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 Diabetes mellitus is a serious health disease that affects people all over the world. The number 
of persons identified with diabetes mellitus rises each year.  α -Glucosidase is a digestive enzyme 
used to control diabetes mellitus. The searching for new potent α-glucosidase inhibitors capable 
of delaying carbohydrate digestion in the human body is an important strategy towards control 
of diabetes mellitus. In this work, a series of quinoline-based Schiff base derivatives already 
identified as α-glucosidase inhibitory activity was studied by using 2D/3D-QSAR approach. The 
best HQSAR/A-B-C-H-Ch-DA and CoMSIA/SEDA models were constructed using thirteen 
molecules in the training set, resulting in favorable values of Q2 (0.834 and 0.607), and high 
values of R2 (0.985 and 0.912), respectively. The generated HQSAR/A-B-C-H-Ch-DA and 
CoMSIA/SEDA contour plots were precious for designing and enhancing the α-glucosidase 
inhibitory activity of quinoline-based Schiff base molecules. Considering these results, two novel 
α-glucosidase compounds were designed to possess significant activity. The newly suggested 
molecules showed good outcomes in the preliminary in silico ADME/Tox evaluations. 
Molecular docking results revealed that the new designed inhibitors have a good stability in the 
active pocket of the studied receptor compared to voglibose, clinically used as an α-glucosidase 
inhibitor. MD simulation and MM-GBSA results confirmed the molecular docking outcomes. 
Finally, DFT analysis was useful in determining the most electrophilic and nucleophilic centers 
of the two designed α-glucosidase inhibitors. 
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1. Introduction  
 

        Diabetes mellitus is a metabolic condition identified by elevated glucose levels in the bloodstream. The main concern 
is postprandial hyperglycemia, where blood sugar rises after meals due to insufficient insulin action or production, leading 
to potential complications if not properly managed.1,2 Diabetes frequently presents with ketosis and the loss of protein 3, in 
addition to various other complications like neuropathy, retinopathy, and peripheral vascular deficiencies.4 Diabetes is one 
of the most severe health problems of the present era, which is impacting millions of people throughout the world, 
particularly in developing countries.5 According to the International Diabetes Federation, the number of people with 
diabetes exceeded 366 million in 2011 and is projected to rise significantly to reach 552 million by the year 2030.6,7 Type 
2 diabetes mellitus is more commonly found in developed nations and is distinguished by decreased sensitivity to insulin 
and impaired insulin secretion.8,9 α-Glucosidase is a digestive enzyme located in the epithelium cell lining of the small 
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intestine.10 The enzyme breaks disaccharides and polysaccharides into glucose.11 α-Glucosidase inhibition is a vital strategy 
in managing blood glucose levels, particularly in individuals with diabetes. By slowing down the action of α-glucosidase, 
this inhibition reduces the rapid breakdown of complex carbohydrates into glucose, leading to a more gradual release of 
sugar into the bloodstream after meals. This controlled glucose absorption helps maintain normal blood glucose levels, 
minimizing the risk of postprandial hyperglycemia and its associated complications.12  Acarbose 13, voglibose and miglitol 
14 are α-glucosidase inhibitors used extensively in the clinic to treat diabetes mellitus.  However, continuous administration 
of these medications may cause several unwanted effects such as diarrhea and abdominal discomfort.15,16 As a result, there 
is an urgent requirement for novel α-glucosidase medications that exhibit improved efficacy in controlling postprandial 
hyperglycemia while causing fewer unwanted side effects. 
 
     Quinolines and their derivatives play a role in regulating diabetic conditions by exhibiting hypoglycemic activity, 
influencing glucidic metabolism. Additionally, quinolines possess various other biological activities, such as antimalarial,17 
anticancer,18 and anti-inflammatory effects.19 Some studies suggest that quinolines might indirectly induce hypoglycemia 
through mechanisms resembling those of sulfonylureas.20 The three-dimensional quantitative structure-activity relationship 
(3D-QSAR) model is a powerful computational tool that analyzes the relationship between the three-dimensional structure 
of molecules and their biological activity.21-25 Its widespread application spans diverse scientific disciplines, including drug 
design, environmental risk assessment, and chemical safety evaluation.26-28  In molecular toxicity detection, the 3D-QSAR 
model helps identify potential hazards and assess the safety of chemical compounds, while in biological activity prediction, 
it aids in understanding the interactions between molecules and their target receptors, enabling the discovery of new 
therapeutic agents.29,30  One of the widely used techniques in QSAR is comparative molecular similarity indexes analysis 
(CoMSIA),31 which correlates alterations in the 3D structural features of chemical moieties, such as steric, electrostatic, and 
hydrophobic properties, with their biological activity. CoMSIA is valuable in understanding how these structural factors 
influence the interaction between molecules and their target receptors, providing valuable insights for drug design and 
optimization processes.32  Molecular docking simulation has emerged as a fundamental and essential approach in the field 
of molecular modeling.33 It plays a central role in predicting and analyzing the interactions between small molecules, such 
as drugs or ligands, and their target proteins or biomolecules. Molecular docking simulations provide valuable insights into 
the binding modes, affinities, and molecular interactions, aiding in drug discovery, protein-ligand interaction studies, and 
the design of novel therapeutics.34 
 

     The objective of this research was to explore the Structure-Activity Relationship (SAR) of a specific set of quinoline-
based Schiff base molecules to determine the key structural features that influence their activity. By understanding these 
relationships, the study aims to propose novel inhibitors for α-glucosidase with enhanced and promising activity, potentially 
contributing to the development of diabetes management medications that are both more efficient and safer. 

2. Results and Discussion  

2.1 HQSAR Result 

     The HQSAR is a QSAR analysis approach that offers several advantages over traditional methods. One of the key 
benefits of HQSAR is that it eliminates the need for molecular alignment, the creation of 3D structures, and the consideration 
of potential binding conformations, making the process more efficient and less computationally intensive. HQSAR allows 
for the examination of the relationship between each compound studied and its biological activity. It achieves this by 
encoding the molecular structure of each compound into a hologram, which represents a simplified, yet informative, 
representation of the molecule's features. The effectiveness of the HQSAR model is influenced by three main factors: 
fragment type (fragment distinction), hologram length, and fragment size. The statistical metrics for the HQSAR models 
are listed in Table 1. A total of 54 HQSAR models were created by combining different fragment distinctions. Among these 
models, the one ranked as the best is labeled as N° 54. For this model, the fragments making up the selected model are 
atoms (A), bonds (B), connections (C), hydrogen atoms (H), chirality (Ch), donor and acceptor (DA). To determine the 
optimal fragment size, a range from 3-6 to 16-19 was tested, and the best size was selected based on the model's 
performance. Table 2 presents the statistical results of the HQSAR model with the combination of A/B/C/H/Ch/DA 
fragments, which was identified as the most promising model in the investigation. The HQSAR/A-B-C-H-Ch-DA model 
has a Q2 value of 0.834, a standard error of 0.147, R2 value of 0.985, EES of 0.045, using an acceptable hologram length 
(HL) of 61, and fragment size of 4-7. The statistical results obtained demonstrated the robustness and effectiveness of the 
HQSAR/A-B-C-H-Ch-DA model. 
 
     Table 3 provides the actual and estimated α-glucosidase inhibitor activities for the investigated molecules. Fig. 1 
displays graphs illustrating the experimental and estimated α-glucosidase activity values for all the compounds used in 
developing the HQSAR/A-B-C-H-Ch-DA model. In the graphs, the training set molecules are depicted as blue squares, and 
the test set compounds are shown as red triangles. The solid points of these blue squares and red triangles are tightly grouped 
around the Y = X line, demonstrating a robust linear relationship between the observed and predicted α-glucosidase 
inhibitory activity of the inhibitors under study. 
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Table 1. HQSAR results for various fragment distinctions based on fragment sizes ranging from 4 to 7. 
Model no. Fragment distinction N 𝑄𝑄2 𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑏𝑏 𝑅𝑅2 𝑐𝑐 𝑆𝑆𝐸𝐸𝐸𝐸𝑑𝑑 𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒 

1 A 6 0.693 0.216 0.997 0.020 257 
2 C 2 0.617 0.187 0.799 0.135 151 
3 DA 3 0.731 0.165 0.918 0.091 61 
4 A/B 6 0.706 0.211 0.998 0.017 257 
5 A/C 6 0.629 0.237 0.998 0.019 401 
6 A/H 6 0.677 0.221 0.997 0.020 83 
7 A/Ch 6 0.646 0.232 0.997 0.021 257 
8 A/D 3 0.731 0.165 0.918 0.091 61 
9 B/C 6 0.731 0.202 0.989 0.042 97 

