Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Uncertain Supply Chain Management » Developing brand sustainability strategy using AI as a powerful tool in auto industry

Journals

  • IJIEC (697)
  • MSL (2637)
  • DSL (631)
  • CCL (482)
  • USCM (1092)
  • ESM (398)
  • AC (552)
  • JPM (228)
  • IJDS (832)
  • JFS (81)

USCM Volumes

    • Volume 1 (22)
      • Issue 1 (4)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 2 (32)
      • Issue 1 (7)
      • Issue 2 (5)
      • Issue 3 (10)
      • Issue 4 (10)
    • Volume 3 (39)
      • Issue 1 (9)
      • Issue 2 (13)
      • Issue 3 (10)
      • Issue 4 (7)
    • Volume 4 (31)
      • Issue 1 (10)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (9)
    • Volume 5 (26)
      • Issue 1 (6)
      • Issue 2 (6)
      • Issue 3 (8)
      • Issue 4 (6)
    • Volume 6 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 7 (57)
      • Issue 1 (8)
      • Issue 2 (19)
      • Issue 3 (14)
      • Issue 4 (16)
    • Volume 8 (82)
      • Issue 1 (20)
      • Issue 2 (15)
      • Issue 3 (17)
      • Issue 4 (30)
    • Volume 9 (117)
      • Issue 1 (25)
      • Issue 2 (26)
      • Issue 3 (32)
      • Issue 4 (34)
    • Volume 10 (150)
      • Issue 1 (28)
      • Issue 2 (32)
      • Issue 3 (44)
      • Issue 4 (46)
    • Volume 11 (190)
      • Issue 1 (42)
      • Issue 2 (45)
      • Issue 3 (50)
      • Issue 4 (53)
    • Volume 12 (244)
      • Issue 1 (55)
      • Issue 2 (59)
      • Issue 3 (63)
      • Issue 4 (67)
    • Volume 13 (62)
      • Issue 1 (15)
      • Issue 2 (15)
      • Issue 3 (15)
      • Issue 4 (17)
    • Volume 14 (15)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)

Keywords

Supply chain management(158)
Jordan(155)
Vietnam(147)
Customer satisfaction(119)
Performance(112)
Supply chain(106)
Service quality(97)
Tehran Stock Exchange(94)
Competitive advantage(92)
SMEs(85)
optimization(83)
Financial performance(81)
Trust(79)
Factor analysis(78)
Job satisfaction(78)
Knowledge Management(76)
Genetic Algorithm(75)
Social media(74)
Sustainability(73)
TOPSIS(73)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(53)
Endri Endri(45)
Muhammad Alshurideh(42)
Jumadil Saputra(36)
Hotlan Siagian(36)
Muhammad Turki Alshurideh(35)
Barween Al Kurdi(32)
Dmaithan Almajali(32)
Hassan Ghodrati(31)
Basrowi Basrowi(30)
Mohammad Khodaei Valahzaghard(30)
Ahmad Makui(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Prasadja Ricardianto(28)
Sulieman Ibraheem Shelash Al-Hawary(27)
Haitham M. Alzoubi(27)
Ali Harounabadi(26)


» Show all authors

Countries

Iran(2155)
Indonesia(1228)
India(768)
Jordan(743)
Vietnam(494)
Malaysia(419)
Saudi Arabia(413)
United Arab Emirates(211)
China(151)
Thailand(149)
United States(103)
Turkey(98)
Ukraine(97)
Egypt(90)
Canada(83)
Pakistan(81)
Nigeria(76)
Peru(75)
United Kingdom(74)
Morocco(67)


» Show all countries

Uncertain Supply Chain Management

ISSN 2291-6830 (Online) - ISSN 2291-6822 (Print)
Quarterly Publication
Volume 13 Issue 4 pp. 687-698 , 2025

Developing brand sustainability strategy using AI as a powerful tool in auto industry Pages 687-698 Right click to download the paper Download PDF

Authors: Ahmad Al Adwan, Ghaiath Altrjman, Luay Al-muani

DOI: 10.5267/j.uscm.2024.10.008

Keywords: Brand, Innovations, Behavior, Artificial intelligence, Manufacturing, Automotive, Sustainability, Predictive maintenance, Customer engagement, Industry

