Antioxidant activity, DFT-calculation, and docking of 5-amino-*N*-(3-di(per)fluoroalkyl-2-iodo-*n*-propyl)-1,2,3-triazole-4-carboxamides

Ivanna Danyliuk^a*, Sergiy Kemskyi^a, Lesya Saliyeva^b, Nataliia Slyvka^b, Dmytro Mel'nyk^c, Oksana Mel'nyk^c, Victor Dorokhov^a and Mykhailo Vovk^a

^a Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academician Kukhar Str., Kyiv 02660, Ukraine, e-mail: <u>ivannayu@ukr.net</u> * Corresponding author. Tel.: +380-68-729-20-47. (I. Danyliuk)

^bLesya Ukrainka Volyn National University, 13 Voli Avenue, Lutsk 43025, Ukraine

^cIvano-Frankivsk National Medical University, 2 Halytska St., Ivano-Frankivsk 76000, Ukraine

Contents	Page
Synthesis and spectra characteristics of compounds 4a-e	3
Figure S1. ¹ H NMR spectrum of compound 4a	5
Figure S2. ¹³ C NMR spectrum of compound 4a	6
Figure S3. ¹⁹ F NMR spectrum of compound 4a	7
Figure S4. IR spectrum of compound 4a	8
Figure S5. ¹ H NMR spectrum of compound 4b	9
Figure S6. ¹³ C NMR spectrum of compound 4b	10
Figure S7. ¹⁹ F NMR spectrum of compound 4b	11
Figure S8. IR spectrum of compound 4b	12
Figure S9. ¹ H NMR spectrum of compound 4c	13
Figure S10. ¹³ C NMR spectrum of compound 4c	14
Figure S11. ¹⁹ F NMR spectrum of compound 4c	15
Figure S12. IR spectrum of compound 4c	16
Figure S13. ¹ H NMR spectrum of compound 4d	17
Figure S14. ¹³ C NMR spectrum of compound 4d	18
Figure S15. ¹³ C/APT NMR spectrum of compound 4d	19
Figure S16. IR spectrum of compound 4d	20
Figure S17. ¹⁹ F NMR spectrum of compound 4d	21
Figure S18. ¹ H NMR spectrum of compound 4e	22

Supplemental Materials

Figure S19. ¹³ C NMR spectrum of compound 4e	23
Figure S20. ¹³ C/APT NMR spectrum of compound 4e	24
Figure S21. ¹⁹ F NMR spectrum of compound 4e	25
Figure S22. IR spectrum of compound 4e	26

Synthesis and spectra characteristics of compounds 4a-e

General procedure for the synthesis of compounds **4a-e**. A solution of 5-amino-*N*-(3-di(per)fluoroalkyl-2-iodo-n-propyl)-1,2,3-triazole-4-carboxamides **3a-r** (1 mmol) in acetic acid (AcOH) (5 mL) was added dropwise over 15 min to a solution of *t*-BuONO (1.5 mmol) in AcOH (5 mL) at room temperature for 12 h. The solvent was evaporated, water was added (20 mL) and the mixture was extracted with dichloromethane (DCM) (3 x 15 mL). The organic layers were collected, dried over anhydrous MgSO₄ and filtered, the solvent was removed and the residue was purified by column chromatography on silica gel (with a 35:1 chloroform-methanol mixture as an eluent).

Chemical characterization of N-(4,4-difluoro-2-iodopentyl)-1-phenyl-1H-1,2,3-triazole-4-carboxamide (4a). White solid, mp 117-119°C; yield 81%. ¹H-NMR (302 MHz, CDCl₃): δ 1.69 (t, 3H, *J* = 18.4 Hz, CF₂CH₃), 2.62-2.75 (m, 2H, CH₂CF₂), 3.73-3.82 (m, 1H, CH₂NH), 3.96-4.04 (m, 1H, CH₂NH), 4.44-4.52 (m, 1H, CH-I), 7.50-7.65 (m, 4H, Ar-H + NH), 7.74-7.76 (m, 2H, Ar-H), 8.51 (m, 1H, 1H_{triazole}). ¹³C-NMR (151 MHz, CDCl₃): δ CF₂ signals are not assigned, 22.17, 23.88 (t, *J* = 27.2 Hz), 46.23 (t, *J* = 25.7 Hz), 47.30, 120.75, 123.68, 129.50, 129.97, 136.50, 143.33, 159.91. ¹⁹F-NMR (188 MHz, CDCl₃): δ - 86.44 to - 88.07 (m, 1F), - 89.63 to - 91.30 (m, 1F). IR (KBr, cm⁻¹): 1662 (C=O), 3303-3373 (N-H). HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₄H₁₆F₂IN₄O⁺, 421.0331; found 421.0332.

