How to cite this paper
Ali, A., Sharabati, A., Alqurashi, D., Shkeer, A & Allahha, M. (2024). The impact of artificial intelligence and supply chain collaboration on supply chain resilience: Mediating the effects of information sharing.Uncertain Supply Chain Management, 12(3), 1801-1812.
Refrences
Abidi, H., de Leeuw, S., & Dullaert, W. (2020). Performance management practices in humanitarian organisations. Journal of Humanitarian Logistics and Supply Chain Management, 10(2), 125–168. https://doi.org/10.1108/JHLSCM-05-2019-0036
Abou Kamar, M., Albadry, O. M., Sheikhelsouk, S., Ali Al-Abyadh, M. H., & Alsetoohy, O. (2023). Dynamic Capabilities Influence on the Operational Performance of Hotel Food Supply Chains: A Mediation-Moderation Model. Sustainability (Switzerland), 15(18). https://doi.org/10.3390/su151813562
Adem, S. Al, Childerhouse, P., Egbelakin, T., Wang, B., Teerlink, M., Tabassum, R., … Verma, S. (2018). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. Industrial Marketing Management, 226(0123456789), 3–5. https://doi.org/10.1016/j.ijpe.2019.107599
Al-Banna, A., Rana, Z. A., Yaqot, M., & Menezes, B. (2023). Interconnectedness between Supply Chain Resilience, Industry 4.0, and Investment. Logistics, 7(3). https://doi.org/10.3390/logistics7030050
Al-Emran, M., & Teo, T. (2020). Do knowledge acquisition and knowledge sharing really affect e-learning adoption? An empirical study. Education and Information Technologies, 25(3), 1983–1998.
Alazab, M. (2024). Industry 4 . 0 Innovation : A Systematic Literature Review on the Role of Blockchain Technology in Creating Smart and Sustainable Manufacturing Facilities.
Ali, A. A. A., Abualrejal, H. M. E., Mohamed Udin, Z. B., Shtawi, H. O., & Alqudah, A. Z. (2022). The Role of Supply Chain Integration on Project Management Success in Jordanian Engineering Companies BT - Proceedings of International Conference on Emerging Technologies and Intelligent Systems (M. Al-Emran, M. A. Al-Sharafi, M. N. Al-Kabi, & K. Shaalan, eds.). Cham: Springer International Publishing.
Ali, A. A. A., Udin, Z. B. M., & Abualrejal, H. M. E. (2023). The Impact of Artificial Intelligence and Supply Chain Resilience on the Companies Supply Chains Performance: The Moderating Role of Supply Chain Dynamism. Lecture Notes in Networks and Systems, 550 LNNS(2023), 17–28. https://doi.org/10.1007/978-3-031-16865-9_2
Aljawazneh, B. (2024). The mediating role of supply chain digitization in the relationship between supply chain agility and operational performance. Uncertain Supply Chain Management, 12(2), 669-684.
Allahham, M., Sharabati, A. A. A., Al-Sager, M., Sabra, S., Awartani, L., & Khraim, A. S. L. (2024). Supply chain risks in the age of big data and artificial intelligence: The role of risk alert tools and managerial apprehensions. Uncertain Supply Chain Management, 12(1), 399–406. https://doi.org/10.5267/j.uscm.2023.9.012
Alrifai, K., Obaid, T., Ali, A. A. A., Abulehia, A. F. S., Abualrejal, H. M. E., & Nassoura, M. B. A. R. (2023). The Role of Artificial Intelligence in Project Performance in Construction Companies in Palestine BT - International Conference on Information Systems and Intelligent Applications (M. Al-Emran, M. A. Al-Sharafi, & K. Shaalan, eds.). Cham: Springer International Publishing.
