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 A new series of Schiff bases derived from pyrazole-thiocarbohydrazide, namely (4a-d), were 
well-synthesized. The synthesis is carried out using monothiocarbohydrazone derivative (3), 
which was prepared via coupling of 5-chloro-pyrazole-4-carbaldehyde (1) with 
thiocarbohydrazide (2) in absolute ethanol that contains a catalytic quantity of acetic acid. The 
structures of newly synthesized compounds were fully clarified by various spectroscopic 
analyses (FT-IR, 1H-NMR, 13C-NMR, and mass spectra) and elemental analysis. Also, the 
molecular docking was performed to investigate the binding interactions of the synthesized 
compounds (1, 3 and 4a-d) with COX-2 active site. The results revealed that most of them have 
robust hydrogen bonding networks and favorable binding energies compared to compound (4b). 
Understanding the anti-inflammatory behavior through understanding the specific interactions 
of these compounds with COX-2 will aid in the design and development of more effective 
inhibitors for therapeutic applications. 
 

© 2024 by the authors; licensee Growing Science, Canada. 

Keywords: 
Schiff bases 
Thiocarbohydrazide 
Pyrazole  
Anti-inflammatory activity 
COX enzymes  
Molecular docking 

 

 

 
Graphical abstract 

1. Introduction        

Schiff bases encompass a broad category of compounds featuring a carbon-nitrogen double bond, and their versatility 
arises from the diverse combinations of alkyl or aryl substituents that can be incorporated. Schiff bases (azomethine group, 
–CH=N–) as organic molecules have interesting tremendous biological activities like antibacterial,1-3 antifungal,3,4 anti-
inflammatory,5-7 analgesic,8 anticonvulsant,9 antioxidant,5,10 antitumor activities.11 Moreover, thiocarbohydrazide-based 



 684

Schiff’s bases have gained increasing attention from chemists of its efficiency and applicability in numerous fields, 
principally the pharmaceutical field.12,13 

Incorporation of heterocyclic rings in general and pyrazoles, pyrazines, coumarins or pyridines into potential 
pharmacological candidates is a well-known strategy for improving the effectiveness and safety of bioactive molecules. 
Amongst five-membered nitrogen heterocycles, pyrazole has gained special interest for many researchers due to its easy 
synthetic routes and tremendous biological and pharmaceutical activities like antimicrobial,14,15 anti-inflammatory,16-18 
analgesic,17,18 anticancer,19 and anticonvulsant activities20. 

Schiff bases with heterocycle scaffolds as an active pharmacophore core exhibit anti-inflammatory activity.21 Pyrazole 
represents one of the most extensive pharmacophore core, Schiff bases carrying the pyrazole scaffold have attracted 
increasing interest in the pharmacological field because of their diverse biological effectiveness.1,5,22-25 In recognition of the 
well-documented anti-inflammatory activities of Schiff bases, the pyrazole ring, and Schiff bases bearing pyrazole moiety,5-

7,16-18,26-27 a synergistic efficacy was expected upon binding of these moieties. As part of the ongoing work in the synthesis 
of pyrazoles and other bioactive heterocyclic compounds,28-65 some novel Schiff bases of pyrazole-thiocarbohydrazide have 
been synthesized. Also, molecular docking was performed against the cyclooxygenase inhibitors targeting the COX-2 
enzyme (PDB ID: 5IKT). This will assess the binding interactions of the current compounds with the target protein, 
providing valuable insights and concepts into their mode of action. 

