LUMO level upon absorbing light of a certain wavelength. Understanding the HOMO 
and LUMO orbital’s is essential for grasping the physico-chemical properties of p-type the chemical compounds. 
Furthermore, based on the representation of the HOMO, the C=C bonds display a p-bonding nature and exhibit an 
antibonding phase concerning their adjacent C=C units. To delve into their importance, we utilized the DFT/B3LYP/6-
31G(d,p) approach to optimize structures, displaying the HOMO and LUMO orbital’s in Fig. 4. Based on this figure, we 
can see that for the HOMO level in the ground state, the density of electron is mainly located on the thiophene part linked 
to the hydroxide-bearing part of the antraquinone (QA) of dyes P1-P8, with the exception of P9 and P10 where this density 
is located on the other part of QA, with a strong influence on the donor group. The HOMO orbitals of the nine dyes under 
study have a binding character to the bonds between the acceptor and donor groups. Regarding the LUMO level, the density 
of electron is primarily concentrated on the QA part (electron acceptor group) of the P1-P8 dyes, suggesting a high 
abundance of electrons in this region (Fig. 4). However, in the case of dyes P9 and P10, the density is specifically situated 
on the benzo[c] thiophene moiety that is connected to QA. The LUMO orbitals of the ten dyes explored exhibit an anti-
bonding nature on the bonds connecting the acceptor and the donor group. 

2.4.2 Dyes electronic properties 

      The calculations of Frontier Molecular Orbital (FMO) energies provide detailed insights into excited state transitions 
and absorption spectra in dyes. The EHOMO and ELUMO values of the dyes and TiO2 have been determined and are shown in 
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Table 1. Furthermore, reactivity indices based on DFT calculations, such as η, S, μ, χ, and ω, are calculated to examine 
electronic characteristics (Table 1). 
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Contour plots 
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Fig. 4. The HOMO and LUMO orbital contours of the dyes studied, QA and Pi (i=1-10). 
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Table 1. EHOMO, ELUMO, Eg and DFT calculated reactivity indices (η, S, μ, χ and ω) of the dyes investigated in eV. 
Dyes EHOMO  ELUMO  Eg Η S μ χ ω 
QA -6.40 -3.22 3.18 1.59 0.31 -4.82 4.82 7.30 
P1 -5.01 -3.04 1.97 0.99 0.51 -4.03 4.03 8.20 
P2 -5.28 -2.99 2.30 1.15 0.43 -4.13 4.13 7.41 
P3 -4.94 -3.01 1.93 0.96 0.52 -3.97 3.97 8.20 
P4 -5.01 -3.04 1.97 0.98 0.51 -4.03 4.03 8.28 
P5 -5.23 -3.11 2.12 1.06 0.47 -4.17 4.17 8.20 
P6 -4.83 -2.88 1.95 0.97 0.51 -3.86 3.86 7.68 
P7 -4.82 -2.85 1.97 0.98 0.50 -3.83 3.83 7.48 
P8 -4.88 -2.62 2.26 1.13 0.44 -3.75 3.75 6.22 
P9 -5.02 -3.00 2.02 1.01 0.49 -4.01 4.01 7.96 
P10 -5.38 -2.96 2.42 1.21 0.41 -4.17 4.17 7.18 

TiO2(CB) -7.1654 -4.0054 3.16 1.58 0.32 -5.58 5.58 9.85 
 

     The findings listed in Table 1 indicate that TiO2 compound exhibits the least chemical potential value μ (-5.58) in 
comparison to the other dyes. Electron transfer occurs from compounds with higher chemical potential to those with lower 
chemical potential. Given that the chemical potential of TiO2 is smaller than that of the other Pi(i=1-10) compounds, we 
can deduce that TiO2 serves as an electron acceptor, while the others function as electron donors. 