Alshawabkeh, R. O., Abu Rumman, A. R., & Al-Abbadi, L. H. (2024). The nexus between digital collaboration, analytics capability, and supply chain resilience of the food processing industry in Jordan. Cogent Business and Management, 11(1). https://doi.org/10.1080/23311975.2023.2296608
Aranyossy, M. (2022). Technology Adoption in the Digital Entertainment Industry during the COVID-19 Pandemic: An Extended UTAUT2 Model for Online Theater Streaming. Informatics, 9(3). https://doi.org/10.3390/informatics9030071
Atkinson, R. (1999). Project management: cost, time, and quality, two best guesses and a phenomenon, its time to accept other success criteria. International Journal of Project Management, 17(6), 337–342.
Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019). Supply chain risk management and artificial intelligence: state of the art and future research directions. International Journal of Production Research, 57(7), 2179–2202. https://doi.org/10.1080/00207543.2018.1530476
Belhadi, A., Kamble, S., Fosso Wamba, S., & Queiroz, M. M. (2021). Building supply-chain resilience: an artificial intelligence-based technique and decision-making framework. International Journal of Production Research, 0(0), 1–21. https://doi.org/10.1080/00207543.2021.1950935
Belhadi, A., Mani, V., Kamble, S. S., Khan, S. A. R., & Verma, S. (2021b). Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: an empirical investigation. Annals of Operations Research, (0123456789). https://doi.org/10.1007/s10479-021-03956-x
Brandon-Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. (2014). A Contingent Resource-Based Perspective of Supply Chain Resilience and Robustness. Journal of Supply Chain Management, 50(3), 55–73. https://doi.org/10.1111/jscm.12050
Briscoe, G., & Dainty, A. (2005). Construction supply chain integration: An elusive goal? Supply Chain Management, 10(4), 319–326. https://doi.org/10.1108/13598540510612794
Chen, Y. (2020). An investigation of the influencing factors of Chinese WeChat users’ environmental information-sharing behavior based on an integrated model of UGT, NAM, and TPB. Sustainability, 12(7), 2710.
Choi, T., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), 1868–1883.
Chowdhury, M. M. H., Quaddus, M., & Agarwal, R. (2019). Supply chain resilience for performance: role of relational practices and network complexities. Supply Chain Management: An International Journal, 24(5), 659-676.
Dolgui, A., Ivanov, D., Sethi, S. P., & Sokolov, B. (2019). Scheduling in production, supply chain, and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art, and applications. International Journal of Production Research, 57(2), 411–432.
Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., … Hazen, B. T. (2020). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. International Journal of Production Economics, 226, 107599. https://doi.org/10.1016/j.ijpe.2019.107599
Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Fosso Wamba, S., Giannakis, M., & Foropon, C. (2019). Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain. International Journal of Production Economics, 210(September 2018), 120–136. https://doi.org/10.1016/j.ijpe.2019.01.023
Fan, C., Zhang, C., Yahja, A., & Mostafavi, A. (2021). Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management. International Journal of Information Management, 56(March), 102049. https://doi.org/10.1016/j.ijinfomgt.2019.102049
Galbraith, J. R. (1974). Organization design: An information processing view. Interfaces, 4(3), 28–36.
Gligor, D. M., & Holcomb, M. (2014). The road to supply chain agility: An RBV perspective on the role of logistics capabilities. International Journal of Logistics Management, 25(1), 160–179. https://doi.org/10.1108/IJLM-07-2012-0062
Green, K. W., Whitten, D., & Inman, R. A. (2012). Aligning marketing strategies throughout the supply chain to enhance performance. Industrial Marketing Management, 41(6), 1008–1018. https://doi.org/10.1016/j.indmarman.2012.02.003
Guggisberg, S. (2022). Transparency in the activities of the Food and Agriculture Organization for sustainable fisheries. Marine Policy, 136(February), 104498. https://doi.org/10.1016/j.marpol.2021.104498
Gupta, R., Rathore, B., & Biswas, B. (2022). Impact of COVID-19 on supply chains: lessons learned and future research directions. International Journal of Quality and Reliability Management, 39(10), 2400–2423. https://doi.org/10.1108/IJQRM-06-2021-0161
Guzman, A. L., & Lewis, S. C. (2020). Artificial intelligence and communication: A Human–Machine Communication research agenda. New Media & Society, 22(1), 70–86.