Abstract: Manufacturers employ AI for monitoring vehicle mileage, inspecting components, and scheduling maintenance. Past studies underscore the need for auto-related plans to prioritize environmental protection, concentrating on AI-driven environmental solutions promoted by AI for Good. AI enhances brand success by improving investment, technology, and promotional capabilities. This study emphasizes consistency in AI application across the automotive value chain for brand sustainability. A web-based poll surveyed 120 AI users in marketing, HR, sustainability, as well as 180 sustainability specialists and regulators. The primary goal is to assess, via structural model evaluation, how extraneous variables affect the development of AI-powered brand sustainability strategies. The study highlights AI's sustainability benefits in the automotive industry improving transportation safety, forecasting maintenance, and creating eco-friendly vehicles. However, challenges involve over-reliance on AI, predicting human behavior, and addressing sustainability threats. AI development should consider regional differences, prioritizing openness, policy harmony, and consumer agency. These findings aid marketing and HR professionals in devising customer-centric long-term plans.

How to cite this paper
Adwan, A., Altrjman, G & Al-muani, L. (2025). Developing brand sustainability strategy using AI as a powerful tool in auto industry.Uncertain Supply Chain Management, 13(4), 687-698.

Refrences
Adwan, A., & Aladwan, R. (2022). Use of artificial intelligence system to predict consumers behaviors. International Journal of Data and Network Science, 6(4), pp.1223-1232.
Al Adwan, A., & Altrjman, G. (2023) The role of social media marketing and marketing management promoting and Developing Brand Sustainability Strategy, International Journal of Data and Network Science, 8(1), 439–542. doi:10.2139/ssrn.4436265.
Ashrafi, M., Magnan, G. M., Adams, M. and Walker, T. R., 2020. Understanding the Conceptual Evolutionary Path and Theoretical Underpinnings of Corporate Social Responsibility and Corporate Sustainability. Sustainability, 12(3), p.760. https://doi.org/10.3390/su12030760.
Chen, L., Jiang, M., Jia, F., & Liu, G. (2021). Artificial intelligence adoption in business-to-business marketing: toward a conceptual framework. Journal of Business & Industrial Marketing, 37(5), 1025-1044. https://doi.org/10.1108/jbim-09-2020-0448.
Chen, Q., Lu, Y., Gong, Y., & Xiong, J. (2023). Can AI chatbots help retain customers? Impact of AI service quality on customer loyalty. Internet Research, 33(6), 2205-2243. https://doi.org/10.1108/intr-09-2021-0686.
Chiang, C.-T., Kou, T.-C. and Koo, T.-L. (2021). A systematic literature review of the it-based supply chain management system: Towards a sustainable supply chain management model. Sustainability, 13(5), 2547. https://doi.org/10.3390/su13052547.
Cruz, C. O. & Sarmento, J. M. (2020). “mobility as a service” platforms: A critical path towards increasing the sustainability of Transportation Systems. Sustainability, 12(16), p.6368. https://doi.org/10.3390/su12166368.
Cui, H., Nie, Y., Li, Z., & Zeng, J. (2022). [Retracted] Construction and Development of Modern Brand Marketing Management Mode Based on Artificial Intelligence. Journal of Sensors, 2022(1), 9246545. https://doi.org/10.1155/2022/9246545.
Demlehner, Q., Schoemer, D., & Laumer, S. (2021). How can artificial intelligence enhance car manufacturing? A delphi study-based identification and assessment of general use cases. International Journal of Information Management, 58(58), p.102317. https://doi.org/10.1016/j.ijinfomgt.2021.102317.
Dlugosch, O., Brandt, T., & Neumann, D. (2022). Combining analytics and simulation methods to assess the impact of shared, autonomous electric vehicles on Sustainable Urban Mobility. Information & Management, 59(5), 103285. https://doi.org/10.1016/j.im.2020.103285.
Farisyi, S., Musadieq, M. A., Utami, H. N., & Damayanti, C. R. (2022). A systematic literature review: Determinants of sustainability reporting in developing countries. Sustainability, 14(16), p.10222. https://doi.org/10.3390/su141610222.
Fernandes, M., Corchado, J. M., & Marreiros, G. (2022). Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: A systematic literature review. Applied Intelligence, 52(12). https://doi.org/10.1007/s10489-022-03344-3.