2. Results and Discussion 
  
2.1 Chemistry 

  

In the current work, new Schiff bases of pyrazole-thiocarbohydrazide 4a-d were synthesized. Monothiocarbohydrazone 
3 was obtained by condensing 5-chloro-pyrazole-4-carbaldehyde 1 with thiocarbohydrazide 2 in absolute ethanol 
comprising a catalytic quantity of acetic acid. The structure of derivative 3 was confirmed by its elemental analysis and 
spectral data. FT-IR spectra of all compounds, the absence of carbonyl group band (C=O) around 1715 cm-1, in addition to 
the appearance of absorption bands at 1510–1560 cm-1 corresponding to (C=N, azomethine) stretching bands support the 
formation of Schiff bases. In the IR spectrum of 3 revealed bands at 3301-3167 cm-1 assigned to 2NH and NH2 groups. 1H-
NMR spectrum of 3 revealed the appearance of singlet signals at δ 4.87, 8.98 and 11.41 ppm attributed to NH2 and 2NH 
protons, respectively. In addition to a singlet signal at δ 8.09 ppm due to azomethine proton (CH=N). Also, the mass 
spectrum of compound 3 showed a molecular ion peak at m/z = 308.07 ([M]+, 100%), which was corresponding to its 
molecular formula C12H13ClN6S (308.79).   

 

Fig (1). 13C-NMR Spectrum of Compound 4b. 
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Also, monothiocarbohydrazone derivative 3 was further condensed with various substituted aromatic aldehydes in 
absolute ethanol comprising a catalytic quantity of acetic acid afforded thiocarbohydrazone derivatives 4a-d. Spectral 
studies (FT-IR, 1H-NMR, 13C-NMR and mass spectra) of the final synthesized compounds were in whole agreement with 
the suggested structures. 1H-NMR spectra of thiocarbohydrazones 4a-d revealed singlet signals at the region δ 8.16-8.65 
ppm belonding to azomethine (2CH=N) besides singlet signals at the region δ 10.45- 12.12 ppm corresponding to 2NH 
protons (Scheme 1). 

In 1H-NMR spectra of 4b, two singlet signals, at δ 8.16 and 8.59 ppm corresponding to azomethine protons (2CH=N) 
along with two singlet signals at δ 11.60 and 11.71 ppm due to 2NH protons and another singlet signals at δ 3.82 assigned 
for protons of OCH3 group, which was further confirmed by a signal at δ 55.79 in 13C NMR. Besides this, 13C NMR spectra 
of 4b displayed signals at δ 140.25, 143.64 (C7, C13: 2C=N), 161.39 (C4'': Ph) and 174.94 (C10: C=S) (Fig. 1). The 
suggested molecular formula of compounds (4a-d) was clarified by comparing their molecular weights with the m/z values. 

 

Scheme 1. Synthesis of pyrazole aldehyde-N,Nʹ-thiocarbohydrazone derivatives (4a-d). 

2.2 Molecular Docking Study 
 

Cyclooxygenase inhibitors targeting the COX-2 enzyme, with reference to its crystal structure (PDB ID: 5IKT), are a 
focal point in molecular docking studies due to their therapeutic potential and clinical significance.66 The COX-2 enzyme 
plays a pivotal role in the synthesis of pro-inflammatory prostaglandins, making it a prime target for pharmacological 
intervention in various inflammatory conditions, including arthritis, cancer, and neurodegenerative diseases.67 By 
selectively inhibiting COX-2 activity, these inhibitors offer the promise of mitigating inflammation and associated 
symptoms while potentially sparing the gastrointestinal and renal side effects commonly associated with non-selective COX 
inhibitors. Utilizing molecular docking techniques, researchers can computationally assess and predict the binding 
interactions between small molecule inhibitors and the active site of COX-2, elucidating key molecular determinants of 
inhibition and guiding the rational design of novel therapeutics.68 Overall, molecular docking studies provide valuable 
insights into the mechanism of action of inhibitors and facilitate the discovery of new drugs for the treatment of 
inflammation-related disorders.69 
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The docking scores (S, kcal/mol) provided in Table (1) offer valuable insights into the reactivity and interactions of 
different ligands (1, 3, 4a, 4b, 4c, and 4d) with the target protein, cyclooxygenase-2 (COX-2). Each ligand exhibits distinct 
patterns of interaction with the receptor, highlighting the diversity in their binding modes and affinities. 

Starting with ligand 1, it forms hydrogen bonds with HIS 39 and ASN 43 residues of COX-2 enzyme, acting as a 
hydrogen donor and acceptor, respectively. These interactions occur at a distance of 3.22 angstroms and contribute to a 
favorable binding energy (E) of -0.9 kcal/mol, along with a docking scores (S, kcal/mol) of -5.9 kcal/mol. Such interactions 
suggest a strong affinity of ligand 1 towards COX-2, potentially making it a promising inhibitor. 

