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 The past decade has witnessed significant progress in synthesizing structurally diverse and 
biologically relevant pyrano[2,3-c]pyrazole derivatives through the integration of green 
methodologies. A straightforward and environmentally friendly one-step method has been 
developed to synthesize divergent pyranopyrazoles in good yields with the aid of zinc acetate as 
a Lewis acid catalyst in toluene as solvent under reflux conditions. 
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1. Introduction  
 

      The first multicomponent reaction, credited to Strecker and dating to 1850, served as the catalyst for a string of reactions 
that have been documented in literature.1 Multicomponent reactions (MCRs) are a unique class of synthetically useful 
organic reactions in which one or more different starting ingredients are combined in one pot to form a final product.2-4 
These reactions have been carefully used in a number of synthetic transformations, where traditional techniques typically 
demand for a lengthy process with numerous phases. High yields, atom-/step economy, shortened reaction times, 
environmental friendliness, and a useful tool for building a library of novel chemical entities (NCEs) are all benefits of the 
MCR technique, which is particularly useful in the drug development process.5-9 In heterocyclic chemistry, the creation of 
highly convergent syntheses has been a constant since heterocyclic scaffolds frequently consist of more than two building 
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units.10 Heterocycles' triumphant journey toward functional molecules has been closely linked to their synthesis by 
multicomponent reactions (MCRs) from the early days of organic chemistry.  
 
    As a subgroup of heterocycles, pyranopyrazoles have attracted a lot of interest because of their various structural roles 
and biological activity.11-14 The four different isomer configurations of these compounds-pyrano[2,3-c]pyrazole, 
pyrano[3,2-c]pyrazole, pyrano[3,4-c]pyrazole, and pyrano[4,3-c]pyrazole-are made up of fused pyran and pyrazole rings 
(Fig. 1).  

 
Figu. 1. Isomers of pyranopyrazoles 

 
      But because this isomer has biological importance, pyrano[2,3-c]pyrazoles are the ones that have been studied the most. 
These substances have demonstrated encouraging antiviral, antibacterial, anticancer, and anti-inflammatory qualities. 
Furthermore, they demonstrate the capacity to conceivably suppress the function of the human Chk1 kinase enzyme (Figure 
2).15-16 Because of their structural variety, it is possible to alter different parts of the molecule to affect their activity, which 
creates opportunities for research on the link between structure and activity. In the one-pot multicomponent reaction of 
pyranopyrazoles, the overall reaction scheme usually consists of an aldehyde, malononitrile, hydrazine hydrate, β-
ketoester/ethyl acetoacetate, and a suitable catalyst or promoter. Condensation, cyclization, and subsequent rearrangement 
are some of the sequential transformations that the reaction goes through to produce the pyranopyrazole product.  
Undoubtedly, a great deal of study has gone into the synthesis of pyrano[2,3-c]pyrazole, leading to the discovery of a variety 
of techniques and synthetic pathways. Pyranopyrazole synthesis has been approached from different angles using catalysts 
like PhCO2Na, thiamine hydrochloride, taurine, Fe/Cu nanocomposites, ethylene glycol (E-G), Fe3O4@chitosan-tannic 
acid bionanocomposite, piperidine, SnCl2, dodecylbenzene sulfonic acid (DBSA), PTSA, ionic liquids, citric acid, β-
cyclodextrin, NH4Cl, ZrO2-NPs, PS-PTSA, nano-eggshell/Ti(IV), thiamine hydrochloride, heteropolyacid, PhCO2Na, 
chitosan hydrogel, taurine, Fe/Cu nanocomposites, ethylene glycol (E-G), Fe3O4@chitosan-tannic acid bionanocomposite, 
etc.17-46 However, the majority of the material now in publication concentrates on attaining high yields and product diversity, 
frequently overshadowing the crucial significance of sustainability. 
 

 
Fig. 2. Some biologically active pyrano[2,3-c]pyrazoles 
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     Of the several zinc salts that are available, zinc acetate is one of the inexpensive, more easily obtained, and less toxic 
Lewis acids. Because of its peculiar physical and chemical characteristics, which show that it can be helpful in enabling a 
broad range of synthetic transformations in both organic synthesis and catalysis, it is known as a multifunctional catalyst.47-

54 Zinc acetate is affordable, easy to produce, and stable in the presence of oxygen and moisture when used in laboratory 
conditions. As a follow-up to earlier studies and a current addition to green synthetic methods, we report a one-pot 
multicomponent synthesis of pyranopyrazole. Following a comprehensive analysis of all pertinent published data, we came 
to the conclusion that Zn(OAc)2•2H2O was not involved in the relevant reaction.  