Ferramosca, S., & Verona, R. (2019). Framing the evolution of corporate social responsibility as a discipline (1973–2018): A large‐scale scientometric analysis. Corporate Social Responsibility and Environmental Management, 27(1). https://doi.org/10.1002/csr.1792.
Fraga-Lamas, P., Lopes, S. I., & Fernández-Caramés, T. M. (2021). Green IOT and Edge Ai as key technological enablers for a sustainable digital transition towards a smart circular economy: An industry 5.0 use case. Sensors, 21(17), 5745. https://doi.org/10.3390/s21175745.
Frank, B. (2021). Artificial Intelligence-enabled environmental sustainability of products: Marketing benefits and their variation by consumer, location, and product types. Journal of Cleaner Production, 285, 125242. https://doi.org/10.1016/j.jclepro.2020.125242.
Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3(3), 119–132. https://www.sciencedirect.com/science/article/pii/S2666603022000136.
He, A.-Z., & Zhang, Y. (2022). AI-powered touch points in the customer journey: A systematic literature review and research agenda. Journal of Research in Interactive Marketing, 17(4), 1–20. https://doi.org/10.1108/jrim-03-2022-0082.
Hollebeek, L. D., Sprott, D. E., & Brady, M. K. (2021). Rise of the machines? customer engagement in Automated Service Interactions. Journal of Service Research, 24(1), 3–8. https://doi.org/10.1177/1094670520975110.
Johnstone, P., Rogge, K. S., Kivimaa, P., Farné Fratini, C., & Primmer, E. (2021). Exploring the re-emergence of industrial policy: Perceptions regarding low-carbon energy transitions in germany, the united kingdom and Denmark. Energy Research & Social Science, 74(2021), p.101889. https://doi.org/10.1016/j.erss.2020.101889.
Kamel, H. (2022). Artificial Intelligence for Predictive Maintenance. Journal of Physics: Conference Series, 2299(1), p.012001. https://doi.org/10.1088/1742-6596/2299/1/012001.
Kørnøv, L., Lyhne, I., & Davila, J. G. (2020). Linking the UN sdgs and environmental assessment: Towards a conceptual framework. Environmental Impact Assessment Review, 85(2020), p.106463. https://doi.org/10.1016/j.eiar.2020.106463.
Lukin, E., Krajnović, A., & Bosna, J. (2022). Sustainability Strategies and achieving sdgs: A comparative analysis of leading companies in the automotive industry. Sustainability, 14(7), 4000. https://doi.org/10.3390/su14074000.
Mathiyazhagan, K., Mani, V., Mathivathanan, D., & Rajak, S. (2023). Evaluation of antecedents to social sustainability practices in multi-tier Indian automotive manufacturing firms. International Journal of Production Research, 61(14), 4786-4807. https://doi.org/10.1080/00207543.2021.1938276.
Menyhárt, J. (2019). Artificial Intelligence Possibilities in Vehicle Industry. International Journal of Engineering and Management Sciences, 4(4), pp.148–154. https://doi.org/10.21791/IJEMS.2019.4.16.
Moura, S., Reis, J. L., & Rodrigues, L. (2021). The Artificial Intelligence in the Personalisation of the Customer Journey – a literature review. CAPSI 2021 Proceedings. Available at: https://aisel.aisnet.org/capsi2021/28.
Mustak, M., Salminen, J., Plé, L., & Wirtz, J. (2020). Artificial intelligence in marketing: Topic , scientometric analysis, and research agenda. Journal of Business Research, 124(2021). https://doi.org/10.1016/j.jbusres.2020.10.044.
Nikitas, A., Michalakopoulou, K., Njoya, E. T., & Karampatzakis, D. (2020). Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability, 12(7), 2789. https://doi.org/10.3390/su12072789.
Nikitas, A., Thomopoulos, N. and Milakis, D. (2021). The environmental and resource dimensions of automated transport: A NEXUS for enabling vehicle automation to support Sustainable Urban Mobility. Annual Review of Environment and Resources, 46(1), 167–192. https://doi.org/10.1146/annurev-environ-012220-024657.
Nishant, R., Kennedy, M. and Corbett, J. (2020). Artificial Intelligence for Sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104.
Nti, I. K., Adekoya, A. F., Weyori, B. A., & Nyarko-Boateng, O. (2021). Applications of artificial intelligence in engineering and manufacturing: a systematic review. Journal of Intelligent Manufacturing, 33(6). https://doi.org/10.1007/s10845-021-01771-6.