10 B/DA 4 0.772 0.161 0.980 0.048 83 
11 C/H 2 0.617 0.187 0.799 0.135 151 
12 C/Ch 2 0.617 0.187 0.799 0.135 151 
13 C/DA 3 0.744 0.161 0.921 0.089 151 
14 H/DA 3 0.764 0.154 0.915 0.093 61 
15 Ch/DA 3 0.764 0.151 0.915 0.093 61 
16 A/B/C 6 0.642 0.233 0.994 0.030 353 
17 A/B/H 6 0.793 0.177 0.994 0.031 61 
18 A/B/Ch 6 0.697 0.215 0.998 0.018 257 
19 A/B/DA 5 0.776 0.171 0.990 0.036 83 
20 A/C/H 5 0.586 0.232 0.994 0.027 71 
21 A/C/Ch 6 0.629 0.237 0.998 0.019 401 
22 A/C/DA 3 0.774 0.151 0.953 0.069 401 
23 A/H/Ch 3 0.731 0.202 0.999 0.009 53 
24 A/H/DA 4 0.752 0.168 0.965 0.063 53 
25 B/C/H 6 0.731 0.202 0.989 0.042 97 
26 B/C/Ch 6 0.731 0.202 0.989 0.042 97 
27 B/C/DA 6 0.789 0.179 0.994 0.031 401 
28 B/H/DA 4 0.772 0.161 0.980 0.048 83 
29 B/Ch/DA 4 0.772 0.161 0.980 0.048 83 
30 C/H/Ch 2 0.617 0.187 0.799 0.135 151 
31 C/H/DA 3 0.744 0.161 0.921 0.089 151 
32 H/Ch/DA 3 0.764 0.154 0.915 0.093 61 
33 A/B/C/H 4 0.776 0.160 0.981 0.046 97 
34 A/B/C/Ch 6 0.642 0.233 0.994 0.030 353 
35 A/B/C/DA 3 0.794 0.144 0.931 0.084 199 
36 A/B/H/Ch 6 0.746 0.196 0.997 0.022 61 
37 A/B/H/DA 4 0.786 0.156 0.954 0.072 97 
38 A/B/Ch/DA 3 0.708 0.172 0.908 0.096 59 
39 A/B/C/H/DA 6 0.766 0.188 0.988 0.043 97 
40 A/C/H/Ch 5 0.586 0.232 0.994 0.027 71 
41 A/C/H/DA 4 0.706 0.183 0.946 0.078 83 
42 B/C/H/Ch 6 0.731 0.202 0.989 0.042 97 
43 B/C/H/DA 6 0.789 0.179 0.994 0.031 401 
44 C/H/Ch/DA 3 0.744 0.161 0.921 0.089 151 
45 B/H/Ch/DA 4 0.772 0.161 0.980 0.048 83 
46 B/C/Ch/DA 6 0.789 0.179 0.994 0.031 401 
47 A/B/C/H/Ch 4 0.776 0.160 0.981 0.046 97 
48 A/B/C/H/DA 6 0.766 0.188 0.988 0.043 97 
49 A/B/C/Ch/DA 5 0.782 0.168 0.981 0.049 353 
50 A/B/H/Ch/DA 4 0.762 0.165 0.955 0.071 97 
51 A/C/H/Ch/DA 4 0.731 0.175 0.965 0.063 307 
52 B/C/H/Ch/DA 6 0.789 0.179 0.994 0.031 401 
53 A/B/C/Ch/DA 5 0.782 0.168 0.981 0.049 353 
54 A/B/C/H/Ch/DA 5 0.834 0.147 0.985 0.045 61 

R2: non-cross-validated correlation coefficient; Q2: cross-validated correlation coefficient; Std Error: standard error; N: optimal number of components; 
SEE: standard estimated error; BHL: best hologram length. The optimal model is highlighted in bold. 

 
Table 2. Statistical outcomes of model No. 54 with different fragment sizes. 

Model no. Fragment N Q2 a Std Errorb R2 c SEEd BHLe 
3-6 A/B/C/H/Ch/DA 4 0.780 0.158 0.944 0.080 61 
4-7 A/B/C/H/Ch/DA 5 0.834 0.147 0.985 0.045 61 
5-8 A/B/C/H/Ch/DA 4 0.746 0.170 0.978 0.050 61 
6-9 A/B/C/H/Ch/DA 6 0.564 0.257 0.997 0.022 61 

7-10 A/B/C/H/Ch/DA 3 0.576 0.207 0.937 0.080 61 
8-11 A/B/C/H/Ch/DA 3 0.608 0.199 0.958 0.064 61 
9-12 A/B/C/H/Ch/DA 5 0.642 0.216 0.997 0.021 61 

10-13 A/B/C/H/Ch/DA 1 0.475 0.209 0.601 0.209 61 
11-14 A/B/C/H/Ch/DA 1 0.448 0.214 0.578 0.187 61 
12-15 A/B/C/H/Ch/DA 3 0.532 0.203 0.691 0.204 61 
13-16 A/B/C/H/Ch/DA 2 0.631 0.163 0.771 0.096 61 
14-17 A/B/C/H/Ch/DA 3 0.552 0.215 0.710 0.163 61 
15-18 A/B/C/H/Ch/DA 2 0.612 0.152 0.747 0.075 61 
16-19 A/B/C/H/Ch/DA 2 0.625 0.118 0.758 0.126 61 
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Table 3. Observed and predicted pIC50 activity of the investigated molecules using HQSAR/A-B-C-H-Ch-DA model. 
 

No 
 

pIC50 
(Obs) 

HQSAR/A-B-C-H-Ch-DA  
No 

 
pIC50 
(Obs) 

HQSAR/A-B-C-H-Ch-DA  
No 

 
pIC50 
(Obs) 

HQSAR/A-B-C-H-Ch-DA 

pIC50 
(Pred) 

Residuals pIC50 
(Pred) 

Residuals pIC50 
(Pred) 

Residuals 

1 4.907 4.879 0.028 7a 4.666 4.559 0.107 13 4.629 4.669 -0.040 
2 5.027 5.013 0.014 8 4.842 4.851 -0.009 14 4.879 4.863 0.016 

3 4.851 4.839 0.012 9a 5.131 5.112 0.019 15 4.447 4.465 -0.018 
4 5.208 5.237 -0.029 10 4.317 4.374 -0.057 16 4.544 4.544 0.000 

5a 4.425 4.362 0.063 11 4.539 4.462 0.077 17 4.415 4.395 0.020 
6a 4.735 4.532 0.203 12 4.416 4.428 -0.012 a Test set molecules 

 
 

Fig. 1. Plots of predicted versus observed pIC50 values for the investigated molecules, along with their residuals, using the 
HQSAR/A-B-C-H-Ch-DA model. 

2.2 Statistical CoMSIA Results 

      A cross-validated Q2 value greater than 0.5 indicates acceptable internal predictive capability and the strength of the 
model but it is not an absolute proof of the model's accuracy. Cross-validation helps assess how well the model performs 
on the data used for training, but it does not guarantee the model's ability to generalize to new, unseen data. External 
validation, on the other hand, is a crucial step in evaluating the predictive power of a model. It involves testing the model 
on a separate set of molecules (test set) that were not used during the model's training process. The metric commonly used 
for external validation is the R2pred. Indeed, R2pred value greater than 0.6 is generally considered as an acceptable level of 
predictive power for the model. 
 
      In this section of the study, various CoMSIA models have been constructed, and the statistical outcomes of these models, 
obtained through PLS analysis, are presented in Table 4. Considering the statistical significance of the data, it was observed 
that the CoMSIA/SEDA model outperformed all other CoMSIA models that were proposed in the study. Indeed, 
CoMSIA/SEDA model exhibits impressive statistical metrics, with a Q2 value of 0.607, R2 value of 0.912, and F value of 
31.131 as well as SEE of 0.094. Continuously, the CoMSIA model underwent external validation to assess its predictive 
capability, and the obtained R2pred was 0.85. This value surpasses the threshold of 0.6, indicating that the CoMSIA/SEDA 
model possesses strong predictive power. Furthermore, the findings from Table 4 indicate that the developed 
CoMSIA/SEDA model comprises four fields, with the acceptor and donor fields being the most influential in determining 
the molecular properties or activities under investigation. 
 
     The real and estimated α-glucosidase inhibitors activities of the 17 quinoline-based Schiff base molecules are given in 
Table 5. As evident from the data presented in Table 5, the residuals between the actual and predicted α-glucosidase 
inhibitor activities of the investigated molecules are very small, all being less than 1. This result serves as strong evidence 
of the model's efficacy and its ability to reliably predict the α-glucosidase inhibitory activity of new molecules. 
Fig. 2 shows the graphs illustrating the observed versus predicted α-glucosidase activity values for all the molecules used 
in developing the CoMSIA/SEDA model. In these graphs, the training set molecules are depicted as blue circles, and the 
test set compounds are represented by red triangles. The graphs demonstrate a strong linear correlation between the observed 
and predicted α-glucosidase inhibitory activity of the studied inhibitors. 
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Table 4. Different developed CoMSIA models with statistical results. 
 
Model 

 
Q2 

 
R2 

 
SEE 

 
F 

 
N 

 Fractions 
R2pred Ster Elec Acc Don Hyd 

CoMSIA/SEA 0.636 0.952 0.074 40.076 4 0.60 0.092 0.117 0.791 - - 
CoMSIA/SHA 0.490 0.957 0.070 44.948 4 0.61 0.066 - 0.768 - 0.166 
CoMSIA/SDA 0.60 0.941 0.077 48.126 3 0.74 0.044 - 0.412 0.544 - 
CoMSIA/EHD 0.520 0.879 0.111 21.716 3 0.01 - 0.100 - 0.760 0.140 
CoMSIA/EDA 0.560 0.81 0.131 21.479 2 0.77 - 0.121 0.300 0.579 - 
CoMSIA/HDA 0.570 0.892 0.099 41.414 2 0.76 -  0.382 0.504 0.114 
CoMSIA/EHDA 0.563 0.909 0.096 30.088 3 0.77 - 0.073 0.344 0.491 0.092 
CoMSIA/SHDA 0.557 0.890 0.100 40.470 2 0.74 0.038 - 0.365 0.490 0.107 
CoMSIA/SEDA 0.607 0.912 0.094 31.181 3 0.90 0.039 0.085 0.361 0.516 - 
CoMSIA/SEHA 0.480 0.953 0.073 40.797 4 0.63 0.063 0.094 0.699 - 0.145 
CoMSIA/SEHD 0.518 0.876 0.112 21.136 3 0.55 0.050 0.095 - 0.725 0.130 
CoMSIA/SEHDA 0.561 0.906 0.097 29.047 3 0.75 0.034 0.071 0.331 0.477 0.087 

R2: Non-cross-validated correlation coefficient, F: F-test value, SEE: Standard error of the estimate, Q2: Cross-validated correlation coefficient, N: 
Optimum number of components, R2pred: External validation correlation coefficient. 
 
