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 This work includes the synthesis of ten heterocyclic compounds (3a-i and 4) containing 
pyrimidine moiety incorporated in their structures. Structure characterizations of these 
compounds were performed by using elemental and spectroscopic analyses. Their toxicity as 
potential insecticidal agents against the adults and nymphs of cowpea Aphid, Aphis craccivora 
Koch was evaluated. The results of this toxicological activity test revealed that a reasonable 
number of these compounds possess excellent toxicological activity against cowpea aphids such 
as compounds (3d), (3c), and (3b) with LC50 values 0.0125, 0.0134, and 0.0383 ppm, 
respectively. The toxicological activities of the rest of the tested compounds ranged from good 
to moderate against the same insects.  
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Graphical Abstract 

 
1. Introduction  

 

     
       Heterocyclic compounds have a vital role in our biological system. They are an integral part of many pharmacologically 
active molecules, natural products and nucleic acids.1-15 The base pair of DNA & RNA (guanine, cytosine, adenine and 
thymine) are also made up of heterocyclic compounds like purine, pyrimidine etc. Also, chemistry of N-containing 
compounds, especially pyrimidine compounds, has been developed intensely during the last decades which could be 
attributed to the discovery of compounds with several activities in this series.16-18 Pyrimidine derivatives, which play an 
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important role in synthesis of various active molecules, have various therapeutic applications in medicinal chemistry. One 
anticipated reason for their activity is presence of a pyrimidine base in thymine, cytosine and uracil, which are essential 
building blocks of nucleic acids, DNA & RNA.19 Number of chemical compounds consisting of pyrimidine as core nucleus 
were synthesized and evaluated for anticancer,20 antimicrobial and anti-inflammatory agents,21 antihyperglycemic,22 
analgesic,23 antibacterial and antifungal,24 anti-HIV,25 antitubercular,26 and herbicidal activities.27 Due to the wide range of 
pyrimidine bioactivites, scientists have attracted towards developing new pyrimidine molecules.  

      Plant insect diseases have posed serious threats to crops in the world and caused a severe loss throughout the world.28 
Nowadays, some of the available traditional fungicides and insecticides, such as Kresoxim-methyl, Pyrimethanil, 
Chlorantraniliprole, etc., are widely used to prevent plant harmful fungal and insect diseases. However, prolonged use of 
traditional pesticides can not only lead to drug resistance, but also have a harmful influence on the safety of the plants and 
the environment. Therefore, the development of novel and promising fungicides and insecticides is still an urgent task. 

     Cowpea is mainly cultivated for local consumption, either at green shell or at mature stage for dry seeds. Aphids are the 
most important insect pests of different crops all over the world.29 On the other hand, faba bean and cowpea plants are of 
the most important crops in Egypt. The cowpea aphid, A. craccivora, is considered one of the most injurious pests infesting 
these plantation and other leguminous species by sucking the plant sap.30-31 Pesticides and their residues often have direct 
effect on aphids, including mortality, decreased longevity and reduced fecundity. 

     It was reported that pyrimidines were used before in the agricultural field since, new 1,3,4-thiadiazole and 1,3,4-
thiadiazolo[3,2-a]pyrimidine derivatives were synthesized via reactions with variant electrophilic reagents under solvent-
free conditions and were evaluated for the insecticidal activity against cotton leaf worm (Spodoptera littoralis).32 So, to 
develop effective pesticidal agents, the objective of this study was to evaluate the effect of some compounds having 
pyrimidine moiety incorporated in their structures as potential insecticides against the adults and nymphs of cowpea Aphid, 
Aphis craccivora Koch. 

