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 The correlation between coefficients from Dimroth equations and descriptors of global electron 
density transfer was explored based on the data available in the recent literature. We established 
that the obtained results should be very usable for the interpretation of the organic reactivity and 
molecular mechanisms. 
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1. Introduction  
 

       Cycloaddition processes are the most universal way for the preparation of many, different-type of carbo- and 
heterocyclic skeletons 1–5. Mechanistic aspects of the [4+2]-p-electron cycloaddition reactions (with special participations 
of (3+2) and (4+2) processes) still pay the great attention of many scientists 6–10.  Even a few decades ago, the dogma about 
the concerted reorganization of the electron density, and synchronous formation of new sigma-bonds was treated as the 
most important fundament of the cycloaddition theory 11. This view was however rapidly undermined after historical 
publications by Huisgen and Mloston at the 1986 12,13. At this moment, the general classification of cycloaddition 
mechanisms include two areas: polar and non-polar processes 9. Within the first group, several scenarios are possible, such 
as polar, synchronous mechanisms, polar asynchronous (one step – two stage) mechanisms and stepwise mechanisms with 
the zwitterionic intermediate 14–17. Alternatively, non-polar cycloadditions can be classified as polar, synchronous, non-
polar asynchronous (biradicaloid) mechanisms and stepwise mechanisms with the biradical intermediate 18–20.  
  
     For the interpretation of mechanistic aspects of cycloaddition processes, different type theoretical and experimental, 
kinetic techniques are dedicated. In the framework we decided to do a short analysis of possible correlation between 
experimentally obtained reaction constants in the Dimroth equations 21–23 and theoretically calculated values of the global 
electron density transfer24. Dimroth constant ET is a parameter characterizing polarity of the solvent. It is based on 
pyridinium N-phenolbetaine X as a test substance owing to a significant displacement of a solvatochromic band. Value of 
the ET can be calculated using equation (1), which  is the frequency of the absorption maximum in cm-1 in the examined 
solvent. 
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     Global Electron Density Transfer (GEDT) during transition state is a good measure of the polar character of reaction 25. 
GEDT takes place from nucleophile to electrophile, and can be obtained by sum of natural atomic charges of nucleophile 
fragments calculated through a natural population analysis (NPA)26,27. 
 
 
2. Results and discussion 
 
      Although, evidently most recent publications include the analysis of the solvent effects based on DFT computational 
results 28–31, in the literature are available some examples of experimental, kinetic study in this area. These results are 
especially interesting for the processes with the participation of NO2-activated components 32,33. So, the (3+2) cycloaddition 
with the participation of the nitrone – fluorenone derivative (1) as the TAC and E-3,3,3-trichloro-1-nitroprop-1-ene (2) is 
realized at the r.t and is realized with full selectivity yielded respective 4-nitroisoxazolidine with almost quantitatively yield 
34,35. The kinetic study regarding this transformation includes the analysis of the influence of the polarity solvent on the rate 
constants, as well as the estimation of activation enthalpy and entropy. 
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       The similar package of kinetic measurements were collected for the (4+2) cycloaddition reaction between 
cyclopentadiene (4) and E-2-phenylnitroethene (5) 36. In this case, the substituent effect was also experimentally evaluated 
for analogous reaction with the participation of other 2-arylnitroethenes. 
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      The next example of the comprehensive kinetic study is a cycloaddition of Z-C,N-diphenylnitrone (7) with mentioned 
above 3,3,3-trichloro-1-nitroprop-1-ene 37. 
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       The seme nitrone was also tested as a component of the (3+2] cycloaddition to the gem-chloronitroethene (9) 38. In this 
case, next to solvent effects, the substituent effects and the activation parameters were also estimated. 



K. Kula et al.  / Current Chemistry Letters 14 (2025) 267 

N
O

10
9

NO2+
NO2

25oC, 12h, 94%

7

N
O

Cl
Cl

 
 
       Lastly, in the recent literature, the kinetic study on the hetero Diels-Alder reaction of E-2-(4-carbomethoxyphenyl)-1-
cyano-1-nitroethene (11) and ethyl-vinyl ether (12) are available 39,40. This analysis was supported by estimation of the 
analysis of the substituent effects and the activation parameters. 
 
         Fortunately, for all mentioned processes, respective DFT mechanistic studies are additionally performed. So, it is 
possible to estimate the value of the electron density transfer between substructures. These descriptors, and experimental 
measured constants in Dimroth correlations are collected in Table 1. 
  
 
Table 1. Key kinetic parameters for model cycloaddition processes 
Reaction Global electron density transfer (GEDT) [e] Coefficient in the Dimroth equation 
1+2 0.18 0.008 
4+5 0.21 0.009 
7+2 0.21 0.011 
7+9 0.32 0.031 
11+12 0.40 0.049 

 
     The correlation analysis exhibits the excellent 41,42 relationship (R>0.99) between coefficients from Dimroth equations 
and GEDT values.  
 
GEDT = 5.13*ET + 0.15  (R=0.994) 
 
     So, in the evaluated range of Dimroth coefficients, this relation can be treated as general and usable for the prediction of 
the solvent effect based on theoretical estimated GEDTs. 

 

 
Fig. 1. The graphical illusstration of the correlation between coefficients from Dimroth equations and GEDT values. 

 
 
3. Conclusion 
 
      Analysis of literature source exhibits, that independently of many theoretical works, in the recent time some valuable 
papers regarding the experimental kinetic studies were performed. Based on this information we decided to explore the 
theoretical background for the observed solvent effects. Our short analysis confirms without any doubts the existence of the 
correlation between coefficients from Dimroth equations and descriptors of global electron density transfer. In our opinion 
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this tool  can be a simple and usable approach for the predictions of the organic reactivity and molecular mechanisms within 
cycloaddition reactions. 
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