Table 5. Observed and predicted pIC50 activity of the investigated molecules using CoMSIA/SEDA model 

 
No 

 
pIC50 
(Obs) 

CoMSIA/SEDA  
No 

 
pIC50 
(Obs) 

CoMSIA/SEDA  
No 

 
pIC50 
(Obs) 

CoMSIA/SEDA 

pIC50 
(Pred) 

Residuals pIC50 
(Pred) 

Residuals pIC50 
(Pred) 

Residuals 

1 4.907 4.782 0.125 7a 4.666 4.751 -0.085 13 4.629 4.696 -0.067 
2 5.027 5.060 -0.033 8 4.842 4.868 -0.026 14 4.879 4.813 0.066 
3 4.851 4.938 -0.087 9a 5.131 5.039 0.092 15 4.447 4.566 -0.119 
4 5.208 5.154 0.054 10 4.317 4.432 -0.115 16 4.544 4.435 0.109 
5a 4.425 4.365 0.060 11 4.539 4.446 0.093 17 4.415 4.422 -0.007 
6a 4.735 4.801 -0.066 12 4.416 4.411 0.005 a Test set molecules 

 

 
Fig. 2. Plots of predicted versus observed pIC50 values for the investigated molecules, along with their residuals, using the 

CoMSIA/ SEDA model. 

2.3   Validation of 2D/3D-QSAR Models 

     The predictive capabilities of both the HQSAR/A-B-C-H-Ch-DA and CoMSIA/SEDA models were thoroughly assessed 
through external validation, employing the Golbraikh and Tropsha criteria, as well as the Roy criterion. To conduct this 
evaluation, four test molecules based on quinoline-based Schiff bases were utilized. The findings from the external 
validation of the 2D/3D-QSAR model are listed in Table 6.  
 
      According to the data presented in Table 6, both the HQSAR/A-B-C-H-Ch-DA and CoMSIA/SEDA models 
demonstrate reliable results within the Golbraikh and Tropsha parameters, indicating that they meet the specified criteria. 
Additionally, the values of 𝐸𝐸𝑚𝑚2  and 𝐸𝐸𝑚𝑚′

2 for the HQSAR/A-B-C-H-Ch-DA and CoMSIA/SEDA models are 0.71 and 0.63, 
and 0.65 and 0.63, respectively, all of which exceed the threshold of 0.5. Moreover, the models exhibit a ∆𝐸𝐸𝑚𝑚2  value below 
0.2 and a ∆𝐸𝐸02 value not exceeding 0.3. As a result, both the HQSAR/A-B-C-H-Ch-DA and CoMSIA/SEDA models have 
successfully met the requirements of the Roy criterion. 
The HQSAR/A-B-C-H-Ch-DA and CoMSIA/SEDA models, which were selected as the preferred models, demonstrated 
high reliability and stability during the external validation tests. As a result, there is a high level of confidence in their 
aptitude to correctly predict the α-glucosidase activity of potential new molecules. 
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Table 6. External validation results of the HQSAR/A-B-C-H-Ch-DA and CoMSIA/SEDA models using Golbraikh, 
Tropsha, and Roy criteria. 

Criteria Parameter Validation Criteria HQSAR/A-B-C-H-Ch-DA CoMSIA/SEDA 

Golbraikh and 
Tropsha 

𝐸𝐸02 𝐸𝐸02 > 0.5 0.885 0.99 
𝐸𝐸0′
2 𝐸𝐸0′

2 > 0.5 0.855 0.99 
𝐸𝐸2pred 𝐸𝐸2 > 0.6 0.94 0.90 

k 0.85 ≤ k ≤ 1.15 1.02 1.00 
r2 − r02

r2
 < 0.1 0.06 -0.101 

𝑘𝑘′ 0.85 ≤ k ≤ 1.15 0.97 0.999 
r2 − 𝐸𝐸0′

2

r2
 < 0.1 0.09 -0.101 

Roy 

𝐸𝐸𝑚𝑚2  𝐸𝐸𝑚𝑚2  > 0.5 0.71 0.63 
𝐸𝐸𝑚𝑚′

2 𝐸𝐸𝑚𝑚′
2 > 0.5 0.65 0.63 

∆𝐸𝐸𝑚𝑚2  ∆𝐸𝐸𝑚𝑚2  < 0.2 -0.05 5.05 × 10−5 
∆𝐸𝐸02 ∆𝐸𝐸02 < 0.3 0.06 0.000 

 

2.4 HQSAR Contribution Map 

      The HQSAR output computations are based on analyzing the individual molecular fragments within a molecule and 
their respective contributions to its α-glucosidase activity. The HQSAR findings analysis can be visually presented through 
a contribution map, which is represented as a color-coded structural diagram. In this diagram, each atom is assigned a 
specific color that corresponds to its contribution to the overall α-glucosidase activity of the compound. This graphical 
representation allows us to identify and understand the key structural elements that play a crucial role in the compound's α-
glucosidase activities. In Fig. 3, the HQSAR contribution maps for two compounds, C4 and C10, are presented. C4 is the 
most active inhibitor in the dataset, while compound C10 is the least active. The contribution maps use color coding to 
illustrate the impact of each atom on the compounds' overall α-glucosidase activity. Atoms contributing positively to the 
activity are represented by the colors green, blue, green-blue, and yellow. On the other hand, atoms contributing negatively 
to the activity are shown in red, red-orange, and orange. Contributions that fall in between positive and negative effects are 
depicted in white. In Fig. 3 (a), the structural diagram of the C4 molecule shows a quinoline fragment highlighted in a 
certain position in green color. This suggests that the quinoline moiety could have a crucial role in boosting the α-
glucosidase inhibitory activity of the compound. On the contrary, Fig. 3 (b) shows the structural diagram of the C10 
molecule, where the green color is absent in the quinoline region. This absence of green color in the quinoline moiety could 
explain the lower activity of the C10 molecule in the database. The HQSAR model is effective in explaining and reflecting 
the influence of specific fragments on α-glucosidase activity, as evidenced by the color-coded contribution maps for certain 
molecules. However, it has limitations in explaining and characterizing the contribution of other fragments that are 
represented as white in both molecules. As a result, the information provided by the three-dimensional CoMSIA approach 
proves to be more valuable in identifying favorable and unfavorable groups for α-glucosidase activity. These three-
dimensional approaches offer deeper insights into the spatial interactions and steric effects of different molecular groups, 
enabling a more comprehensive understanding of their impact on α-glucosidase activity, which goes beyond what the 
HQSAR model can provide. 
 

 
Fig. 3. HQSAR contribution map of molecules C4 (a) and C10 (b). 

2.5 CoMSIA Contour Map 

      The contour maps generated from CoMSIA/SEDA model considered as important tools to clear up the significant 
structural aspects of compounds for the α-glucosidase inhibitory activity based on preferred and unpreferred sites of 
different fields. Therefore, suggesting new α-glucosidase inhibitors. Fig. 4 elucidates the contour maps extracted from 
CoMSIA/SEDA model using the molecule C4 as a template because it is the dataset's more active molecule. 
 



A. Khaldan et al. / Current Chemistry Letters 14 (2025) 85 

       CoMSIA steric contour map is revealed in Fig. 4(a); where steric field embodied by yellow color with 20 % 
contribution, and green color with 80 % contribution. The portion that appears in green around ortho and meta positions of 
the R moiety illustrated that bulky entities at these sites ameliorated the α-glucosidase inhibitory activity. This can be easily 
known by comparing the structure of molecule C2 (pIC50=5.027) and compound C13 (pIC50= 4.629). Molecule C2 consists 
two hydroxyl groups at ortho and meta positions of the R group while molecule C13 possesses two hydrogen atoms. The 
yellow color around ortho, meta and para sites of the R moiety elucidated that small groups in these positions improved the 
biological activity. We can explain that by viewing the structure of molecule C2 (pIC50=5.027) and molecule C13 (pIC50= 
4.629).  
 
       The R group's ortho position which is covered by blue and red colors demonstrates that this region can be occupied by 
both electro-donating and electro-withdrawing groups. On the other hand, the meta position of R group suggests that 
substituents with electron-donating behavior are favorable for α-glucosidase activity (Fig. 4(b)). 
 
      The magenta color located at meta position of phenyl moiety points out that groups with hydrogen bond acceptor 
behavior can ameliorate the inhibitory activity. The red color around ortho place of the R group and 2-methylenehydrazine 
moiety indicates that groups with hydrogen bond donor behavior are required in these positions to enhance the activity (Fig. 
4(c)).  
 
      Fig. 4(d) indicates that entities with hydrogen bond donor behavior at ortho and meta positions of phenyl entity could 
ameliorate the activity of molecules. Fig. 4(d) also shows also that moiety with hydrogen bond donor behavior in all 
positions of R group might improve the α-glucosidase inhibitory activity. 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. CoMSIA/SEDA contour maps results. (a) Steric, (b) Electrostatic, (c) H-bond donor, (d) H-bond acceptor. 