Moving on to ligand 3, it engages in multiple hydrogen bonding interactions with ASP 125 and LYS 137 residues, acting 
as both a hydrogen donor and acceptor. Additionally, it forms a pi-cation interaction with ARG 44. These interactions occur 
at distances ranging from 2.9 to 3.5 angstroms, leading to a relatively high binding energy (E) of -2.8 kcal/mol and docking 
scores (S, kcal/mol) of -7.0 kcal/mol. The presence of multiple favorable interactions underscores the potential efficacy of 
ligand 3 as a COX-2 inhibitor. 

Ligand 4a also demonstrates notable interactions with COX-2. It forms hydrogen bonds with ASN 43 and ARG 44 
residues, acting as hydrogen acceptors, along with a pi-cation interaction with ARG 44. These interactions occur at distances 
ranging from 2.9 to 4.0 angstroms, resulting in a significant binding energy (E) of -2.6 kcal/mol and docking scores (S, 
kcal/mol) of -8.2 kcal/mol. The strong hydrogen bonding network suggests a robust binding affinity of ligand 4a towards 
COX-2. 

Contrastingly, ligand 4b exhibits fewer hydrogen bonding interactions with COX-2, primarily involving ALA 543 and 
LYS 546 residues. These interactions occur at relatively longer distances, ranging from 6.1 to 8.2 angstroms, leading to a 
binding energy (E) of -2.5 kcal/mol and docking scores (S, kcal/mol) of -8.7 kcal/mol. Although the binding energy is 
comparable to other ligands, the longer distances and fewer interactions suggest a potentially weaker binding affinity of 
ligand 4b towards COX-2. 

Similarly, ligands 4c and 4d also engage in hydrogen bonding interactions with COX-2, primarily involving ARG 44 
and ASN 43 residues. Additionally, ligand 4c forms a hydrogen bond with HIS 122 and a pi-cation interaction with ARG 
44, while ligand 4d forms a pi-cation interaction with ARG 44 and a pi-H interaction with TYR 130. These interactions 
occur at distances ranging from 3.1 to 4.1 angstroms, resulting in binding energies (E) ranging from -2.3 to -3.0 kcal/mol 
and docking scores (S, kcal/mol) ranging from -7.5 to -8.7 kcal/mol. Despite slight variations in interaction patterns, both 
ligands (4c) and (4d) demonstrate favorable binding affinities towards COX-2. 

Table 1. Docking scores of the tested compounds against cyclooxygenases inhibitors, COX-2 enzyme (PDB ID: 5IKT); 
Distance (d, Å), Energy (E, kcal/mol), Docking Score (S, kcal/mol). 

 Ligand Receptor Interaction Distance 
(d, Å) 

Energy 
(E, kcal/mol) 

Docking Score 
(S, kcal/mol) 

1 Cl   7 HIS  39 H-donor 3.2 -0.9 -5.9 O    9 ASN  43 H-acceptor 3.2 -1.0 

3 

N    8 ASP  125 H-donor 2.9 -2.8 

-7.0 
N    10 ASP  125 H-donor 3.1 -1.5 
N    7 LYS  137 H-acceptor 3.2 -1.5 
S    12 LYS  546 H-acceptor 3.5 -0.9 
5-ring ARG  44 pi-cation 4.0 -1.1 

4a 

N    7 ASN  43 H-acceptor 2.9 -2.6 

-8.2 S    14 ARG  44 H-acceptor 3.2 -1.0 
S    14 ARG  469 H-acceptor 3.4 -1.1 
6-ring ARG  44 pi-cation 4.0 -1.6 