     According to the results in Table 1, and by comparing the differential electronegativity obtained. TiO2 is identified as 
the molecule with the highest electronegativity (5.58) than the dyes P (χ = 3.75 to 4.17 eV), indicating a strong tendency to 
attract electrons. This attraction is expected to occur between TiO2 as the acceptor and the other Pi molecules as donors. On 
the other hand, TiO2 exhibits the highest hardness at 1.58 eV, indicating resistance to rearrangement in its electronic 
structure, resulting in lower reactivity. Following TiO2, Compound P10 ranks second with a hardness of 1.21, succeeded by 
P2 at 1.15, and finally P8 at 1.13 [η(CB) > η(P10) > η(P2) > η(P8)], along with other compounds showing nearly identical 
hardness values. Compounds P4, P6, and P3 are likely to undergo electronic structure changes via chemical reactions, 
potentially forming covalent bonds. The transfer of electronic flux from the dyes to the semiconductor is supported by the 
dyes’ lower global hardness and higher softness compared to TiO2, as seen in Table 2. 

    The gap value is a crucial measure for assessing the quality of compounds. To enhance the aromaticity of these 
compounds, the most efficient approach is to incorporate or connect electron donor groups and stabilize the nucleus and the 
acceptor group. 

    The calculations were performed using the DFT approach, specifically employing the B3LYP functional and the Pople 
base 6-31G (d,p) with high quality. The results in Table 2 present the HOMO, LUMO, and gap energy of various optimized 
molecules obtained through B3LYP/6-31G (d,p). The data indicates that the energy gap increases from compound P3 to 
compound P10, likely due to an increase in the substituent’s electron-donating ability in the molecule. The determined band 
gap of the examined molecules ranged from 2.425 to 1.928 eV, with the following ascending order of increases: P10 > P2  > 
P8 > P5 > P9 > P7 > P1 > P4 > P6 > P3. The data in Table 2 illustrates that dyes P7, P6, P8 and P3 [EHOMO(P7) > EHOMO(P6) > 
EHOMO(P8) > EHOMO (P3)] exhibit the highest HOMO energies when compared to other molecules. Consequently, these dyes 
are characterised by a soft character. CB stands out for having the lowest EHOMO value, suggesting that it is more difficult 
compared to the other dyes. On the other hand, the ten dyes (P1-P10) have a high-energy LUMO around -3.00 eV while the 
semiconductor CB has a LUMO energy close to -4.00 eV. CB therefore has the characteristics of electrophilic species 
compared to the other compounds dyes studied, confirming its acceptor nature. 

     The ELUMO and the EHOMO values for the ten compounds studied have been identified, along with the ELUMO and the 
EHOMO of CB (TiO2), as detailed in Table 1. According to the theory of frontier orbitals, when two molecules interact, the 
crucial frontier orbitals are the HOMO of one molecule and the LUMO of the other. This selection is made with the objective 
of minimising Eg between the two molecules. Figure 5 shows the possible interactions between the P3 molecule and the CB 
compound. 

Table 2. EHOMO, ELUMO, the LUMOCB – HOMOPi gap and the gapLUMOPi– HOMOCB in eV. 
Dyes EHOMO(eV) ELUMO(eV) LUMOCB-HOMOPi LUMOPi-HOMOCB 

P1 -5.01 -3.04   1.01 4.12 
P2 -5.28 -2.98 1.28 4.18 
P3 -4.94 -3.01 1.94 4.15 
P4 -5.01 -3.04 1.01 4.11 
P5 -5.23 -3.11 1.23 4.05 
P6 -4.83 -2.88 1.83 4.27 
P7 -4.82 -2.84 1.82 4.31 
P8 -4.88 -2.62 1.88 4.54 
P9 -5.02 -3.00 1.02 4.15 
P10 -5.38 -2.96 1.38 4.2 

TiO2 -7.16 -4.00 *** *** 
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     Table 2 illustrates the most favorable interaction effect between the electron donor group and the electron acceptor group 
on the compounds character and overall properties. The Calculations of the HOMO-LUMO gaps between the dyes and the 
conduction band (CB) of TiO2 show that the most favorable interactions are those that between the Pi dyes as electron 
donors and the CB as electron acceptors because these interactions have a lower energy gap than that of the interaction 
between CB as electron donor and the dye as an electron acceptor. Table 2 demonstrates that the energy differences between 
the HOMO of the electron donors (P1-P10) and the LUMO of the electron acceptor (CB) are greater than 0 eV. This suggests 
that there will be electrons transfer from the donor molecule (Pi) to the acceptor molecule TiO2 (CB). To assess the potential 
for transfer of electron from the investigated excited molecules to the TiO2 (CB), we conducted a comparison of the HOMO 
and LUMO levels (Fig. 5). Significantly, the dyes’ LUMO values surpass the CB of TiO2 (-4.0 eV). Moreover, the HOMO 
energy levels of all the dyes surpass the conduction band edge of TiO2, suggesting that the transfer of photo-excited electrons 
from the dyes to TiO2 could be highly effective for application in photovoltaic cells. The findings indicate that the assessed 
compounds exhibited lower electrophilic values (ɷ) compared to TiO2 (9.96), suggesting their proficiency as electron 
donors. Consequently, the examined compounds demonstrate efficacy as electron donors in DSSCs devices, while TiO2 
excels as an electron acceptor. 