2.6 Summary of the SAR 

     In order to determine the appropriate groups for activity and thus propose new α-glucosidase inhibitors, the 
CoMSIA/SEDA contour maps were summarized as illustrated in Fig. 5. Specifically, the hydroxyl group found in the meta 
position of the phenyl group that requires bulky, electro-donating, H-bond donor and acceptor groups according to the 
results of CoMSIA/SEDA contour maps caught our attention to introduce suitable groups that can improve the α-glucosidase 
activity. 
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Fig. 5. Structural specifications for α-glucosidase inhibitors derived from the CoMSIA/SEDA contour map 

2.7 New Molecules Design and α-Glucosidase Activity Prediction 

      The present study is intended at designing of new α-glucosidase inhibitors by studying the various structural 
characteristics extracted from the developed CoMSIA/SEDA model. Based on steric, electrostatic, hydrogen bond donor 
and acceptor contour maps findings, two new α-glucosidase inhibitors were suggested and their inhibitory activity pIC50 
were predicted using the proposed CoMSIA/SEDA model as shown in Table 7. The phenyl group contains a hydroxyl 
group situated in the meta position was replaced by suitable groups such as isobutane and N(Et)2, thus, new quinoline-based 
Schiff base compounds E1 and E2 were proposed with good α-glucosidase inhibiting activity. In fact, for compound E1, 
we substituted the -OH group with the isobutane moiety to improve steric hindrance, thereby increasing the α-glucosidase 
inhibitory activity. For compound E2, we replaced the -OH group by diethylamine (N(Et)2) group in order to enhance the 
steric hindrance and electro-donating character. The chemical structures of the new designed molecules E1 and E2 are 
shown in Fig. 6.   
 
Table 7. The predicted α-glucosidase inhibitory activity of the new molecules E1 and E1. 

Compound  Predicted pIC50 
CoMSIA/SEDA 

E1 5.244 
E2 5.224 

Fig. 6. Chemical structure of the proposed compounds E1 and E2. 

2.8 Drug Likeness Outcomes 

      The new α-glucosidase inhibitors E1 and E2, and reference drug (voglibose), which is the most used α-glucosidase 
inhibitor in clinic, were subjected to further study using Lipinski's properties in order to identify their pharmacokinetics 
properties and to make a comparison between them. For this goal, we calculated the Lipinski's characteristics of the new 
proposed inhibitors and voglibose using pkCSM35 and SwissADME36 online servers and their properties are shown in 
Table 8. The Drug likeness prediction of the new inhibitors E1, E2 and voglibose basing on Lipinski, Ghose, Veber and 
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Egan rules are shown in Table 9. Table 8 provides clear evidence that the new α-glucosidase inhibitors have MW less 
than 500 Da, HBD not more than 5, HBA not over than 10. As a result, they can be easily absorbed and diffused.37 On the 
other hand, voglibose has MW less than 500 Da, HBA not over than 10, but it has a HBD more than 5 revealing that this 
inhibitor can be hardly absorbed and diffused. Moreover, the molecules E1 and E2 have TPSA less than 140 Å and nrotb 
not more than 10 unlike to voglibose that has a TPSA value of 153.64 Å. So, the new compounds present a good 
bioavailability.38 The synthetic accessibility of the newly proposed α-glucosidase inhibitors was evaluated to determine 
whether these compounds can be effectively synthesized or not. From Table 8, we can see that the molecules E1 and E2 
have S.A values near to 1 and away from 10 unlike to voglibose. Therefore, these molecules can be easily synthesized 
(from 1 (simple to synthesize) to 10 (highly challenging to synthesize)).39 Findings of Table 9 exhibit that the new 
scaffolds are suitable to Lipinski rule, Ghose rule, Veber rule, and Egan rule unlike to voglibose that respects only Lipinski 
rule, thus, the new inhibitors E1 and E2 can be synthetized readily. These obtained findings exhibit the excellent 
bioavailability of the new recommended α-glucosidase inhibitors in comparison with voglibose. 
 
Table 8. Lipinski’s properties of newly the suggested molecules and reference drug. 

property  Compound  
E1 E2 Voglibose 

MW 349.434 364.449 267.278 
LogP 3.162 2.810 -4.492 
HBA 4 5 8 
HBD 2 2 8 
nrotb 5 6 5 
TPSA 74.05 77.29 153.64 

SA 4.82 4.82 3.66 
 
 
Abbreviations 

MW: Molecular  Weight, HBA: number of hydrogen bonds acceptors, HBD: number of hydrogen bonds donors, LogP: logarithm  
of  partition  coefficient  of  compound between  n-octanol and  water, nrotb: number  of  rotatable  bonds, TPSA: Topological  Polar  
Surface  Area, SA:  Synthetic accessibility 

 
Table 9. Drug likeness prediction of the new inhibitors and voglibose. 

Compound Lipinski Ghose Veber Egan Bioavailability Score 
E1 Yes Yes Yes Yes 0.55 
E2 Yes Yes Yes Yes 0.55 

Voglibose Yes No No No 0.55 
 

2.9 ADME Results 

     The primary obstacle encountered by researchers in the drug discovery domain involves identifying novel potent 
medications devoid of undesirable side effects. This is what prompted us to study the pharmacokinetics characteristics of 
the new recommended inhibitors. Therefore, pkCSM35 and SwissADME36 online servers were executed to predict the 
ADME properties of the new suggested compounds E1 and E2 as well as the reference compound (voglibose) as shown in 
Table 10. Regarding the water solubility of the studied molecules, the outcomes of Table 10 point out that all α-glucosidase 
inhibitors are soluble. Absorbance value over than 30% of a molecule is considered to be highly absorbed.40 The outcomes 
of Table 10 clarify that the molecules E1 and E2 are very absorbed by the human intestine compared to the reference drug 
(voglibose). Moreover, if the distribution's size (VDss) value exceeds 0.45, it is thought to be large.41 A blood-brain barrier 
(BBB) permeability is considered favorable when it exceeds 0.3, while it is deemed unfavorable if LogBB is below -1. The 
results of Table 10 and Fig. 7 clearly indicate the best distribution capability of molecules E1 and E2 compared to voglibose. 
Cytochrome P450s are believed to constitute the primary enzyme system responsible for drug metabolism within the liver.42 
Among humans, 17 families of CYP genes comprising a total of 57 genes have been identified. However, only the families 
CYP1, CYP2, CYP3, and CYP4 play a role in drug metabolism. Notably, CYP enzymes such as 2D6, 2C19, 2C9, 3A4, and 
1A2 are responsible for more than 90% of medication biotransformation in phase I (oxidation) metabolism.43 The two main 
cytochrome P450 subtypes are CYP3A4 and CYP2D6.57 The findings of Table 10 reveal that the studied α-glucosidase 
inhibitors are CYP3A4 substrate and not an inhibitor. The molecules E1, E2 and voglibose are neither CYP2D6 substrate 
nor inhibitor. We can also note from the results in Table 10 that the newly designed molecules are inhibitors of CYP1A2, 
CYP2C9 and CYP2C19 in contrast to the reference drug which is not an inhibitor of the three of CYP isoenzymes. Clearance 
is a parameter that establishes the connection between the concentration of a medication within the human body and the 
extent to which the medication is eliminated.44 Certainly, lower clearance index values suggest that the drug remains in the 
body for a longer duration. The results obtained indicate that the new compounds possess a lower clearance index value in 
comparison to voglibose. This suggests that these compounds might exhibit a tendency to remain present in the human body 
for a prolonged period. The ADME outcomes of the molecules E1 and E2 demonstrate the good efficacy of these scaffolds 
and give them the priority to be candidate inhibitors against diabetes mellitus.  
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Fig. 7. BOILED-Egg model. 

Table 10 ADME properties of the compounds E1, E2 and voglibose. 

N° 

GI 
absorption BBB permeant P-gp 

inhibitor 
CYP CYP 

Clearance 1A2 2C19 2C9 2D6 3A4 2D6 3A4 

High/ 
Low 

Numeric (% 
absorbed) Yes/No Numeric 

(Log BB) 
 

Yes/No Inhibitor Substrate 
Numeric 

(log mL min-1 
kg-1) 

E1 High 91.144 Yes 0.011 No No Yes No No Yes No Yes 0.716 
E2 High 92.369 Yes -0.351 No No Yes No No Yes No Yes 0.829 

Voglibose Low 13.131 No -1.870 No No No No No No No No 0.913 
 

2.10  Toxicity Result 

      The Ames mutagenicity test is a widely used assay in the early stages of drug development to evaluate the potential 
mutagenic effects of a molecule. Based on the outcomes listed in Table 11, the proposed molecules E1 and E2 as well as 
voglibose showed no toxicity according to the Ames test. Additionally, the studied molecules did not exhibit any 
carcinogenicity. Hepatotoxicity refers to the ability of a substance to cause damage or toxicity to the liver. It is an important 
aspect of toxicity testing, particularly for drugs and chemicals that are metabolized in the liver or have the potential to 
interact with liver cells. From Table 11, we can see that all inhibitors are not hepatotoxic. In a similar vein, the obtained 
outcomes hint that the proposed α-glucosidase inhibitors do not exhibit skin sensitisation. Moreover, based on the 
information provided in Table 11, it appears that the LD50 (lethal dose 50) values of the inhibitors are low. A low LD50 
value indicates that a high dosage of the substance would be required to cause lethality in test subjects. In conclusion, the 
newly suggested α-glucosidase inhibitors demonstrate favorable pharmacokinetic properties and comply with Lipinski, 
Ghose, and Veber rules. These results indicate that these compounds could be promising candidates for the development of 
new inhibitors for diabetes mellitus. 

Table 11 Toxicity prediction of the proposed molecules and voglibose. 