Paiva, S., Ahad, M., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors, 21(6), p.2143. https://doi.org/10.3390/s21062143.
Păvăloaia, V.-D., & Necula, S.-C. (2023). Artificial intelligence as a disruptive technology—a systematic literature review. Electronics, 12(5), p.1102. https://doi.org/10.3390/electronics12051102.
Pech, M., Vrchota, J., & Bednář, J. (2021). Predictive maintenance and intelligent sensors in smart factory: Review. Sensors, 21(4), 1470. https://doi.org/10.3390/s21041470.
Perez-Vega, R., Kaartemo, V., Lages, C. R., Borghei Razavi, N., & Männistö, J. (2021). Reshaping the contexts of online customer engagement behavior via Artificial Intelligence: A conceptual framework. Journal of Business Research, 129, pp.902–910. https://doi.org/10.1016/j.jbusres.2020.11.002.
Prentice, C., & Nguyen, M. (2020). Engaging and retaining customers with AI and employee service. Journal of Retailing and Consumer Services, 56, 102186. https://doi.org/10.1016/j.jretconser.2020.102186.
Rosário, A. T., & Dias, J. C., 2022. Sustainability and the digital transition: A literature review. Sustainability, 14(7), 4072. https://doi.org/10.3390/su14074072.
Rubio, F., Llopis-Albert, C., Valero, F., & Besa, A. J. (2020). Sustainability and optimization in the automotive sector for adaptation to Government Vehicle Pollutant Emission Regulations. Journal of Business Research, 112, 561–566. https://doi.org/10.1016/j.jbusres.2019.10.050.
Schulze-Horn, I., Hueren, S., Scheffler, P., & Schiele, H. (2020). Artificial Intelligence in purchasing: Facilitating Mechanism Design-based negotiations. Applied Artificial Intelligence, 34(8), 618–642. https://doi.org/10.1080/08839514.2020.1749337
Szinai, J. K., Sheppard, C. J. R., Abhyankar, N., & Gopal, A. R. (2020). Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management. Energy Policy, 136(2020), 111051. https://doi.org/10.1016/j.enpol.2019.111051
Timokhina, G., Ivashkova, N., Skorobogatykh, I., Murtuzalieva, T., & Musatova, Z. (2020). Management of competitiveness of metropolis public transport in the COVID-19 pandemic based on core consumers values. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 192. https://doi.org/10.3390/joitmc6040192
Uemura Reche, A. Y., Canciglieri Junior, O., Estorilio, C. C. A., & Rudek, M. (2020). Integrated product development process and green supply chain management: Contributions, limitations and applications. Journal of Cleaner Production, 249(2020), 119429. https://doi.org/10.1016/j.jclepro.2019.119429
Vesal, M., Siahtiri, V., & OCass, A. (2021). Strengthening B2B brands by signalling environmental sustainability and managing customer relationships. Industrial Marketing Management, 92, 321–331. https://doi.org/10.1016/j.indmarman.2020.02.024
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of Artificial Intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-14108-y
Wagh, P. D. (2021). Study Of Role Of Digitization In Sustainable Business In Auto Industry In India Using Thematic Content Analysis, Spearman Analysis And Review Of Literature. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(4), 521-534. https://doi.org/10.17762/turcomat.v12i4.534.
Wasiq, M., Bashar, A., Akmal, S., Rabbani, M. R., Saifi, M. A., Nawaz, N., & Nasef, Y. T. (2023). Adoption and Applications of Blockchain Technology in Marketing: A Retrospective Overview and Bibliometric Analysis. Sustainability, 15(4), 3279. https://doi.org/10.3390/su15043279
Wolff, S., Brönner, M., Held, M., & Lienkamp, M. (2020). Transforming automotive companies into sustainability leaders: A concept for managing current challenges. Journal of Cleaner Production, 276, 124179. https://doi.org/10.1016/j.jclepro.2020.124179
  • 85
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Uncertain Supply Chain Management | Year: 2025 | Volume: 13 | Issue: 4 | Views: 240 | Reviews: 0

Related Articles:
  • Enhancing supply chain management to contribute the efficiency of the shari ...
  • The impact of supply chain management on firm performance: The case of Viet ...
  • Green supply chain management and firm efficiency in an emerging economy
  • Supply chain risks in the age of big data and artificial intelligence: The ...
  • Artificial intelligence for the management of water projects and the manage ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com