 

Fig. 5. Plot of HOMO and LUMO level energies for the dyes investigated, calculated using the B3LYP/6-31G(d,p) 
function. 

2.4.3 Optical properties 

     In order to investigate the optical properties and electronic transitions of the dyes being analyzed, TD-DFT computations 
were conducted using the B3LYP functional and a 6-31G (d,p) basis set. The data obtained, as shown in Table 3, comprises 
the computed transition energies of (Pi) for absorption wavelength (λabs), vertical excitation energy (Eex), oscillator strength 
(f), and the type of the transitions shown by these dyes. The least singlet electronic excitation is categorized as a standard 
π–π* transition.  

  

Fig. 6. Simulated UV-visible absorption spectra of the studied dyes, from data calculated using the TD-DFT method at the 
B3LYP/6-31G(d,p). 
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      The absorption spectra of the ten dyes under study are simulated and given in Fig. 6. The spectra ranging from 200 to 
800 nm indicates that the most intense absorption in the UV-visible region (λmax> 400 nm) is associated with the HOMO-
LUMO electronic transition for compounds P1 to P7. In contrast, for the other molecules: P8 corresponds to HOMO-
2→LUMO electronic transitions, P9 to HOMO-1→LUMO transitions, and P10 to HOMO-1→LUMO transitions, 
considering only the transitions with the highest oscillator strengths. Significantly, the absorption peaks move 
approximately 300 nm closer to the longer-wavelength, red region of the spectrum. The λmax values for the ten dyes are 
ranked as follows: P4> P6> P3> P7> P1> P8> P2> P9> P5> P10 (see Table 3). This bathochromic shift is attributed to the 
increasing conjugation within the compounds, particularly from P10 to P4. Specifically, the λmax values are 427.82 nm for 
P10, 484.63 nm for P5, 490.34 nm for P9, 490.64 nm for P2, 499.38 nm for P8, 500.85 nm for P1, 520.27 nm for P7, 523.70 
nm for P3, 526.77 nm for P6, and 755.93 nm for P4. Hence, comprehending the electronic and absorption properties of these 
molecules necessitates a thorough grasp of the significance of aromaticity and conjugation. 

Table 3. Absorption spectra calculated using the TD-DFT method for the dyes investigated, based on their geometries 
optimized with the B3LYP/6-31G(d,p) level. 

Dyes Electronic Transition λabs (nm) Eex (eV) f Transition caractère (%) 
 
 

P1 

S0→ S1 500.85  2.47 1.32×10-1 HOMO→LUMO (63) 
S0→ S2 465.08 2.66 7.5×10-3 HOMO→LUMO+2 (54) 
S0→ S3 382.40 3.24 4.01×10-4 HOMO-5→LUMO (58) 
S0→ S4 358.80 3.45 8.21×10-2 HOMO-1→LUMO (64) 
S0→ S5 334.10 3.71 1.00×10-4 HOMO-7→LUMO (63) 
S0→ S6 313.78 3.95 9.77×10-2 HOMO→LUMO+5 (50) 

 
 

P2 

S0→ S1 490.64 2.53 1.30×10-3 HOMO→LUMO+1 (58) 
S0→ S2 442.15 2.80 2.43×10-1 HOMO→LUMO (66) 
S0→ S3 383.00 3.24 1.00×10-1 HOMO-4→LUMO (57) 
S0→ S4 338.00 3.67 2.10×10-3 HOMO-4→LUMO (31) 
S0→ S5 337.46 3.67 4.35×10-2 HOMO→LUMO+4 (65) 
S0→ S6 323.81 3.83 1.43×10-2 HOMO-1→LUMO (65) 