 

2.11 Molecular Docking Results 

2.11.1 Protein Structure Validation 
 

      The in-depth study conducted on the α-glucosidase protein (PDB ID: 3a4a) involved several analyses to assess the 
reliability of the selected receptor. These analyses included Asteroid plot analysis, Ramachandran plot, Z-Score plot, Verify 
3D, and Error frequency plot. By performing these analyses on the α-glucosidase protein, we can gain insights into its 
structural quality, identify potential errors or irregularities, and determine the reliability of the receptor before conducting 
molecular docking analysis. These assessments contribute to ensuring the accuracy and validity of subsequent 
computational studies involving the protein. The Asteroid plot analysis conducted on the 3a4a receptor showed that the 
residues in the inner shell had direct contact with the ligand, while the residues in the outer shell had indirect interactions 
with the ligand. The size of the circular nodes in the plot corresponded to the number of contact residues formed with the 

Compound Ames toxicity test  
Carcinogenicity Hepatotoxicity Skin sensitisation Oral Rat Acute Toxicity 

(LD50: mol/Kg) 
E1 Non-toxic Non-carcinogen No-hepatotoxic No 2.795 
E2 Non-toxic Non-carcinogen No-hepatotoxic No 2.806 

Voglibose Non-toxic Non-carcinogen No-hepatotoxic No 1.611 
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ligand (Fig. 8(a)). The subsequent analysis revealed that 89.1% of the tailings, when evaluated on the Ramachandran plot 
(Fig. 8(b)), were situated within the most favored region, indicating a high conformational quality of the protein. 
Additionally, the stereochemical validation was conducted using the ProSA server, which presented a graph displaying 
areas for X-ray crystallography and spectroscopy in light and dark blue, respectively. The Z-score obtained from this 
analysis was -10.43 (Fig. 8(c)), indicating good agreement between the protein structure and experimental data. Hence, the 
VERIFY3D graph exhibits that 98.12% of the residues had a 3D-1D score ≥ of 0.1, indicating a good model quality (Fig. 
8(d)). The ERRAT graph analysis yielded a high estimated quality factor of 93.772 (Fig. 8(e)). This indicates a favorable 
overall quality assessment of the protein structure according to ERRAT. These validation tools provide assurance and 
reliability for the modeled protein structure, ensuring its suitability for conducting molecular docking studies. 

 

Fig. 8. Prediction and verification of the 3a4a receptor's structure encompass: a) Examination of the receptor through an 
asteroid plot analysis; b) Assessment of the Ramachandran plot using the pro check server; c) Presentation of the Z-Score 
plot for the modeled 3a4a structure; d) Evaluation of structural integrity using Verify 3D; e) Generation of an error frequency 
plot via the ERRAT server. 

2.11.2 Molecular Docking Interaction 
    
     To better understand the different types of interactions of quinoline-based Schiff base inhibitors in the active site of the 
α-glucosidase receptor (PDB: 3a4a) and their binding affinity, a molecular docking simulation was applied. The compounds 
proposed in this study, E1 and E1, as well as voglibose, clinically used as an α-glucosidase inhibitor, were docked into the 
active site of the target receptor. The binding energy and inhibition constant Ki values of the investigated molecules are 
presented in Table 12. Their molecular docking interactions are shown in Figs 9, 10 and 11, respectively. Based on the 
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obtained results, it was observed that inhibitors E1 and E2 exhibited the highest docking score against the receptor, 
surpassing the docking score of the reference inhibitor, voglibose. This suggests that compounds E1 and E2 have a stronger 
binding affinity and potentially better interaction with the active site of the receptor compared to voglibose. Additionally, 
the binding energy (∆G) was used to calculate the inhibition constant (Ki) using the following equation 𝐾𝐾𝐾𝐾 = 𝑒𝑒𝑒𝑒𝑒𝑒(∆𝐺𝐺/𝑅𝑅𝑅𝑅), 
where R is the universal gas constant (1.985 10-3 kcal mol-1 K-1) and T is the temperature (298.15 K).45 The results are 
listed in Table 12. Indeed, a lower Ki value indicates higher effectiveness of a drug. Ki represents the binding affinity 
between a drug and its target receptor. A lower Ki value implies stronger binding between the drug and the receptor, 
indicating greater potency and potentially improved therapeutic efficacy. Therefore, compounds E1 and E2 exhibit lower 
Ki values compared to voglibose, reinforcing their potential as more effective inhibitors of the α-glucosidase receptor. 
 

     The docking result of compound E1 shows more favourable interactions with 3a4a receptor such as conventional 
hydrogen bond, pi-pi stacked and pi-pi T-shaped. Indeed, hydrogen bonds play a key role in determining the ligand's binding 
specificity. Furthermore, hydrogen bonds have a significant impact in drug-receptor interactions as well as maintaining the 
structural integrity of various biological molecules. These bonds contribute to the stabilization of the drug-receptor complex, 
facilitating optimal binding and enhancing the affinity and specificity of the interaction. One of the reasons why the 
proposed compound E1 has the highest activity compared to the whole series may be due to its robust binding network. 
Continuously, the recommended E1 molecule forms pi-alkyl interactions with the 3a4a receptor at residues Val216 (5.47 
Å), Arg315 (5.45 Å), and Lys156 (3.93 Å). Other interactions were found to be pi-pi stacked, pi-sigma, alkyl, pi-anion and 
attractive charge with varying residues and distances. Compound E2's docking outcome revealed four kinds of interactions 
with the active site residues. The hydroxyl group's oxygen atom in the phenyl ring established a hydrogen bond with active 
site residue Ser157 at distance of 2.54 Å. The quinoline ring's nitrogen atom forms a second hydrogen bond with the active 
site residue Arg442, positioned at a distance of 3.10 Å. The important number of H-bonds existing in the docking interaction 
of compound E2 could explain its good stability. On the other hand, the docking result of voglibose showed two types of 
interactions. Voglibose molded four hydrogen bonds with active site residues Pro312 (2.36 Å), Asp242 (1.96, 2.41 and 2.42 
Å), Ser240 (2.32 and 2.21 Å) and Ser241 (2.94 Å). These interactions provide the voglibose with good stability. As a 
conclusion, the molecular docking results provide support for the superiority of the new α-glucosidase inhibitors 
(compounds E1 and E2) over voglibose. The higher docking scores and lower Ki values exhibited by compounds E1 and 
E2 suggest that they have stronger binding affinity and potentially better interactions with the active site of the α-glucosidase 
receptor compared to voglibose. These findings indicate that the new inhibitors may offer improved efficacy and 
effectiveness in inhibiting the α-glucosidase receptor, making them promising candidates for further development as 
potential therapeutics. 

  

Fig. 9.  Docking interaction of compound E1 and 3a4a receptor (distance unit is given in angstrom Å) 

Table 13 Binding energy and inhibition constant Ki of compounds E1, E2 and voglibose 
Inhibitor Binding energy (Kcal/mol) Inhibition Constant Ki (µM) 

E1 -9.6 0.090 
E2 -9.3 0.149 

Voglibose -6.4 20.116 
 



A. Khaldan et al. / Current Chemistry Letters 14 (2025) 91 

 

  

  
Fig. 10. Docking interaction of compound E2 and 3a4a receptor (distance unit is given in angstrom Å) 

 
Fig. 11.  Docking interaction of voglibose and 3a4a receptor (distance unit is given in angstrom Å) 

2.11.3 Molecular Docking Validation Result 
 
      The re-docking was carried out to investigate the docking procedure and its efficiency. The re-docked complex was 
overlaid onto the co-crystallized native complex, as shown in Fig. 12(a). The RMSD value obtained was 0.35 Å. In practice, 
the molecular docking validation is good if its RMSD value is less than 2 Å.46 Thus, molecular docking using the Autodock 
Vina program was successfully validated in this study. Gln279, Arg442, Glu411 and Arg315 are the interacting amino acids 
formed with an average distance of 3.00 Å in the active site pocket (Fig. 12(b)). 
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Fig. 12. a) Re-docking pose with the RMSD value of 0.35 Å (Yellow = Original, Orange = Docked), b) molecular docking 
interactions result of the original ligand. 

2.12 MD Simulations Outcomes 

     The top three complexes involving 3a4a receptor and its associated ligands (E1, E2, and voglibose) were subjected to an 
assessment of their binding stability. This evaluation was conducted through a MD calculation involving simulations 
spanning 100 nanoseconds at standard room temperature conditions. Analysis of the trajectories after the simulation run 
indicated that, with the exception of the voglibose ligand, all other ligands remained attached to the ligand binding groove 
within the active pocket. To gauge the stability of each structure, various calculations were performed, including RMSD, 
RMSF, radius of gyration, hydrogen bonding analysis, determination of the average center of mass (COM) distance between 
the 3a4a protein and the concerned ligand, and estimation of binding free energy through MMPBSA. The RMSD graphs 
presented in (Fig. 13, Column A) illustrate the complex, backbone, and ligand RMSD across each structure. For both the 
protein backbone and complex RMSD, compounds E1 and E2 demonstrate minimal to no fluctuation after a simulation 
time of 40ns. In contrast, compound voglibose shows large values of RMSD and fluctuation for the complex and backbone 
RMSD plot. After almost 30ns of simulation time, trajectory visualization shows that ligand voglibose is out of its binding 
pocket. This is reflected in the RMSD plot by a huge increase in complex RMSD and intense fluctuations in ligand RMSD. 
The findings from the radius of gyration analysis (depicted in Fig. 13, Column C) align with the RMSD results for the 
complexes. Specifically, compounds E1 and E2 exhibit minimal fluctuations after 40 ns (less than 0.5 Å), while compound 
voglibose displays significant fluctuations with an increase exceeding 2 Å. The GROMACS program was employed to 
compute the RMSF for the protein complex, concentrating on 'C-alpha' atoms. In general, the magnitude of fluctuation 
remains under 3.0 Å for ligands E1 and E2, except for specific residues that correspond to protein loops or turns (illustrated 
in Fig. 13, Column B). Compound voglibose shows higher residue fluctuations compared with E1 and E2. This indicates 
that the ligand has a negative result on the stability of the protein unlike in E1 and E2 where lower residue fluctuations are 
observed. The count of hydrogen bonds established between the protein and ligand over the course of a 100 ns simulation 
is depicted in (Fig. 14, Column A). In the case of inhibitors E1 and E2, a notably stable network of hydrogen bonds with 
the protein is observed, with most of the simulation time involving the presence of two or one hydrogen bonds. Conversely, 
the voglibose ligand commences the simulation with a substantial number of hydrogen bonds established with the protein. 
However, it gradually loses all of these bonds after 30 ns of simulation, ultimately departing from the binding pocket. The 
average center-of-mass distance between the protein and ligand throughout the 100 ns simulation duration is illustrated in 
(Fig. 14, Column B). Ligands E1 and E2 stay within a reasonable COM distance from the protein while voglibose is out of 
its pocket completely and shows very high COM distance after 30 ns, in agreement with the previous results. The potential 
energy, temperature, and pressure values of the system extracted from the GROMACS edr file during the 100 ns MD 
simulation are depicted in Fig. 15. The graph demonstrates consistent and stabilized potential energy, temperature, and 
pressure profiles over the entire 100 ns simulation duration. The choice to employ the Molecular Mechanics/Poisson 
Boltzmann Surface Area (MM/PBSA) method for reevaluating complexes was driven by its speed as a force field-based 
approach to calculate binding free energy. This method is notably quicker compared to other computational techniques like 
free energy perturbation (FEP) or thermodynamic integration (TI) methods for estimating binding free energy. The g-
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mmpbsa software was utilized to conduct the MM/PBSA calculation. The resulting binding free energies values are listed 
in Table 13. 
 