4b 
N    10 ALA  543 H-donor 6.1 -2.5 

-8.7 S    14 LYS  546 H-acceptor 7.9 -1.0 
6-ring TYR  130 pi-H 8.2 -1.1 

4c 
N    11 ARG  44 H-donor 3.1 -3.0 

-7.5 Cl   13 HIS  122 H-donor 3.6 -1.3 
S    14 LYS  546 H-acceptor 3.2 -2.9 

4d 

N    11 GLN  42 H-donor 3.1 -2.3 

-8.7 S    14 ASN  43 H-acceptor 3.6 -1.7 
6-ring ARG  44 pi-cation 3.9 -0.6 
6-ring TYR  130 pi-H 4.1 -0.9 

 



M. A. A. ul-Malik et al.  / Current Chemistry Letters 13 (2024) 687

 3D 2D 

1 

  

3 

  

4a 

  

4b 

  

4c 

  



 688

4d 

 
 

Fig. 2. 3D representations of the molecular interactions of the tested compounds against cyclooxygenases inhibitors, 
COX-2 enzyme (PDB ID: 5IKT). 

 
3. Experimental 
 
3.1 Instrumentation and Chemicals 
 

     All chemicals and reagents were obtained from Aldrich (USA) and Loba Ltd (India) and were used without further 
purification. All melting points were recorded on a Gallen Kamp electric melting point apparatus and were uncorrected. 
The elemental analyses were carried out at the Micro Analytical Center of Chemistry Department, Assiut University. FT-
IR spectra were recorded on a FT-IR 8201 PC Shimadzu (KBr disks). 1H-NMR and 13C-NMR spectra were recorded on 
Bruker spectrometers at 400 and 100 MHz, respectively using DMSO-d6 as solvents with Me4Si as an internal standard and 
chemical shifts were expressed as ppm. Mass spectra were obtained on Thermo Scientific -ISQ LT GC-MS at the Regional 
Center for Mycology and Biotechnology, Al-Azhar University, Cairo. All reactions were monitored using thin layer 
chromatography TLC on silica gel 60 F254 sheets (E Merck). 

N'-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl-methylene)hydrazinecarbothiohydrazide (3) 

An equimolar mixture of 5-chloro-pyrazole-4-carbaldehyde 1 (2.3 mmol) and thiocarbohydrazide 2 (2.3 mmol) in 
absolute ethanol (30 ml) with a few drops of glacial acetic acid was refluxed for 1 h.70-71 The solid product which separated 
out from the hot mixture was filtered off, dried and recrystallized from ethanol as pale brown crystals. Yield (0.6 g, 85.7%), 
m.p. 252-254 °C. IR (KBr): 3301-3167 (2NH, NH2), 3006 (CH arom.), 2960 (CH aliph.), 1599 (C=N,pyrazole), 1544 (C=N, 
azomethine), 1382 (C=S); 1H-NMR (400 MHz, DMSO) δ: 2.47 (s, 3H, CH3), 4.87 (s, 2H, NH2), 7.49-7.58 (m, 5H, ArH), 
8.09 (s, 1H, CH=N), 8.98 (s, 1H, CSNH), 11.41 (s, 1H, N-NH) ppm; 13C-NMR (100 MHz, DMSO): δ (ppm) = 14.99 (C6 : 
CH3pyrazole), 113.34 (C4), 125.35 (C2', C6': Ph), 127.71 (C4': Ph), 129.10 (C5), 129.74 (C3', C5': Ph), 135.69 (C1': Ph), 
137.75 (C7), 148.92 (C3), 176.69 (C10:C=S); EI-MS: m/z  308.07 ([M]+, 100%). Anal. calcd. for C12H13ClN6S (308.79): 
C, 46.68; H, 4.24; N, 27.22; S, 10.38%. Found: C, 46.75; H, 4.21; N, 27.28; S, 10.34%. 

Synthesis of pyrazole aldehyde-N,Nʹ-thiocarbohydrazones (4a-d): 

An equivalent amount of substituted aldehyde (1.6 mmol) was added to monothiocarbohydrazones 3 (1.6 mmol) in 
absolute ethanol (30 ml) with a few drops of glacial acetic acid. The resulting mixture was refluxed for 2 h and the separated 
product was filtered off and recrystallized from ethanol. 