2. Results and Discussion  
 

2.1 Effect of zinc salts, solvents and temperature 

     Later, various zinc catalysts were examined under controlled circumstances to determine how well they supported the 
control reaction on benzaldehyde, hydrazine hydrate, malanonitrile and ethyl acetoacetate (Table 1). Zn(OAc)2.2H2O (10 
mol%) was found to be the most effective catalyst when compared to the other catalysts tested (ZnCl2, ZnO, Zn(NO3)2, 
ZnCO3 and ZnSO4) in terms of reaction time and yield at reflux temperature in toluene as solvent. The control reaction was 
determined to be viable at 110 °C. The related product was produced in minimal or small amounts when the temperature 
was gradually lowered till ambient temperature. The reaction can produce the best results at 5 mol%, according to studies 
of catalyst loading (5, 7.5, and 10 mol%). Higher catalyst concentrations (12.5 and 15 mol%) had no effect on the yield 
either up or down. 
 
Table 1. Effect of available zinc salts tested 

Entry Zinc salt Reaction time (h) Isolated yield (%)a 
1 ZnCl2 4.5 64 
2 ZnO 24 7 
3 Zn(NO3)2 48 11 
4 ZnCO3 48 NR 
5 ZnSO4 24 NR 
5 Zn(OAc)2.2H2O 2 89 

 
     Toluene emerged as the superior solvent under reflux conditions proved to be the most effective reaction condition 
(Table 2, Entry 1), surpassing other less efficient solvents (Table 2, entries 2-6). Non polar solvents (entries 1 and 6) proved 
to be better compared to that of polar solvents (entries 2-5) as evident from Table 2. For this reason, we further prepared 
derivatives from the above standard reaction condition (Figure 3). The results revealed that aldehydes with electron-
withdrawing groups or electron-donating groups have similar effect. Important to note is functional group (-NO2) be at 
ortho-, meta-, or para- position has no steric effect to form the corresponding pyranopyrazoles (5f, 5g and 5h, Figure 3). 
Heteroaromatic aldehyde such as furfural gave the product 5i in good yield. However, aliphatic aldehyde (n-butanal) reacted 
sluggishly to give the corresponding product 5j. 
 
Table 2. Optimization of the solvent and catalyst loading  

 
Entry Solvent Temperature (oC) Time (h) Yield (%)a,b 

1 PhCH3 
Room temperature 

110 oC 
8 
2 

23 
89 

2 CH3CN Reflux 6 18 

3 EtOAc Reflux 4  43 

4 EtOH Reflux 8 28 

5 CHCl3 Reflux 6 30 

6 CCl4 Reflux 6 78 

7 Without Solvent Room temperature  12 NR 

 aYields refer to pure isolated product 
bZn(OAc)2•2H2O as Lewis catalyst loading: (89%, 10 mol%); (82%, 7.5 mol%) and (80%, 5 mol%) 
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Fig. 3. Synthesized dihydropyrano[2,3-c]pyrazoles 

3. Experimental  
 
3.1 Material and Methods  
 
      All reagents and chemicals were of analytical grade and used without further purification. The progress of the reaction 
was monitored on TLC. All the products were confirmed by comparing their melting points, IR, and 1H NMR data with 
literature data.  
 
General procedure for the synthesis of substituted pyranopyrazole (5a-j)  
 
To a round bottom flask substituted aromatic aldehyde (1mmol), malononitrile (1mmol), ethyl acetoacetate (1mmol), and 
hydrazine hydrate (1 mmol) in toluene under reflux conditions for the time as specified in Figure 3. The advancement of 
the reaction was tracked through TLC (10% ethyl acetate: n-hexane). The resulting product was combined with water and 
ethyl acetate (1:4). The combined solvent extracts underwent vacuum concentration. Subsequently, the compounds 
underwent recrystallization in ethanol to yield the purified product (5a-j). 
 

Spectral data of synthesized compounds 

6-Amino-3-methyl-4-phenyl-1,4-dihydropyrano [2,3-c] pyrazole-5-carbonitrile (5a):  

Yellow crystalline solid. m.p. 210-212 0C. IR (KBr) cm-1- 3477 and 3231 (NH2), 3121 (NH), 2191 (CN), 1639, 1559. 1H 
NMR-(400 MHz, DMSO d6) - δ ppm 12.00 (1H, s, NH), 7.30 (2H, t, J = 7.56), 7.22 (3H, m, J= 7.28 and 11.24), 6.71 (2H, 
s, -NH2), 4.50 (1H, s, C-4), 1.79 (3H, s, CH3). 13C NMR- (100 MHz, DMSO d6) – 161.35, 155.26, 144.93, 136.04, 128.91, 
127.94, 127.20, 121.24, 98.13, 57.71, 36.73, 10.20. MS (EI): m/z Calcd. for C14H12N4O= 252.10, Found= 253.15 [M+ + 1]. 