 S0→ S1 523.70 2.36 2.42×10-1 HOMO→LUMO (66) 
 S0→ S2 469.78 2.64 1.27×10-2 HOMO→LUMO+2 (59) 

P3 S0→ S3 388.22 3.19 1.00×10-4 HOMO-3→LUMO (64) 
 S0→ S4 338.28 3.66 1.50×10-2 HOMO-7→LUMO (37) 
 S0→ S5 337.16 3.68 8.00×10-4 HOMO-7→LUMO(52) 
 S0→ S6 316.16 3.92 1.57×10-1 HOMO→LUMO+5 (40) 
 S0→ S1 755.93 1.64 1.01×10-1 HOMO→LUMO(70) 
 S0→ S2 560.70 2.21 6.21×10-2 HOMO-1→LUMO(70) 

P4 S0→ S3 455.78 2.72 1.87×10-3 HOMO→LUMO+1(48) 
 S0→ S4 446.61 2.77 5.00×10-4 HOMO-4→LUMO(68) 
 S0→ S5 412.70 3.01 2.15×10-2 HOMO-1→LUMO(67) 
 S0→ S6 404.04 3.07 6.17×10-2 HOMO→LUMO+1 (47) 
 S0→ S1 484.63 2.56 2.50×10-2 HOMO→LUMO(67) 
 S0→ S2 400.52 3.09 5.00×10-4 HOMO→LUMO+2 (53) 

P5 S0→ S3 388.86 3.19 8.00×10-2 HOMO-5→LUMO(64) 
 S0→ S4 339.39 3.65 1.45×10-2 HOMO-8→LUMO(52) 
 S0→ S5 338.21 3.66 3.71×10-2 HOMO-2→LUMO(39) 
 S0→ S6 319.56 3.88 2.42×10-2 HOMO-1→LUMO(49) 
 S0→ S1 526.77 2.35 2.69×10-1 HOMO→LUMO(65) 
 S0→ S2 490.58 2.53 5.90×10-3 HOMO-1→LUMO+1(64) 

P6 S0→ S3 462.77 2.68 1.12×10-2 HOMO→LUMO+3 (55) 
 S0→ S4 435.72 2.84 7.49×10-2 HOMO-1→LUMO(64) 
 S0→ S5 385.01 3.22 1.00×10-4 HOMO-4→LUMO (59) 
 S0→ S6 336.76 3.68 4.00×10-4 HOMO-8→LUMO(62) 
 S0→ S1 520.27 2.38 3.06×10-1 HOMO→LUMO(64) 
 S0→ S2 499.83 2.48 1.38×10-2 HOMO-1→LUMO+1(48) 

P7 S0→ S3 461.72 2.68 2.03×10-2 HOMO→LUMO+3 (56) 
 S0→ S4 422.14 2.93 1.35×10-1 HOMO-1→LUMO(65) 
 S0→ S5 388.03 3.19 2.00×10-4 HOMO-5→LUMO(63) 
 S0→ S6 336.09 3.69 5.00×10-4 HOMO-8→LUMO(58) 
 S0→ S1 499.38 2.48 8.08×10-2 HOMO→LUMO+1 (40) 
 S0→ S2 485.27 2.55 1.64×10-2 HOMO→LUMO(44) 

P8 S0→ S3 446.36 2.77 2.85×10-1 HOMO-2→LUMO(46) 
 S0→ S4 418.62 2.96 3.26×10-2 HOMO-2→LUMO(49) 
 S0→ S5 395.93 3.13 1.71×10-1 HOMO-1→LUMO(59) 
 S0→ S6 362.49 3.42 9.00×10-3 HOMO-5→LUMO(57) 
 
 

P9 

S0→ S1 490.34 2.53 4.90×10-3 HOMO→LUMO+2 (66) 
S0→ S2 430.60 2.88 2.63×10-1 HOMO-1→LUMO(60) 
S0→ S3 420.78 2.94 7.40×10-3 HOMO-3→LUMO+1 (56) 
S0→ S4 412.47 3.01 1.62×10-1 HOMO→LUMO+1 (51) 
S0→ S5 368.80 3.36 1.40×10-3 HOMO-7→LUMO+1 (56) 
S0→ S6 356.13 3.48 1.47×10-1 HOMO-2→LUMO(55) 