Chemical characterization of N-(4,4,5,5,6,6,7,7,7-nonafluoro-2-iodoheptyl)-1-phenyl-1H-1,2,3-triazole-4-carboxamide (**4b**). White solid, mp 165-167°C; yield 90%. ¹H-NMR (302 MHz, CDCl₃): δ 2.81-2.99 (m, 2H, CH₂CF₂), 3.80-3.89 (m, 1H, CH₂NH), 3.94-4.04 (m, 1H, CH₂NH), 4.49-4.59 (m, 1H, CH-I), 7.48-7.60 (m, 3H, Ar-H + NH), 7.71-7.77 (m, 3H, Ar-H), 8.54 (m, 1H, 1H_{triazole}). ¹³C-NMR (76 MHz, CDCl₃): δ CF₃(CF₂)₃ signals are not assigned, 17.18, 39.01 (t, *J* = 21.3 Hz), 47.39, 120.86, 123.90, 129.68, 130.10, 136.55, 143.20, 160.12. ¹⁹F-NMR (188 MHz, CDCl₃): δ - 80.75 to - 80.84 (m, 3F), - 112.82 to - 113.51 (m, 2F), - 124.11 to - 124.28 (m, 2F), - 125.61 to - 125.75 (m, 2F). IR (KBr, cm⁻¹): 1659 (C=O), 3333 (N-H). HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₃F₉IN₄O⁺, 574.9985; found 574.9996.

Chemical characterization of N-(4,4-difluoro-2-iodopentyl)-1-(4-methoxyphenyl)-1H-1,2,3-triazole-4carboxamide (4c). White solid, mp 145-147°C; yield 93%. ¹H-NMR (302 MHz, CDCl₃): δ 1.68 (t, 3H, J = 18.1 Hz, CF₂C<u>H</u>₃), 2.62-2.75 (m, 2H, C<u>H</u>₂CF₂), 3.72-3.81 (m, 1H, C<u>H</u>₂NH), 3.88 (s, 3H, OCH₃), 3.94-4.03 (m, 1H, C<u>H</u>₂NH), 4.43-4.52 (m, 1H, CH-I), 7.04 (d, 2H, J = 9.1 Hz, Ar-H); 7.63-7.66 (m, 3H, Ar-H + NH), 8.42 (m, 1H, 1H_{triazole}). ¹³C-NMR (126 MHz, CDCl₃): δ 21.66, 23.35 (t, J = 27.7 Hz), 45.71 (t, J = 25.4 Hz), 46.83, 55.16, 114.47, 121.86, 122.58 (t, J = 241.3 Hz, CF₃), 123.25, 129.36, 142.64, 159.53, 159.85. ¹⁹F-NMR (188 MHz, CDCl₃): δ - 86.48 to - 88.03 (m, 1F); - 89.57 to - 91.24 (m, 1F). IR (KBr, cm⁻¹): 1662 (C=O), 3293 (N-H). HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₅H₁₈F₂IN₄O₂⁺, 451.0437; found 451.0440.

Chemical characterization of N-(4,4-difluoro-2-iodopentyl)-1-(4-fluorophenyl)-1H-1,2,3-triazole-4carboxamide (4d). White solid, mp 133-135°C; yield 85%. ¹H-NMR (302 MHz, CDCl₃): δ 1.69 (t, 3H, J = 19.6 Hz, CF₂CH₃), 2.62-2.75 (m, 2H, CH₂CF₂), 3.72-3.82 (m, 1H, CH₂NH), 3.95-4.04 (m, 1H, CH₂NH), 4.44-4.52 (m, 1H, CH-I), 7.24-7.29 (m, 2H, Ar-H), 7.59-7.64 (m, 1H, NH), 7.71-7.76 (m, 2H, Ar-H), 8.47 (m, 1H, 1H_{triazole}). ¹³C-NMR (151 MHz, CDCl₃): δ 22.14, 23.89 (t, J = 27.2 Hz), 46.24 (t, J = 25.7 Hz), 47.29, 117.00 (d, J = 24.2 Hz), 122.81 (d, J = 9.1 Hz), 123.12 (t, J = 240.8 Hz, CF₃), 123.89, 132.74 (d, J = 3.02 Hz), 143.42, 159.81, 162.84 (d, J = 250.7 Hz). ¹⁹F-NMR (188 MHz, CDCl₃): δ -86.50 to - 88.16 (m, 1F); - 89.82 to - 91.40 (m, 1F); - 110.67 (s, 1F). IR (KBr, cm⁻¹): 1660 (C=O), 3309-3355 (N-H). HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₄H₁₅F₃IN₄O⁺, 439.0237; found 439.0239.