2. Results and Discussion  
 
2.1 Chemistry  
 
     As following of our studies in preparation and toxicity evaluation of new bioactive agents, herein ten N-containing 
compounds, namely, (E)-N-(5,7-diamino-6-cyano-4-phenyl-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide 
(3a), (E)-N-(5,7-diamino-4-(4-chlorophenyl)-6-cyano-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3b), 
(E)-N-(5,7-diamino-6-cyano-4-(2,4-dichlorophenyl)-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3c), 
(E)-N-(5,7-diamino-6-cyano-4-(4-fluorophenyl)-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3d), (E)-
N-(5,7-diamino-6-cyano-4-(o-tolyl)-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3e), (E)-N-(5,7-
diamino-6-cyano-4-(4-methoxyphenyl)-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3f), (E)-N-(5,7-
diamino-6-cyano-4-(naphthalen-1-yl)-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3g), (E)-N-(5,7-
diamino-6-cyano-4-(naphthalen-2-yl)-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3h), (E)-N-(5,7-
diamino-6-cyano-4-(thiophen-2-yl)-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3i), (E)-N-(5',7'-
diamino-6'-cyano-2-oxo-1'H-spiro[indoline-3,4'-pyrido[2,3-d]pyrimidin]-2'(3'H)-ylidene)cyanamide (4) have been 
prepared in pure state according to literature procedure,33 since the series of pyrimidine compounds (3a-i) was prepared via 
the one-pot four-component reaction of cyanoguanidine with aromatic aldehydes and malononitrile with molar ratio (1:1:2) 
using sodium methoxide as catalyst (Fig. 1). In this method, the formation of the compounds (3a-i) was achieved in one-
pot through three steps: (i) at first, malononitrile was stirred at room temperature in 3M sodium methoxide for 30 min, (ii), 
aromatic aldehyde was added to the reaction mixture and further stirred at room temperature for 30 min in 0.5M sodium 
methoxide, (iii), the reaction was refluxed for 10 hrs after addition of cyanoguanidine 2. Compound (4) was produced via 
one-pot multicomponent reactions of cyanoguanidine 2, isatin and malononitrile.33 The synthetic method of these 
compounds is shown in Fig. 1. 
 
     Spectral characterization and elemental analyses were used to prove and clarify the structures of all the prepared 
compounds. Elemental analysis results were in accordance with the values calculated before. Spectral characterization data 
of the prepared compounds were in a good agreement with their suggested structures. The IR spectrum of 3b showed 
characteristic absorption bands at  2172, 2198 cm-1 for two C≡N groups, 2945 cm-1 for the aliphatic C-H, 3023 cm-1 for the 
aromatic C-H and 3190, 3342, 3417 cm-1 for NH2 and NH groups. Its 1H NMR spectrum showed the presence of three 
singlet signals at δ 6.33, 6.43 and 10.26 ppm characteristic of two NH2 and NH-1 groups, respectively; also it exhibited two 
doublet signals at δ 5.66, 5.67 and 9.12, 9.13 ppm due to CH-4 and NH-3 groups, respectively; and two doublet signals at 
δ 7.29, 7.31 and 7.41, 7.43 ppm for aromatic p-phenylene protons. The 13C NMR spectrum of 3b showed eight signals at δ 
128.9, 129.0, 133.0, 141.6, 150.0, 154.3, 156.5, 161.0 ppm, which are assigned to aromatic and olefinic carbons; one signal 
at δ116.9 ppm due to two nitrile groups; while C-4, C-2 and C-6 are characterized by signals at δ 50.4, 70.6 and 88.5 ppm, 
respectively.  
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Fig. 1. Synthesis of compounds (3a-i and 4). 

2.2 Insecticidal activity 
 

     All the title compounds have been screened for toxicological activity as described below: 

2.2.1. Toxicological activity test for the cowpea aphid adults  
 

     Compounds (3a-i and 4) were tested for their toxicological activity against the adults of the collected aphids and the 
results are illustrated in Table 1 and Fig. 2. After 24 h of testing, toxicological activity data showed that the tested 
compounds exhibited strong to weak biological activity against adults of cowpea aphid and the LC50 values ranged from 
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0.31 to 32.75 ppm. From the LC50 values, it was found that the insecticidal activity of compounds (3d) is the highest the 
insecticidal activity against adults of cowpea aphid, Aphis craccivora Koch because the LC50 value of compounds (3d) was 
0.31 ppm, whilst the LC50 value of compounds (3g) was 32.75 ppm and hence the insecticidal activity of this compound is 
considered the lowest the insecticidal activity. The toxicological activity of compounds 3a, 3b, 3c, 3e, 3f, 3h, 3i, and 4 
ranged from good to moderate and their LC50 values were 5.37, 3.27, 3.03, 18.57, 1.096, 28.01, 5.30, and 13.59 ppm, 
respectively. 