Table 13 Binding free energies values of the suggested compounds and voglibose [kJ/mol] 

Complex ∆𝐺𝐺 van der Waal energy Electrostatic energy Polar solvation energy SASA energy 
E1 -87.314   +/-   15.536 -146.567   +/-   20.675 -37.975   +/-   26.680 115.284   +/-   44.279 -18.055   +/-    1.615 
E2 -77.207   +/-   17.801 -127.589   +/-   25.414 -45.660   +/-   21.933 112.517   +/-   31.617 -16.475   +/-    2.628 

Voglibose -53.753   +/-   81.767 -34.454   +/-   45.137 -58.394   +/-   72.513 44.063   +/-  119.266 -4.967   +/-    6.250 
 

 

Fig. 13. In a sequence from right to left: (A) RMSD, (B) RMSF, and (C) Radius of gyration profiles of the complexes 
throughout a 100 ns MD simulation. Ligands E1 (Top), E2 (Middle) and voglibose (bottom)  

 

Fig. 14. Moving in a direction from right to left: (A) Illustration of hydrogen bonds between the protein and ligand, and 
(B) Presentation of the average distance between the ligand and the protein for the complexes over the course of a 100 ns 
MD simulation. Ligands E1 (Top), E2 (Middle) and voglibose (bottom) 
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Fig. 15. In a progression from left to right: (A) Temperature variations, (B) pressure changes, and (C) potential energy 
fluctuations observed during the 100 ns MD simulations 

2.13   Global Properties of the Quinoline-Based Schiff Base Derivatives 

2.13.1 Frontier Molecular Orbital (FMO) 
 
     The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are crucial 
factors in quantum chemistry because they enable the study of chemical stability and reactivity and serve as the basis for 
the determination of global indices using Eqs. (9-13). The HOMO energy means the capacity to donate while the LUMO 
energy represents the acceptance characteristics of the investigated compound, thus requiring an electronic charge transfer 
from HOMO to LUMO.47 Additionally, the energy gap (∆Egap) refers to the difference in energy between the HOMO and 
the LUMO. The smaller the energy gap, the greater the reactivity and stability of the compound studied, according to the 
FMO theory. The HOMO, LUMO, and global reactivity descriptors results of the investigated compounds E1 and E2 are 
presented in Table 14 while Fig. 16 shows the isosurface and corresponding energy gap for the HOMO and LUMO orbitals. 
As can be seen in Fig. 16, compound E1 has an energy gap value of 3.779 eV which is smaller than that of compound E2 
(4.371 eV). This low value of the energy gap suggests that compound E1 is, according to the FMO theory, the most reactive 
of the investigated compounds. Therefore, this finding supports the good α-glucosidase activity of compound E1 predicted 
by the CoMSIA/SEDA model. Continuously, the electrophilicity ω index values of compounds E1 and E2 are 1.566 and 
1.665 eV, respectively, while the nucleophilicity N index values are 4.038 and 3.367 eV, respectively. Hence, these 
compounds are considered potent nucleophiles rendering to the nucleophilicity scale 48 and weak electrophiles rendering to 
the electrophilicity scale.49 
 
Table 14. HOMO-LUMO and global reactivity descriptors of the new α-glucosidase inhibitors. 

 
Compound 

Global reactivity descriptors 
HOMO (ev) LUMO (ev) µ (ev) η (ev) S (ev) ω (ev) N (ev) 

E1 -6.338 -2.138 -4.238 4.200 0.238 2.138 3.030 
E2 -5.595 -2.076 -3.835 3.519 0.284 2.090 3.773 
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Fig. 16. HOMO, LUMO, and energy gap (∆Egap) value of the compounds E1 and E2. 
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2.13.2 Molecular Electrostatic Potential (MEP) 
 
      MEP describes the distribution of electrostatic potential energy in space around a molecule. It is determined based on 
the charges and positions of atoms within the molecule. MEP provides insights into the regions of positive and negative 
electrostatic potential, which are indicative of areas where molecules or functional groups might interact or undergo 
chemical reactions.50 The MEP analysis is a valuable tool in understanding the electrostatic properties and behavior of 
molecules, aiding in the interpretation of chemical reactivity and molecular recognition. Fig. 17 presents the analysis of 
MEP for the E1 and E2 compounds conducted using B3LYP functional with a 6-31G (d, p) basis set. In Fig. 17, the positive 
(electron-poor) regions are represented by the color blue, while the slightly electron-deficient regions are depicted in light 
blue. The neutral regions are shown in green, whereas the negative (electron-rich) portions are indicated by the color red. 
Additionally, the yellow color is used to represent regions that are slightly rich in electrons. This color scheme helps 
visualize the distribution of electron density and electrostatic potential around the studied compounds, allowing us to 
identify areas of electron deficiency and richness within the molecules. Fig. 17 indicates that compounds E1 and E2 exhibit 
a strong negative potential (shown in red) at the O11 oxygen atom of the ketone group and a weaker negative potential 
(depicted in yellowish color) at the N13 nitrogen atom of the imine group. Hence, the regions with the highest negative 
electrostatic potential in E1 and E2 compounds are concentrated on the O11 and N13 atoms, indicating that these specific 
sites are the most favorable targets for electrophilic reactions. 

 

 
 
 
 
E1 
 
 

 

 
 
 
 
 
 
E2 
 
 
 
 
 

 
Fig. 17. Visual representation of the MEP diagrams. 

2.14 Local Properties of E1 and E2 Inhibitors 

      In this part, local properties of E1 and E2 compounds were determined using Pk+ and Pk− Parr functions to identify the 
most nucleophilic and electrophilic centers. The obtained results are listed in Table 15. 
 
     It seems like the analysis of the electrophilic Pk+ Parr function for the molecules E1 and E2 have revealed that the most 
electrophilic centers are the C6 and C15 atoms because they possess the highest values local electrophilicity index (ω𝑘𝑘). 
On the other hand, the nucleophilic Pk− Parr function results for the molecule show that O11, N12, N13 and O22 are 
identified as the most nucleophilic centers since they exhibit the highest values of local nucleophilicity index (N𝑘𝑘).  
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Table 15. Local properties of compounds E1 and E2. 

 
3. Conclusion 
 
     The outcomes of this research likely offered valuable information for the development of new α-glucosidase inhibitors. 
This could involve studying the SAR of existing inhibitors, identifying key features that contribute to their effectiveness, 
and using that knowledge to develop new compounds with enhanced properties. The optimal HQSAR/A-B-C-H-Ch-DA 
and CoMSIA/SEDA models showed good statistical findings regarding numerous stringent statistical indicators like Q2, R2 
and R2pred. Thus, these models can be competently applied to predict new α-glucosidase inhibitors with excellent activity. 
The contour maps results displayed that steric, electrostatic and hydrogen bond acceptor groups were found to be useful for 
improving the α-glucosidase inhibitory activity. Overall, these outcomes pave the way to design two novel α-glucosidase 
inhibitors with high activity compared to that of the more active molecule of the series. ADME/Tox outcomes of the 
predicted α-glucosidase inhibitors showed good absorption, acceptable metabolism transformation, and they were in great 
accordance with the key principles rules of drug likeness compared to the reference medication (voglibose). Molecular 
docking outcomes showed good stability of the new suggested inhibitors at the active pocket of α-glucosidase receptor. The 
molecular dynamics simulations conducted during the research demonstrated that the new α-glucosidase inhibitors exhibited 

Compound Atom Pk+ Pk− ω𝑘𝑘 N𝑘𝑘 

E1 

C1 0.048 0.020 0.103 0.061 
C2 0.000 0.007 0.000 0.021 
C3 0.061 0.018 0.130 0.055 
C4 0.028 0.010 0.060 0.030 
C5 0.001 0.007 0.002 0.021 
C6 0.071 0.029 0.152 0.088 
C7 0.002 0.014 0.004 0.042 
C8 0.009 0.010 0.019 0.030 
C9 0.054 0.009 0.115 0.027 