Chemical characterization of 1-(4-fluorophenyl)-N-(4,4,5,5,6,6,7,7,7-nonafluoro-2-iodoheptyl)-1H-1,2,3-triazole-4-carboxamide (4e). White solid, mp 158-160°C; yield 87%. ¹H-NMR (302 MHz, CDCl₃): δ 2.83-2.97 (m, 2H, CH₂CF₂), 3.78-3.88 (m, 1H, CH₂NH), 3.94-4.03 (m, 1H, CH₂NH), 4.48-4.57 (m, 1H, CH-I), 7.24-7.30 (m, 2H, Ar-H), 7.63-7.67 (m, 1H, NH), 7.71-7.76 (m, 2H, Ar-H), 8.48 (m, 1H, 1H_{triazole}). ¹³C-NMR (151 MHz, CDCl₃): δ CF₃(CF₂)₃ signals are not assigned, 17.03, 38.94 (t, *J* = 21.1 Hz), 47.29, 117.03 (d, *J* = 24.2 Hz), 122.82 (d, *J* = 9.0 Hz), 123.97, 132.70 (d, *J* = 3.0 Hz), 143.23, 159.89, 162.89 (d, *J* = 250.7 Hz). ¹⁹F-NMR (188 MHz, CDCl₃): δ - 80.86 to – 80.97 (m, 3F); - 110.54 (s, 1F); - 112.89 to -113.69 (m, 2F); - 124.21 to -124.44 (m, 2F); - 125.69 to -125.93 (m, 2F). IR (KBr, cm⁻¹): 1656 (C=O), 3339 (N-H). HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₂F₁₀IN₄O⁺, 592.9890; found 592.9893.

Figure S1. ¹H NMR spectrum (302 MHz, CDCl₃) of compound 4a

Figure S2. ¹³C NMR spectrum (151 MHz, CDCl₃) of compound 4a

Figure S3. ¹⁹F NMR spectrum (188 MHz, CDC₃) of compound 4a

-84.5 -85.0 -85.5 -86.0 -86.5 -87.0 -87.5 -88.0 -88.5 -89.0 -89.5 -90.0 -90.5 -91.0 -91.5 -92.0 -92.5 -93.0 -93.5 -94.0 -94.5 -95.0 -95.5 -96.(f1 (ppm) Figure S4. IR spectrum of compound 4a

Figure S5. ¹H NMR spectrum (302 MHz, CDCl₃) of compound 4b

Figure S6. ¹³C NMR spectrum (76 MHz, CDCl₃) of compound 4b

Figure S7. ¹⁹F NMR spectrum (188 MHz, CDC₃) of compound **4b**

Figure S10. ¹³C NMR spectrum (126 MHz, CDCl₃) of compound 4c

Figure S11. ¹⁹F NMR spectrum (188 MHz, CDC₃) of compound 4c

Figure S12. IR spectrum of compound 4c

Figure S13. ¹H NMR spectrum (302 MHz, CDCl₃) of compound 4d

Figure S14. ¹³C NMR spectrum (151 MHz, CDCl₃) of compound 4d

Figure S15. ¹³C/APT NMR spectrum (151 MHz, CDCl₃) of compound 4d

Figure S16. ¹⁹F NMR spectrum (188 MHz, CDC₃) of compound 4d

-98 -100 f1 (ppm) -78 -82 -86 -88 -92 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -90 -94 -96 -80 -84

Figure S17. IR spectrum of compound 4d

Figure S18. ¹H NMR spectrum (302 MHz, CDCl₃) of compound 4e

Figure S19. ¹³C NMR spectrum (151 MHz, CDCl₃) of compound 4e

Figure S20. ¹³C/APT NMR spectrum (151 MHz, CDCl₃) of compound 4e

Figure S21. ¹⁹F NMR spectrum (188 MHz, CDC₃) of compound 4e

Figure S22. IR spectrum of compound 4e