2.2.2 Insecticidal activity test for the cowpea aphid nymphs  
 
     Compounds (3a-i and 4) were tested for their toxicological activity against the nymphs of the collected aphids and the 
results are illustrated in Table 1 and Fig. 2. The results showed that after 24 h, compounds (3a-i and 4) showed a strong to 
weak toxicological activity and the LC50 values ranged from 0.0125 to 12.39 ppm. From the LC50 values, it was found that 
the toxicological activity of compounds (3d) is the highest activity against nymphs of cowpea aphid, Aphis craccivora Koch 
because the LC50 value of compounds (3d) was 0.0125 ppm, whilst the LC50 value of compounds (3g) was 12.39 ppm and 
hence the insecticidal activity of this compound is considered the lowest the insecticidal activity against nymphs of cowpea 
aphid, Aphis craccivora Koch. The toxicological activity of the rest of the selected ten compounds (3a, 3b, 3c, 3e, 3f, 3h, 
3i, and 4) ranged from high to low and LC50 values of these compounds were 0.8703, 0.0383, 0.0134, 0.4583, 0.1195, 
6.3267, 2.39, and 3.464 ppm. 
 
Table 1. Toxicological activity of compounds (3a-i and 4) against the adults and nymphs of cowpea aphid, A. craccivora, 
after 24 hr of treatments.  

Adults of cowpea aphid Nymphs of cowpea aphid 
Comp. Slope ± SE LC50 (ppm) Toxic ratio Slope ± SE LC50 (ppm) Toxic ratio 

3a 0.4909±0.3012 5.37 0.058 0.4213±0.2499 0.8703 0.014 
3b 0.4351±0.2625 3.27 0.095 0.2357±0.2454 0.0383 0.326 
3c 0.1450±0.2905 3.03 0.102 0.1006±0.1570 0.0134 0.933 
3d 0.0726±0.2322 0.31 1 0.0855±0.1631 0.0125 1 
3e 0.4492±0.2788 18.57 0.017 0.1329±0.1543 0.4583 0.027 
3f 0.4521±0.2463 1.096 0.283 0.3738±0.2496 0.1195 0.105 
3g 0.4782±0.2622 32.75 0.009 0.3201±0.1452 12.39 0.001 
3h 0.6086±0.2328 28.01 0.011 0.2324±0.1418 6.3267 0.002 
3i 0.5424±0.2570 5.30 0.058 0.6165±0.2723 2.39 0.005 
4 0.3520±0.2950 13.59 0.023 0.5343±0.2419 3.464 0.004 

Notes: Toxic ratio is calculated as the LC50 value of compound (3d) for baseline toxicity / the compounds’ LC50 value. 
 

 

Fig. 2. Toxicological activity of compounds (3a-i and 4) against the adults and nymphs of cowpea aphid, A. craccivora, 
after 24 h of treatment. 
 

3. Structure-Action Relationships 
 

      As a continuation of this study and according to the toxicity values presented in Table 1 and Fig. 2, the structure-activity 
relationships (SAR) were reported here. It is shown that the compound (E)-N-(5,7-diamino-6-cyano-4-(4-fluorophenyl)-
3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3d) is more active against cowpea aphid than the other 
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pyrimidine synthesized derivatives, and this high activity associated with this compound may be due to the presence of 
fluorophenyl moiety attached to its structure. Also, the high activity associated with compounds (3b) and (3c) may be due 
to the presence of the chlorophenyl and dichlorophenyl moieties, respectively in their structures. Also, toxicity of compound 
(3f) is higher than that of compound (3a) and compound (3e), this may be due to the presence of methoxyphenyl moiety in 
compound (3f) and the absence of this group in compounds (3a) and compound (3e) which may cause the insecticidal 
activity. The presence of thiophenyl group may reflect better activity than the indoline group and this is shown in compounds 
(3i) and (4).  