6-Amino-1,4-dihydro-3-methyl-4-p-tolylpyrano[2,3-c]pyrazole-5-carbonitrile (5b): 

White crystalline solid. m.p. 207-208 0C. IR (KBr) cm-1- 3406 and 3315 (NH2), 3188 (NH), 2191 (CN), 1646 (C=N), 1600 
(C=C). 1H NMR-(400 MHz, DMSO d6) - δ ppm 12.19 (1H, s, NH), 8.21 (2H, m, J = 8.8 Hz, Ar), 7.47 (2H, m, J = 8.8 Hz, 
Ar), 7.03 (2H, s, -NH2), 4.82 (1H, s, C-4), 3.73 (s, 3H, OCH3), 1.78 (3H, s, CH3). 13C NMR- (100 MHz, DMSO d6) - δ 
ppm 161.06, 154.58, 152.02, 146.30, 135.84, 128.51, 128.77, 123.83, 120.45, 96.48, 55.80, 35.80, 9.66. MS: m/z Calcd. for 
C15H14N4O= 266.12, Found= 267.14 [M+ + 1]. 

6-Amino-1,4-dihydro-4-(4-methoxyphenyl)-3-methylpyrano[2,3-c]pyrazole-5-carbonitrile (5c):  

Light yellow crystalline solid. m.p. 209-210 0C. IR (KBr) cm-1- 3483 and 3249 (NH2), 3122 (NH), 2190 (CN), 1643 (C=N), 
1600 (C=C).  1H NMR-(400 MHz, DMSO d6) - δ ppm 12.08 (1H, s, NH), 7.10 (2H, m, J = 8 Hz, Ar), 6.89 (2H, m, J = 4 
Hz, Ar), 6.82 (2H, s, -NH2), 4.55 (1H, s, C-4), 3.74 (3H, s, OCH3), 1.80 (3H, s, CH3). 13C NMR- (100 MHz, DMSO d6) - 
δ ppm 161.16, 158.45, 155.24, 136.96, 136.02, 128.96, 121.28, 114.25, 98.37, 58.15, 55.48, 35.93, 10.21. MS: m/z Calcd. 
for C15H14N4O2= 282.12, Found= 283.16 [M+ + 1]. 
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6-Amino-4-(4-chlorophenyl)-1,4-dihydro-3-methylpyrano[2,3-c]pyrazole-5-carbonitrile (5d):  

Yellow crystalline solid. m.p. 228-230 0C.  IR (KBr) cm-1- 3373 and 3311 (NH2), 3171 (NH), 2193 (CN), 1627, 1581, 
1372, 1255, 879. 1H NMR-(400 MHz, DMSO d6) - δ ppm 12.12 (1H, s, NH), 7.38 (2H, m, J = 11.2 Hz, Ar), 7.21 (2H, m, 
J = 11.2 Hz, Ar), 6.90 (2H, s, NH2), 4.63 (1H, s, C-4), 1.79 (3H, s, CH3). 13C NMR-(100 MHz, DMSO d6) - δ ppm 160.84, 
154.61, 143.38, 135.68, 132.49, 131.19, 129.96, 128.39, 120.62, 97.12, 56.68, 18.45, 9.66. MS: m/z Calcd. for 
C14H11ClN4O= 286.06, Found= 287.10 [M+ + 1]. 

6-Amino-4-(2,4-dichlorophenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5e): 
White crystalline solid. m.p. 223-225 °C;  IR (KBr) cm-1- 3478 and 3246 (NH2),3117 (NH), 2190 (CN), 1640, 1504, 1408, 
1100, 1052, 866, 741. 1H NMR-(400 MHz, DMSO d6) - δ ppm 11.87 (s, 1H, NH), 7.70 (d, 2H, J = 8.4 Hz, ArH), 7.62 (d, 
2H, J = 8.4 Hz, ArH), 7.13 (s, 2H, NH2), 7.02 (s, 1H, ArH), 4.58 (s, 1H, C-4), 1.74 (s, 3H, CH3). 13C NMR- (100 MHz, 
DMSO d6) - δ ppm 161.8, 155.4, 140.6, 135.9, 133.3, 132.6, 129.3, 128.5, 120.7, 96.8, 55.7, 33.6, 10.0. MS: Exact mass: 
(M+): calcd. 320.0232; found 320.0236. 