 S0→ S1 427.82 2.89 1.62×10-1 HOMO-1→LUMO(60) 
 S0→ S2 421.91 2.94 2.84×10-2 HOMO-3→LUMO+1(48) 

P10 S0→ S3 400.73 3.09 6.59×10-2 HOMO→LUMO+1 (55) 
 S0→ S4 369.29 3.35 5.00×10-4 HOMO-6→LUMO+1 (58) 
 S0→ S5 355.22 3.49 9.65×10-2 HOMO-2→LUMO(63) 
 S0→ S6 329.68 3.76 1.41×10-2 HOMO-1→LUMO+1(44) 
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2.4.3 Photovoltaic properties 

     The efficiency (η) of solar cell devices in converting sunlight into electricity depends on several crucial elements, 
including the incident solar power (Pinc), open-circuit photovoltage (Voc), density of short-circuit current (Jsc), fill factor 
(FF). The efficiency, η, can be computed using Eq. (12)61: 

𝜼𝜼 =
𝑱𝑱𝑺𝑺𝑺𝑺𝑽𝑽𝑯𝑯𝑺𝑺𝑭𝑭𝑭𝑭
𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊

 (12) 

     The Voc, which is a critical parameter for DSSC devices, can be expressed as the difference between ELUMO of the dye 
and ECB of TiO2, as described in Eq. (12). Table 4 displays the predicted theoretical values of the Voc for the examined 
dyes, which vary from 0.89 eV to 1.38 eV. The positive values suggest that transfer of electron from the examined 
substances Pi to TiO2 will occur easily. Moreover, these values are adequate to achieve efficient injection of electron. 
Furthermore, these dyes may be employed as sensitizers due to the electron injection mechanism from the excited dye to 
the CB of TiO2. 

Table. 4 EHOMO, ELUMO and Voc values of the investigated molecules achieved with B3LYP/6-31G (d, p) levels. 

Dyes EHOMO (eV) ELUMO (eV) VOC (eV) 
P1 -5.01 -3.04 0.96 
P2 -5.28 -2.98 1.02 
P3 -4.94 -3.01 0.99 
P4 -5.01 -3.04 0.95 
P5 -5.23 -3.11 0.89 
P6 -4.83 -2.88 1.11 
P7 -4.82 -2.84 1.15 
P8 -4.88 -2.62 1.38 
P9 -5.02 -3.00 0.10 
P10 -5.38 -2.96 1.04 

TiO2(CB) -7.16 -4.00 **** 
 

     The current investigation reveals several essential characteristics in DSSCs, such as intramolecular charge transfer, Edye, 
Edye*, and ΔGinject toward the TiO2 surface62. A comprehensive description of these factors is given in Table 5. 

     It should be noted that Koopman’s theorem has been utilized to calculate the value of Edye by taking the reciprocal of the 
EHOMO value. Furthermore, the value of 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑∗  may be computed via Eq. (12). 
 
Table 5. The oscillator strength maximum (f), ∆Ginject, light harvesting efficiency (LHE) and intra-molecular charge 
transfer energy of dyes computed using TD-DFT at B3LYP/6-31G(d,p) level of theory 

Dyes Edye
 Eex Edye

* ∆Ginject f LHE 
P1 5.01 2.47 2.54 -1.45 0.13 0.26 
P2 5.28 2.80 2.48 -1.52 0.24 0.43 
P3 4.94 2.36 2.57 -1.43 0.24 0.42 
P4 5.01 1.64 3.37 -0.62 0.10 0.21 
P5 5.23 2.56 2.67 -1.33 0.25 0.44 
P6 4.83 2.35 2.48 -1.52 0.27 0.46 
P7 4.82 2.38 2.44 -1.56 0.31 0.50 
P8 4.88 2.77 2.11 -1.89 0.28 0.48 
P9 5.02 2.88 2.14 -1.85 0.26 0.45 
P10 5.38 2.89 2.48 -1.51 0.16 0.31 

 

     The Edye* values for the then dyes under study, as listed in Table 5, exhibited an ascending sequence as follows: P8 < P9 
< P7 < P2 < P6 < P10 < P1 < P3 < P5 < P4. P8 has the highest level of oxidation among these dyes, while P4 demonstrates the 
lowest. It is important to emphasize that the ∆Ginject values for injection of electron from the excited state of the dye into the 
CB of TiO2 were calculated using Eq. 11. A negative ∆Ginject value suggests that the electron injection process from the dye 
to the TiO2 is spontaneous and can be performed without constraint for all sensitizers. The opposite of the ∆Ginject value 
follows the following sequence: P8 < P9 < P7 < P2 < P6 < P10 < P1 < P3 < P5 < P4. Consequently, the injection process will 
be relatively facile from P4 to the TiO₂ semi-conductor, and more difficult from P8 to the TiO₂ semi-conductor. 