4. Materials and methods 
 
4.1. Instrumentation and Chemicals 
 
     All commercially available reagents were purchased from Aldrich, Merck and Fluka and were used without further 
purification. All reactions were monitored by thin layer chromatography (TLC) using precoated plates of silica gel G/UV-
254 of 0.25 mm thickness (Merck 60F254) using UV light (254 nm/365 nm) for visualization. Melting points were detected 
with a Kofler melting points apparatus and uncorrected. 1H NMR and 13C NMR spectra for all compounds were recorded 
in DMSO-d6on a Bruker Bio Spin AG spectrometer at 400 MHz and 100 MHz, respectively. For 1H NMR, chemical shifts 
(δ) were given in parts per million (ppm) with reference to tetramethylsilane (TMS) as an internal standard (δ=0); coupling 
constants (J) were given in hertz (Hz). Infrared spectra were recorded with a FT-IR-ALPHBROKER-Platinum-ATR 
spectrometer and are given as cm-1using the attenuated total reflection (ATR) method. Elemental analyses were obtained 
on a Perkin-Elmer CHN-analyzer model. 
       
      Compounds (3a-i and 4) were obtained according to the literature procedure.33 The batches of cowpea aphid, A. 
craccivora insects were gathered from faba bean, Vicia faba L., fields of agricultural research center, Sohag branch. Toxicity 
of the ten target compounds was screened against the collected aphids.  
 
4.2. General procedures for the synthesis of compounds 3a-i and 4: 
 
     Malononitrile (0.02 mol, 1.32 g) was stirred at room temperature for 30 min in 10 mL sodium methoxide 3M (0.69 g 
sodium metal in 10 mL methanol). Onto the mixture, an aromatic aldehyde, thiophene-2-aldehyde and/or isatin (0.01 mol) 
in 50 mL methanol was added and stirred for 30 min, then cyanoguanidine 2 (0.01 mol, 0.84 g) was added to the reaction 
mixture. The resulting mixture was refluxed for about 10 hr. After completion of the reaction (monitored by TLC), the 
reaction mixture was cooled to room temperature, poured into ice-cold distilled water and neutralized to pH ~ 6.5 with 
dilute hydrochloric acid. The formed precipitate was collected, filtered, washed several times with distilled water, dried and 
recrystallized from ethanol. 
 
4.2.1. (E)-N-(5,7-diamino-4-(4-chlorophenyl)-6-cyano-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3b): 
Yield (82%); yellow solid; m.p. > 310 °C. IR (ATR) nmax3417, 3342, 3190, 3023, 2945, 2198, 2172, 1613 cm-1. 1HNMR δ 
10.26 (s, 1H, NH1), 9.13, 9.12 (d,J = 3.2 Hz, 1H, NH3), 7.43, 7.41 (d, J= 8.4 Hz, 2H, CHarom.), 7.31, 7.29 (d, J = 8.4 Hz, 2H, 
CHarom.), 6.43 (s, 2H, NH2), 6.33 (s, 2H, NH2), 5.67, 5.66 (d, J = 4.0 Hz, 1H, CH4). 13C NMR δ 161.0, 156.5, 154.3, 150.0, 
141.6, 133.0, 129.0, 128.9, 116.9 (2CN), 88.5, 70.6, 50.4. Anal. Calcd. for C15H11ClN8 (338.75): C, 53.18; H, 3.27; N, 
33.08. Found: C, 52.92; H, 3.24; N, 33.15. 
 
4.2.2. (E)-N-(5,7-diamino-6-cyano-4-(thiophen-2-yl)-3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-ylidene)cyanamide (3i):
  
Yield (84%); brown solid; m.p.: 300-302 °C. IR (ATR) nmax 3448, 3322, 3157, 3113, 3023, 2916, 2196, 2179, 1635 cm-1. 
1HNMR δ 10.32 (s, 1H, NH1), 9.24, 9.23 (d, J = 3.2 Hz, 1H, NH3), 7.40, 7.39 (d, J = 4.8 Hz, 1H, CHarom.), 7.06, 7.06 (d, J 
= 2.7 Hz, 1H, CHarom.), 6.97-6.95 (t, J = 4.1 Hz, 1H, CHarom.), 6.54 (s, 2H, NH2), 6.35 (br. s., 2H, NH2), 5.97, 5.96 (d, J = 
3.7 Hz, 1H, CH4). 13C NMR δ 161.0, 156.6, 154.2, 149.7, 147.0, 127.1, 125.9, 125.7, 116.8 (2CN), 89.8, 70.7, 47.1. Anal. 
Calcd. for C13H10N8S (310.33): C, 50.31; H, 3.25; N, 36.11. Found: C, 50.25; H, 3.12; N, 36.06. 
 