6-Amino-1,4-dihydro-3-methyl-4-(3-nitrophenyl)pyrano[2,3-c]pyrazole-5-carbonitrile (5f): 

Brown crystalline solid. m.p. 214-215 0C. IR (KBr) cm-1- 3433 and 3334 (NH2), 3202 (NH), 2189 (CN), 1668, 1529, 1419, 
1358. 1H NMR-(400 MHz, DMSO d6) - δ ppm 12.19 (1H, s, NH), 8.13 (1H, m, J = 10.4 Hz, Ar), 8.02 (1H, m, J = 1.2 Hz, 
Ar), 7.63 (2H, s, Ar), 7.03 (1H, s, NH2), 4.87 (1H, s, C-4), 1.80 (3H, s, CH3). 13C NMR- (100 MHz, DMSO d6) - δ ppm 
161.07, 154.61, 147.80, 146.74, 135.88, 134.34, 130.19, 121.94, 121.77, 120.49, 96.59, 56.04, 35.55, 9.68. MS: m/z Calcd. 
for C14H11N5O3= 297.09, Found= 298.13 [M+ + 1]. 

6-Amino-3-methyl-4-(2-nitrophenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5g): Light yellow crystalline 
solid. m.p. 214-215 0C. IR (KBr) cm-1- 3420 and 3351 (NH2), 3167 (NH), 2206 (CN). 1H NMR-(400 MHz, DMSO d6) - 
δ ppm 12.2 (s, 1H, NH), 7.88 (d, J = 8.0 Hz, 1H, HAr), 7.70 (t, J = 7.5 Hz, 1H, HAr), 7.53 (t, J = 7.0 Hz, 1H, HAr), 7.35 
(d, J = 8.0 Hz, 1H, HAr), 7.08 (s, 2H, NH2), 5.12 (s, 1H, C-4), 1.80 (s, 3H, CH3). 

6-Amino-1,4-dihydro-3-methyl-4-(4-nitrophenyl)pyrano[2,3-c]pyrazole-5-carbonitrile (5h) 

Yellow crystalline solid. m.p. 249-250 0C. IR (KBr) cm-1- 3310 and 3165 (NH2), 2900 (NH), 2185 (CN), 1642, 1596. 1H 
NMR-(400 MHz, DMSO d6) - δ ppm 12.19 (1H, s, NH), 8.21 (2H, m, J = 8.8 Hz, Ar), 7.47 (2H, m, J = 8 Hz, Ar), 7.10 
(2H, s, NH2), 4.82 (1H, s, C-4), 1.79 (3H, s, CH3). 13C NMR- (100 MHz, DMSO d6) - δ ppm 161.06, 154.58, 152.01, 
146.30, 135.86, 129.52, 128.77, 124.07, 120.45, 96.48, 55.80, 35.79, 9.66. MS: m/z Calcd. for C14H11N5O3= 297.09, Found= 
298.14 [M+ + 1]. 

6-Amino-4-(furan-2-yl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5i) 
Grey solid. m.p. 215-216 ℃. IR (KBr) cm-1- 3470 and 3401 (NH2), 3120 (NH), 2189 (CN). 1H NMR-(400 MHz, DMSO 
d6) - δ ppm 12.25 (s, 1H, NH), 7.49 (s, 1H, CH, Ar), 6.33 (s, 1H, CH, Ar), 6.17 (s, 1H, CH), 4.75 (s, 1H, C-4), 1.96 (s, 3H, 
CH3) ppm; 13C NMR- (100 MHz, DMSO d6) - δ ppm 162.0, 156.22, 155.32, 142.81, 136.35, 121.35, 110.77, 106.17, 95.62, 
54.43, 25.50, 10.11. 
6-Amino-4-(4-isopropylphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5j): White solid, m.p. 
239-241 °C, IR (KBr, cm-1)- 3494 and 3233 (NH2), 2961 (NH), 2196 (CN), 1613, 1597, 1490, 1398, 1053. 1H NMR-(400 
MHz, DMSO d6) - δ 12.06 (s, 1H, NH), 7.16 (d, J = 7.9 Hz, 2H, Ar), 7.04 (d, J = 7.8 Hz, 2H, Ar), 6.83 (s, 2H), 4.52 (s, 1H, 
C-4), 2.81 (q, J = 6.9 Hz, 1H), 1.77 (s, 3H), 1.16 (d, J = 6.9 Hz, 6H). 
 
Supporting Information file is available 
 
4. Conclusion  
In summary, we successfully implemented a one-pot multicomponent synthesis of pyranopyrazole using an environmentally 
friendly synthetic approach with inexpensive and less toxic zinc acetate using as a Lewis acid catalyst. Aromatic compounds 
both with electron donationg and withdrawing functionalities reacted in a similar fashion. Whereas, aliphatic aldehydes 
proved to be less effective compared to that of reactivity of aromatic compounds. This method utilizes toluene as a solvent 
and offers benefits such as a shorter reaction duration, straightforward workup, and atom economy. The established protocol 
is robust and may be used in a variety of organic transformations to reach the desired architecture's complexity in a single 
pot. 
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