N'-((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(benzylidene)hydrazine-1-carbothiohydrazide (4a) 

Pale brown crystals. Yield (0.5 g, 74.3%), m.p. 233-235 °C. IR (KBr): 3270, 3148 (2NH), 3047 (CH arom.), 2921 (CH 
aliph.), 1628 (C=N,pyrazole), 1530 (C=N,azomethine), 1383 (C=S); 1H-NMR (400 MHz, DMSO) δ: 2.52 (s, 3H, CH3), 
7.60-7.97 (m, 10H, ArH), 8.19, 8.65 (2s, 2H, 2CH=N), 10.45, 12.12 (2s, 2H, 2NH) ppm; 13C-NMR (100 MHz, DMSO): δ 
(ppm) = 15.02 (C6 : CH3pyrazole), 113.88 (C4), 125.20 (C2', C6': Ph),126.50 (C3'', C5'': Ph),127.70 (C4': Ph), 128.60 (C2'', 
C6'': Ph),129.65 (C5), 129.46 (C3', C5': Ph), 130.00 (C4'': Ph),132.36 (C1'': Ph),137.14 (C1': Ph), 140.35 (C7), 143.25 
(C13), 149.28 (C3), 175.60 (C10: C=S);EI-MS: m/z  396.25 ([M]+, 7.29%), 77.25 (C6H5

+, 100%). Anal. calcd. for 
C19H17ClN6S (396.90): C, 57.50; H, 4.32; N, 21.17; S, 8.08%. Found: C, 57.54; H, 4.38; N, 21.20; S, 8.02%. 

N'-((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-methoxybenzylidene)hydrazine-1-
carbothiohydrazide (4b) 

White crystals. Yield (0.5 g, 70.6%), m.p. 218-220 °C. IR (KBr): 3275, 3140 (2NH), 3040 (CH arom.), 2984, 2830 (CH 
aliph.), 1607 (C=N, pyrazole), 1541 (C=N, azomethine), 1383 (C=S); 1H-NMR (400 MHz, DMSO) δ: 2.57 (s, 3H, CH3), 
3.82 (s, 3H, OCH3), 7.03-7.81 (m, 9H, ArH), 8.16, 8.59 (2s, 2H, 2CH=N), 11.60, 11.71 (2s, 2H, 2NH) ppm; 13C-NMR (100 
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MHz, DMSO): δ (ppm) = 15.02 (C6 : CH3pyrazole), 55.79 (C15), 113.61 (C3'', C5'': Ph),   114.72 (C4), 125.32 (C2', C6': 
Ph), 127.03 (C1'': Ph),  127.53 (C4': Ph), 129.07 (C5), 129.74 (C3', C5', C2'', C6'': Ph), 137.80 (C1': Ph), 140.25 (C7), 143.64 
(C13), 149.08 (C3), 161.39 (C4'': Ph), 174.94 (C10: C=S);EI-MS: m/z426.34 ([M]+, 35.53%), 317.18 (M+-OCH3C6H5, 
100%). Anal. calcd. for C20H19ClN6OS (426.92): C, 56.27; H, 4.49; N, 19.69; S, 7.51%. Found: C, 56.31; H, 4.45; N, 19.75; 
S, 7.45%. 

N'-((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-nitrobenzylidene)hydrazine-1-
carbothiohydrazide (4c) 

Yellow crystals. Yield (0.5 g, 70%), m.p. 226-228 °C. IR (KBr): 3274, 3108 (2NH), 3050 (CH arom.), 2971 (CH aliph.), 
1613 (C=N, pyrazole), 1541 (C=N, azomethine), 1383 (C=S); 1H-NMR (400 MHz, DMSO) δ: 2.57 (s, 3H, CH3), 7.52-8.28 
(m, 9H, ArH), 8.30, 8.62 (2s, 2H, 2CH=N), 11.80, 12.10 (2s, 2H, 2NH) ppm; 13C-NMR (100 MHz, DMSO): δ (ppm) = 
15.04 (C6 : CH3pyrazole), 113.83 (C4), 124.35 (C2', C6': Ph), 125.35 (C5; C3'', C5'': Ph), 127.81 (C4': Ph), 128.80 (C2'', 
C6'': Ph),129.12 (C1': Ph), 129.75 (C1'', C3', C5': Ph), 137.77 (C7), 140.92 (C13), 148.25 (C3), 149.14 (C4'': Ph), 175.45 
(C10: C=S);EI-MS: m/z  441.20 ([M]+, 16.20%), 77.15 (C6H5