     LHE, or Light Harvesting Efficiency, is the measure of how effectively a dye absorbs incident light. Thus, it is preferable 
for the LHE of dyes to be maximized in order to optimize the photocurrent response. Table 5 presents the computed LHE 
values for the primary absorption peaks that exhibit the highest oscillation strength (f) for the dyes currently being used. 
These values range from approximately 0.21 to 0.50, with a slight increase observed with increasing oscillator strength. 
This implies that all sensitizers yield comparable photocurrent responses. On the other hand, the LHE parameter is 
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connected to the oscillator strength, as shown in Eq. (10), which is directly determined from TD-DFT computations. The 
data presented in Table 5 indicates that P7 and P8 exhibit a substantial oscillator strength, indicating that the most favorable 
π-conjugation system facilitates effective electron injection. Transitions with a notable oscillator strength were the ones 
taken into account. The findings indicate that all dyes possess the capacity to amplify the transformation of substantial 
quantities of sunlight into electrical energy when employed as the electron donor in DSSCs. 

2.4.4 Molecular electrostatic potential 

     Molecular electrostatic potential (MEP) investigations examine the regions of positive and negative charge distribution 
in the investigated compounds, aiding in the anticipation of reactive sites. The molecular electrostatic potentials (MEPs) of 
the ten dyes under investigation, were calculated using the B3LYP/SDD/6-31+G(d,p) method. These MEPs are illustrated 
in Fig. 7. The MEP surfaces are color-coded to reflect the negative, positive, and neutral zones. The negative zone is shown 
by the color red, the positive zone by blue, and the neutral zone by green. The red-colored negative region is predominantly 
concentrated around the oxygen atoms in the ten dyes studied, suggesting that this specific location is vulnerable to 
electrophilic attack.  
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Fig. 7. Molecular electrostatic potential of the dyes studied, calculated using the B3LYP functional and 6-31G(d,p) base. 

     In contrast, the nitrogen, carbon, and hydrogen atoms are predominantly found in the positive region (shown by the blue 
color) of the P1, P2, P3, P5 and P6 dyes. This suggests that these locations have a high potential for nucleophilic attack. The 
remaining regions of the molecule are neutral, without any electrostatic potential. 

     The MEP map employs a range of colors to indicate electron concentrations, with electron density values (V(r)) 
ascending in the following sequence: Red > Yellow > Green > Blue. Furthermore, the MEP is most suitable for identifying 
locations for both intra- and intermolecular interactions. 

3. Conclusions 
 

      This paper provides a comprehensive theoretical analysis of the geometric, electronic, optical, and photovoltaic 
properties of ten dyes using DFT/TD-DFT. The findings reveal that modifications in the chemical structures can 
significantly optimize these properties. Specifically, the B3LYP functional was identified as the best choice for predicting 
the geometric and electronic features of the dyes. TD-DFT with the B3LYP-6-31G(d,p) basis set effectively analyzed the 
absorption properties, with absorption wavelengths spanning from 427.82 nm to 755.93 nm and characterized by delocalized 
π-π* transitions across all ten dyes in the UV/Vis spectrum. The calculated band gaps for the dyes ranged from 1.93 eV to 
2.42 eV, with a decreasing trend in the following order: P10 > P2 > P8 > P5 > P9 > P7 > P1 > P4 > P6 > P3. This clearly 
indicates that increased conjugation leads to a reduction in the band gap. Furthermore, the Voc values for TiO2, ranging 
from 0.89 eV to 1.38 eV, suggest good potential for efficient electron injection. Overall, these dyes show significant promise 
for use in DSSCs, and the computational methods presented here provide a valuable tool for predicting the electronic, 
optical, and photovoltaic properties of other materials, supporting the design of new compounds for DSSC applications. 

Availability of data and material  

All data generated or analyzed during this study are included in this published article. 
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