C10 0.032 0.034 0.068 0.103 
O11 0.073 0.079 0.156 0.239 
N12 0.002 0.059 0.004 0.179 
N13 0.039 0.040 0.083 0.121 
C14 0.067 0.031 0.143 0.094 
C15 0.088 0.033 0.188 0.100 
C16 0.057 0.024 0.122 0.073 
C17 0.018 0.007 0.038 0.021 
C18 0.025 0.037 0.053 0.112 
C19 0.012 0.002 0.026 0.006 
C20 0.064 0.013 0.137 0.039 
C21 0.001 0.002 0.002 0.006 
O22 0.024 0.061 0.051 0.185 
C23 0.001 0.003 0.002 0.009 
C24 0.006 0.011 0.013 0.033 
C25 0.001 0.002 0.002 0.006 
N47 0.042 0.011 0.090 0.033 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E2 

C1 0.048 0.012 0.100 0.045 
C2 0.000 0.005 0.000 0.019 
C3 0.063 0.009 0.132 0.034 
C4 0.029 0.006 0.061 0.023 
C5 0.002 0.001 0.004 0.004 
C6 0.072 0.019 0.150 0.072 
C7 0.002 0.007 0.004 0.026 
C8 0.001 0.003 0.002 0.011 
C9 0.054 0.006 0.113 0.023 

C10 0.033 0.019 0.069 0.072 
O11 0.073 0.05 0.153 0.189 
N12 0.033 0.046 0.069 0.174 
N13 0.036 0.035 0.075 0.132 
C14 0.066 0.017 0.138 0.064 
C15 0.091 0.011 0.190 0.042 
C16 0.031 0.010 0.065 0.038 
C17 0.015 0.018 0.031 0.068 
C18 0.017 0.003 0.036 0.011 
C19 0.029 0.011 0.061 0.042 
C20 0.051 0.011 0.107 0.042 
N21 0.014 0.016 0.029 0.060 
O22 0.017 0.030 0.036 0.113 
C23 0.007 0.011 0.015 0.042 
C24 0.008 0.020 0.017 0.075 
C25 0.001 0.006 0.002 0.023 
C26 0.004 0.013 0.008 0.049 
N49 0.032 0.0229 0.067 0.086 
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good stability during the 100 ns simulation. The application of DFT analysis in the study allowed for the identification of 
both electrophilic and nucleophilic inhibitors, along with determining the specific sites that are most favorable for 
nucleophilic or electrophilic interactions. This study indicates that the newly suggested α-glucosidase inhibitors have 
significant potential for treating type-2 diabetes mellitus in the future. However, additional in vitro and in vivo investigations 
are needed to thoroughly evaluate their therapeutic efficacy. 
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4. Experimental 
 
4.1. Materials and Methods 

4.1.1 Dataset 

In this study, the α-glucosidase inhibitory activity and chemical structures of seventeen quinoline-based Schiff base 
derivatives were taken from literature.51 The selected molecules were synthetized by Taha et al. from simple methods and 
substrates, and assessed for their α-glucosidase inhibitory activity.51 These compounds were divided into two groups and 
employed for conducting the 3D-QSAR (CoMSIA) analysis. The first group concerned with a training set of 13 compounds 
to construct the quantitative model and the second one concerned with a test set of 4 compounds to verify the effectiveness 
of the shaped model. The α-glucosidase inhibitory activities IC50 (µM) were transFig.d into the equivalent pIC50 (-log (IC50)) 
values (Table 16).  Fig. 18 shows the chemical structure of the seventeen investigated molecules. 
 
Table 16. α-Glucosidase activity of the studied compounds and their chemical structures. 

N° R IC50 pIC50 N° R IC50 pIC50 N° R IC50 pIC50 
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Fig.18. General structure of quinoline-based Schiff base molecules. 
 

4.2 Minimization and Molecular Alignment 

     Alignment of molecules is a crucial initial step applied before building a 3D-QSAR molecular model. In this paper, 
every structure of seventeen quinoline-based Schiff base molecules were sketched with SYBYL-X.2.0 and minimized using 
the Tripos force,52 Gasteiger Huckel charges,53 and with gradient convergence criteria of 0.005 kcal/mol. Then, using 
compound C4 (the database’s more active inhibitor), the seventeen concerned derivatives were aligned on the common core 
as shown in Fig. 19. 
 

 
Fig. 19. The proposed alignment of the seventeen quinoline-based Schiff base molecules. 

4.3 HQSAR Study 

     The hologram QSAR is a 2D-QSAR method that establishes a relationship between the biological activity of a compound 
and its structural fragments.54 This technique involves converting the chemical representation of a compound into its 
equivalent molecular hologram. One of the key advantages of hologram QSAR is that it eliminates the need for a 3D 
structure, molecular alignment, and the specification of conformation.55 This makes hologram QSAR a valuable tool in 
predicting biological activity based on the compound's structural features in a simplified and efficient manner. Molecular 
holograms are generated through a process called fragment generation, which involves hashing the fragments into an array. 
The bin occupancies within the array are used as descriptor variables.56 To generate molecular holograms, the HQSAR 
technique utilizes a range of parameters, including fragment distinction of atoms (A), bonds (B), connections (C), hydrogen 
atoms (H), chirality (Ch), donor and acceptor (DA), hologram length (HL) values of 53, 59, 61, 72, 83, 97, 151, 199, 257, 
307, and 401. Additionally, the fragment sizes considered are 2-5, 3-6, 4-7, 5-8, 6-9, and 7-10. These parameters play a 
crucial role in defining the characteristics of the molecular holograms and are essential for the HQSAR technique's 
predictive capabilities in relating structural features to the compound's biological activity. 
 

4.4 CoMSIA and PLS Analyses 

     CoMSIA31 is a computational method used in drug design to study the 3D-QSAR of a set of compounds. In CoMSIA 
analysis, the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields are used to describe 
the properties of the molecules being studied. These fields represent different physicochemical properties that influence the 
biological activity of the inhibitors. The combination between these fields leads to produce a CoMSIA model. Regarding 
the attenuation factor in CoMSIA, it regulates the steepness of the Gaussian function used to weight the contributions of 
different interactions between molecules. The default value of the attenuation factor is set to 0.3. 
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The partial least squares (PLS) 57 approach has been applied to setting up a linear relationship between the values of α-
glucosidase activities and the CoMSIA descriptor. As a matter of fact, PLS using a leave-one-out (LOO) cross-validation 
was executed to offer the cross-validated Q2 and optimum number of components (N). Afterwards, PLS approach was re-
effectuated using this time a non-cross-validation to engender the determination coefficient R2, F values and standard error 
of estimate (SEE). The optimal CoMSIA model was chosen by taking into account the best Q2, R2, and R2pred values. 

 

4.5 External Validation of 2D/3D-QSAR Model 

     A study by Golbraikh and Tropsha suggests that cross-validation is necessary but not enough to check the predictive 
capability of the nominated QSAR mode.58 However, an external validation using a set of tests molecules can provide a 
guarantee of the predictive potential of the molded model. In fact, to assess the predictive capability of the model, the 
predictive correlation coefficient (R2pred) was identified using the formula (1)58: 

R2pred = 1 −
PRESS

SD
 (1) 

where the PRESS parameter refers to the squared deviations between the calculated and observed activity values of the 
compounds in the test set, and the SD parameter represents the squared deviations between the average activity values of 
the training set and the activity values of the test set. Furthermore, Golbraikh and Tropsha58 determined additional statistical 
factors including the squared correlation coefficients r02 and r0′

2, and the slopes k and k′ for an additional statistical analysis 
regarding the external validation. These parameters were computed using the Eqs. (2-4), and Eq. (5), respectively: 

r02 = 1 −
∑(Ypred/test − k × Ypred/test)2

∑(Ypred/test − k × Y�pred/test)2
 

(2) 

r0′
2 = 1 −

∑(Y�pred/test − k × Y�pred/test)2

∑(Ypred/test − k × Ypred/test)2
 

(3) 

k =
∑(Ytest × Ypred/test)2

∑(Ypred/test)2
 

(4) 

k′ =
∑(Ypred/test × Ytest)2

∑(Ytest)2
 

(5) 

       An investigation carried out by Roy59 demonstrated that it is compulsory to calculate the parameters rm2  and rm′
2, which 

are the distinction between 𝐸𝐸2 and r02 values, 𝐸𝐸2 and r0′
2   values, respectively to ensure the efficiency of the model and thus 

could be considered for the prediction of the activity of newly put forward compounds.  rm2  and rm′
2 parameters are 

calculated using the Eq. (6), and Eq. (7), respectively: 
 

rm2 = r2 �1 − �(r2 − r02)�   
(6) 

rm′
2 = r2 �1 − �(r2 − r0′

2)� 
(7) 

 

4.6 New Molecules Design and α-Glucosidase Activity Prediction 

       The primary objective of this research is to design novel α-glucosidase inhibitors with important inhibitory activity. To 
achieve this goal, the HQSAR/CoMSIA model was constructed, validated, and subsequently employed to generate 
HQSAR/CoMSIA contribution and contour maps. These maps offer valuable understandings regarding the structural 
characteristics and regions that significantly influence the inhibitory activity of the designed compounds, aiding in the 
rational design and optimization of new potential inhibitors. The newly designed molecules underwent sketching, 
minimization, and alignment using the same procedure as the seventeen previously studied molecules. The α-glucosidase 
activity of the newly designed quinoline-based Schiff base molecules was forecasted using the most reliable and well-
established HQSAR/CoMSIA model. 