4.2.3. (E)-N-(5',7'-diamino-6'-cyano-2-oxo-1'H-spiro[indoline-3,4'-pyrido[2,3-d]pyrimidin]-2'(3'H)-ylidene)cyanamide 
(4):  
Yield (73%); brown solid; m.p.: > 310 °C. IR (ATR) nmax 3440, 3368, 3334, 3291, 3220, 3062, 2191 (br.), 1748, 1639 cm-

1. 1HNMR δ 12.38 (br. s, 1H, NH1'), 10.53 (s, 1H, NH1), 9.88 (s, 1H, NH3), 7.31-7.26 (m, 1H, CHarom.), 7.11, 7.09 (d, J = 
8.0 Hz, 1H, CHarom.), 7.02-6.97 (m, 2H, CHarom.), 6.37 (s, 2H, NH2), 5.33 (s, 2H, NH2). 13C NMR δ 176.1, 160.6, 156.9, 
152.3, 137.2, 130.3, 125.8, 125.2, 122.2, 117.9, 117.1, 116.1, 115.3, 83.7, 70.0, 66.1. Anal. Calcd. for C16H11N9O (345.31): 
C, 55.65; H, 3.21; N, 36.51. Found: C, 55.57; H, 3.13; N, 36.46. 
 

4.3. Laboratory bioassay 
 

     Toxicological activity of the title compounds was estimated by leaf dip bioassay method.34 Reported here the results of 
laboratory screening to find out the concentrations of the target compounds which are demanded to kill 50% (LC50) of 
cowpea aphids. Six concentrations of solution of each prepared compound plus 0.1% Triton X-100 as a surfactant were 
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used. 20 nymphs and 20 adult insects, nearly the same size, were dipped for ten seconds in every concentration three times. 
Cowpea aphids which were treated were permitted to dry at room temperature for about 0.5 hr. Control batches of used 
aphids were also utilized. After the treated batches of insects had dried, they were moved to Petri dishes (9 centimeters 
diameter) and remained for 24 hr at 22 ± 2 °C, 60 ± 5% relative humidity and photoperiod of 12:12 (light/ dark). The aphid 
mortality was screened after 24 hours of testing by using a binocular microscope. The aphid that was unable to coordinate 
forward movement was considered dead. Toxicological activity test of each compound was repeated two times and the 
obtained data were corrected by Abbott’s formula.35 Median lethal concentrations (LC50) and slope values of the ten 
synthesized compounds were computed by using a computerized Probit regression analysis program and expressed in parts 
per million (ppm).36 Hence, this work confirms that different heterocyclic compounds can be used as an important bioactive 
agents and this is also shown by several research papers reported before.37-73 

5. Conclusion  
 
     A chain of N-containing compounds with a cyano group attached to their structures and are analogues to neonicotinoid 
insecticides were chemically synthesized by the one-pot four-component reaction, using available starting materials; 
cyanoguanidine, aromatic aldehydes and malononitrile as 1:1:2 molar ratio in the presence of sodium methoxide as catalyst. 
The toxicological activity of the synthesized compounds was evaluated against the adults and nymphs of cowpea Aphid, 
Aphis craccivora Koch. The results of this test demonstrated that some of the synthesized target compounds have a great 
toxicological activity such as compounds (3d), (3c), and (3b) with LC50 values 0.0125, 0.0134, and 0.0383 ppm, 
respectively. Compound (3d) was the most toxic compound against the adults and nymphs of cowpea aphids. The presence 
of different functional groups in the structures of the synthesized compounds revealed a great spectrum of the toxicological 
activities, and this is shown in the resulted LC50 values of the ten compounds, since it is interesting to note that the 
insecticidal activities of the tested compounds against the nymphs of cowpea aphid after 24 h of treatment obey the 
following smooth order: (3d) > (3c) > (3b) > (3f) > (3e) > (3a) > (3i) > (4) > (3h) > (3g). This variation in the toxicological 
activities of all tested compounds proves that many pyrimidine derivatives can be used in the agricultural fields as promising 
insecticidal agents.     
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