+, 100%). Anal. calcd. for C19H16ClN7O2S (441.89): C, 51.64; 
H, 3.65; N, 22.19; S, 7.26%. Found: C, 51.67; H, 3.60; N, 22.26; S, 7.23%.  

N'-((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)-2-(4-chlorobenzylidene)hydrazine-1-
carbothiohydrazide (4d) 

Pale brown crystals. Yield (0.5 g, 73.5%), m.p. 238-240 °C. IR (KBr): 3276, 3148 (2NH), 3050 (CH arom.), 2985 (CH 
aliph.), 1624 (C=N, pyrazole), 1542 (C=N, azomethine), 1385 (C=S); 1H-NMR (400 MHz, DMSO) δ: 2.56 (s, 3H, CH3), 
7.52-7.89 (m, 9H, ArH), 8.19, 8.60 (2s, 2H, 2CH=N), 11.69, 11.87 (2s, 2H, 2NH) ppm; 13C-NMR (100 MHz, DMSO): δ 
(ppm) = 15.00 (C6: CH3pyrazole), 113.86 (C4), 125.34(C2', C6': Ph), 127.73 (C4': Ph), 129.12 (C3'', C5'': Ph), 129.27 (C2'', 
C6'': Ph), 129.62 (C3', C5': Ph), 129.76 (C5), 133.43 (C4'': Ph), 135.01 (C1'': Ph), 137.77 (C1': Ph), 140.78 (C7), 142.48 
(C13), 149.13 (C3), 175.51 (C10: C=S);EI-MS: m/z  431.24 ([M]+, 4.20%),356.18 (M-.C6H5 +2, 100%). Anal. calcd. for 
C19H16Cl2N6S (431.34): C, 52.91; H, 3.74; N, 19.48; S, 7.43%. Found: C, 52.95; H, 3.83; N, 19.51; S, 7.34%. 

3.2 Molecular Docking Study 
 
Methodology 

 

Initially, the crystal structure of COX-2 (PDB ID: 5IKT), https://www.rcsb.org/structure/5IKT, is retrieved and prepared 
for docking by removing water molecules, adding hydrogen atoms, and optimizing the protein's geometry to ensure 
structural integrity.72 Subsequently, the ligands of interest are prepared by generating 3D structures and assigning partial 
charges. Prior to docking, the active site residues of COX-2 are defined and used to guide the search for favorable binding 
poses during the docking process. Molecular docking simulations are then performed using algorithms Triangle Matcher 
and London dG within MOE, which systematically explore the conformational space of ligands and evaluate their 
interactions with the protein.73 The docking results are analyzed to identify ligand-receptor complexes with the most 
favorable binding energies and interaction patterns.74 Additionally, post-docking analysis includes visual inspection of 
binding poses, calculation of binding affinities, and estimation of binding free energies using scoring functions. 

4. Conclusion 
 

New Schiff bases, thiocarbohydrazide-based schiff bases bearing pyrazole moiety have been prepared by condensing 
monothiocarbohydrazone derivative with various substituted aldehydes in the presence of few acetic acid drops in ethanol 
with an acceptable yields of 70-74.3%. The docking scores offer valuable insights into the reactivity and interactions of 
various ligands with COX-2. Each ligand shows distinct interaction patterns, highlighting diversity in binding modes and 
affinities. Ligands 1, 3, 4a, 4c, and 4d exhibit strong interactions, while ligand 4b demonstrates weaker binding. These 
findings contribute to the design of more effective COX-2 inhibitors. Comprehending the precise interactions between these 
ligands and COX-2 holds promise for enhancing the design and development of therapeutically superior inhibitors. 
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