4.7 ADME/Tox Prediction 

      ADME/Tox (absorption, distribution, metabolism, excretion, and Toxicity) prediction has emerged as a fundamental 
and extensively employed approach in molecular modeling to assess the pharmacokinetic characteristics of molecules.60 
This predictive tool plays a crucial role in understanding how a compound is absorbed, distributed, metabolized, and 
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eliminated in the body, as well as its potential toxicity.61 It aids in the early stages of drug discovery and development by 
providing valuable information about a molecule's behavior within the human body, facilitating the identification of 
potential drug candidates with favorable ADME/Tox profiles. Keeping this in mind, we used pkCSM35 and SwissADME36 
online servers to predict the ADME/Tox parameters of the newly designed candidate scaffolds. 

4.8 Molecular Docking Analysis 

      Molecular docking was carried out to explore and analyze the possible interactions between molecules and the receptor. 
The protein data for isomaltase from Saccharomyces cerevisiae's crystal structure was sourced from the Protein Data Bank 
with the PDB ID: 3a4a 2,62 and a resolution of 1.60 Å. A grid box with dimensions x = 30, y = 30, and z = 30 was established 
within the binding pocket of the 3a4a receptor. The grid points were spaced 1 Å apart from each other. The parametric 
dimensions of the grid box were set as follows: x = 21.595, y = -7.436, and z = 24.042. To achieve an effective pose of the 
binding conformation of the 3a4a- quinoline-based Schiff base complex, the exhaustiveness value was set to 8. Next, the 
recommended molecules E1 and E2, and voglibose, clinically used as α-glucosidase medication, were docked against the 
target protein. In this part, Autodock Vina63 was applied to conduct the docking simulation. AutoDock Vina produced 
distinct docked complexes for each ligand, varying in conformation and affinity scores (measured in kcal/mol). These 
complexes were categorized based on the theory of lowest binding energy (in kcal/mol), where a more negative value 
indicates a higher binding affinity.64 The best pose of the docked protein-ligand complex was analysed and visualized 
graphically using Discovery Studio 201665 and PyMol66 software. 

4.9 Molecular Docking Validation 

       The molecular docking method was validated to assess its credibility. The co-crystalized molecule was retired and re-
docked into the active site using Autodock Vina.63 It was docked using the same technique and steps as those adopted for 
the docked ligands studied. The re-docked complex was superimposed on the co-crystallized reference complex using 
PyMol66 and the root mean square deviation (RMSD) was computed, and the two-dimensional picture displaying the 
superimposed amino acid residues was visualized using the Discovery Studio 2016 software.65 

4.10 Molecular Dynamics (MD) calculations 

4.10.1 MD calculations 
 

     The best docking poses of the 3a4a-E1/E2/voglibose complex were subjected to MD calculations to further understand 
their stability. The system was constructed using the web-based CHARMM-GUI,67,68 which was integrated with the 
CHARMM36 force field.69 The ligand topology was generated using the general CHARMM force field70 through the Param-
Chem server. There are five sequential stages comprising the construction process of the CHARMM-GUI solution. In the 
initial stage, the tool reads the coordinates of the protein-ligand complex. In the next step, the protein-ligand complex is 
solvated, and the size of the system and structure are defined. During this step, the Na+ and Cl- ions were used to neutralize 
the system. The third step involves setting up periodic boundary conditions (PBC), which simulate an extensive system by 
repeating a unit cell in all directions. Only the atoms within the PBC box are included in the MD simulation. At this stage, 
a rapid minimization is performed to remove any unfavorable contacts. The fourth and fifth stages include system 
equilibration and the production phase. Equilibration is carried out in two phases—first using the NVT ensemble and then 
the NPT ensemble—to guarantee that the system achieves the required temperature and pressure. Subsequently, necessary 
adjustments, such as modifying the number of steps in an MD run, the frequency of trajectory saves, and energy calculations, 
are made to the input files for equilibration and production. GROMACS 2020.2 was used for all MD calculations, including 
both the equilibration and production runs. To counterbalance the overall atomic charge of the entire system, a procedure 
involving the introduction of Na+ and Cl- ions, as well as the random substitution of water molecules, was employed 
subsequent to the initial solvation of all complexes within a cubic TIP3P water box.71 Periodic boundary conditions (PBC) 
were applied with consideration for the system's size and shape. Unbound interactions were managed using a 12 Å cut-off 
distance, and the Verlet cut-off strategy was employed to buffer the neighbor search list. The Particle-Mesh Ewald (PME) 
technique was used to handle long-range electrostatic interactions.72 The complexes under study were subjected to the 
CHARMM36 force field.69 Before commencing the production simulation, the system's energy was reduced through 
minimization using the steepest descent algorithm, which involved 5000 iterative steps. The chosen complexes were 
subsequently exposed to NVT and NPT ensembles, simulating a duration of 125 ps at a temperature of 300.15 K. During 
this process, positional constraints of 400 kJ mol-1 nm2 and 40 kJ mol-1 nm2 were applied to the backbone and side chains, 
respectively. These constraints aimed to achieve equilibrium and stabilize both temperature and pressure. The complexes 
are then put through a 100 ns production simulation in an NPT ensemble at 300.15 K and 1 bar. The Nose-Hoover thermostat 
was employed to control the temperature and the Parrinello-Rahman barostat to maintain the pressure. The LINCS algorithm 
was used to constrain H-bonds based on inputs from CHARMM-GUI. This was achieved using the V-rescale thermostat 
set at 300 K with a coupling constant of 1 ps. Trajectories were saved and recorded at intervals of every two ps. During the 
production phase, simulations were put into practice using the NPT ensemble and extended for a duration of 100 ns. 
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4.10.2 Analyzing Trajectories 

      GROMACS software tools were utilized to assess and analyze the outcomes of the MD simulations. The RMSD of both 
ligand and protein atom positions was calculated by aligning the protein backbone atom using the gmx_rms subprogram. 
Also, the same subprogram was used to compute the root mean square fluctuations (RMSF) based on the C-alpha atoms of 
the protein. The gmx_gyrate tool was used to determine the radius of gyration (Rg) for all protein atoms, while the 
determination of the count of hydrogen bonds present in the interface between the protein and the ligand was carried out 
using the gmx_hbond utility. During the simulation, the gmx_distance tool was utilized to compute the center of mass 
distance separating the protein and the ligand. The visualization of trajectories and the analysis of protein-ligand contact 
frequency were put into practice using the VMD molecular graphics software. 

4.10.3 Binding Free Energy using MM/PBSA Approach 

      The g_mmpbsa utility in GROMACS, used to evaluate predicted binding affinity, was employed to conduct MM/PBSA 
(Molecular Mechanics/Poisson-Boltzmann Surface Area) computations for the systems chosen for further analysis.  In a 
general sense, the formula (8) below can be used to describe the free energy of binding between the protein and the ligand 
in the presence of a solvent: 

∆Gbinding = ∆Gcomplex − (∆Gprotein + ∆Gligand) (8) 

      In this context, the ∆Gcomplex parameter refers to the overall free energy of the protein-ligand complex, while ∆Gprotein  
and ∆Gligand parameters indicate the combined free energies of the isolated protein and ligand within the solvent, 
respectively. Additionally, it is possible to compute the energy contributed by each residue to the binding energy using the 
tool g_mmpbsa. To decompose the binding energy, ∆EMM, ∆Gpolar and ∆Gnon−polar were initially calculated separately for 
each residue, and then summed to determine each residue's contribution to the overall binding energy. Since g_mmpbsa can 
only read files from specific GROMACS versions, GROMACS 5.1.4 was used to create a new binary run input file (.tpr) 
required for MM-PBSA calculations with g_mmpbsa. The MD process produced the necessary files to generate this binary 
run input file: a molecular structure file (.gro), a topology file (.top), and an MD parameter file (.mdp). 

4.11   Global and Local Properties of the Quinoline-Based Schiff Base Derivatives 

      An additional computational investigation of the quinoline-based Schiff base derivatives using the Density Function 
Theory (DFT) approach and the Gaussian G09 package73 on the B3LYP/6-31G (d,p) basis set was carried out to reach the 
equilibrium geometry of each compound. Based on the well-known Koopmans approximation, quantum chemical 
computations were done to determine the global reactivity electronic descriptors.74 Therefore, the global reactivity 
descriptors were computed using Eqs. (9-13): 
 
μ = (EHOMO + ELUMO)/2                       (9) 
η = ELUMO − EHOMO   (10) 
S = 1/η (11) 
ω = μ2/2η (12) 
N = EHOMO(Nu) − EHOMO(TCE) (13) 

 
where μ, η, S, ω, and N are the chemical potential, chemical hardness, chemical softness, electrophilicity, and 
nucleophilicity, respectively. Furthermore, by examining the atomic spin density (ASD) at the radical anion and radical 
cation, it is possible to observe the electron density distribution in the nucleophile and electrophile as they come closer to 
each other during the reaction. Considering these results, Domingo presented the Parr functions P(r),74 which are expressed 
through the Eq. (13) and Eq. (14): 
 

Pk− = ρs𝑟𝑟𝑐𝑐(𝐸𝐸) for electrophilic attacks (14) 
  Pk+ = ρsra(r) for nucleophilic attacks (15) 

 
where ρs𝑟𝑟𝑐𝑐(𝐸𝐸) denotes the ASD at the radical cation's r atom and ρs𝑟𝑟𝑎𝑎(𝐸𝐸) denotes the ASD at the radical anion's r atom for 
a given molecule. Local electrophilic Pk+ and nucleophilic Pk− Parr functions of the neutral compound are afforded by each 
ASD collected at the various atoms of the radical cation and anion of a compound. 
The equations (16) and (17) define the local electrophilicity ω𝑘𝑘

75 and local nucleophilicity N𝑘𝑘
49 indices, respectively. These 

indices enable the dispersion of the overall electrophilicity ω and nucleophilicity N indices to the specific atomic positions 
denoted as (k). 
 
ωk = ωPk+ (16) 
Nk = NPk 

− (17) 
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