Hair, J F, Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications. European Journal of Tourism Research, 6(2), 211–213.
Hair, Joseph F, Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632.
Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846.
Jeble, S., Kumari, S., Venkatesh, V. G., & Singh, M. (2020). Influence of big data and predictive analytics and social capital on performance of humanitarian supply chain: Developing framework and future research directions. Benchmarking, 27(2), 606–633. https://doi.org/10.1108/BIJ-03-2019-0102
Jermsittiparsert, K., & Pithuk, L. (2019). Exploring the link between adaptability, information technology, agility, mutual trust, and flexibility of a humanitarian supply chain. International Journal of Innovation, Creativity and Change, 5(2), 432–447.
Kabra, G., Ramesh, A., Brun, A., Karaosman, H., Barresi, T., Clark, J. A., … LOON, L. K. (2019). Agility and resilience as antecedents of supply chain performance under moderating effects of organizational culture within the humanitarian setting: a dynamic capability view. Production Planning and Control, 7(2), 1158–1174. https://doi.org/10.1080/09537287.2018.1542174
Kaming, P. F., Olomolaiye, P. O., Holt, G. D., & Harris, F. C. (1997). Factors influencing construction time and cost overruns on high-rise projects in Indonesia. Construction Management & Economics, 15(1), 83–94.
Kavota, J. K., Kamdjoug, J. R. K., & Wamba, S. F. (2020). Social media and disaster management: Case of the north and south Kivu regions in the Democratic Republic of the Congo. International Journal of Information Management, 52(January), 102068. https://doi.org/10.1016/j.ijinfomgt.2020.102068
Khaled, H., Yahiya, A., Ahmad, B., Allahham, M., & Al-, M. (2024). Uncertain Supply Chain Management The mediating role of ICT on the impact of supply chain management ( SCM ) on organizational performance ( OP ): A field study in Pharmaceutical Companies in Jordan. 12, 1251–1266. https://doi.org/10.5267/j.uscm.2023.11.011
Khan, A., Bakkappa, B., Metri, B. A., & Sahay, B. S. (2009). Impact of agile supply chains’ delivery practices on firms’ performance: cluster analysis and validation. Supply Chain Management: An International Journal.
Kim, J. S., & Shin, N. (2019). The impact of blockchain technology application on supply chain partnership and performance. Sustainability (Switzerland), 11(21). https://doi.org/10.3390/su11216181
Kwateng, K. O., Tetteh, F. K., Asare, N., & Manu, D. (2022). Can intercluster coordination mediate the relationship between supply chain flexibility and humanitarian supply chain performance? Journal of Humanitarian Logistics and Supply Chain Management, 12(3), 449–470. https://doi.org/10.1108/JHLSCM-09-2021-0086
Liu, C. L., Shang, K. C., Lirn, T. C., Lai, K. H., & Lun, Y. H. V. (2018). Supply chain resilience, firm performance, and management policies in the liner shipping industry. Transportation Research Part A: Policy and Practice, 110, 202–219. https://doi.org/10.1016/j.tra.2017.02.004
Moeiny, E., & Mokhlesi, J. (2011). Management of Relief Supply Chain and Humanitarian Aids through Supply Chain Resilience. Master Research Project, (18).
Moshtari, M. (2012). Understanding the Drivers and Barriers of Collaboration among Humanitarian Understanding the Drivers and Barriers of Coordination Among Humanitarian Organizations The revised version of this conference paper has been published in Organizations w ith the f. (May).
Munir, M., Jajja, M. S. S., Chatha, K. A., & Farooq, S. (2020). Supply chain risk management and operational performance: The enabling role of supply chain integration. International Journal of Production Economics, 227(May). https://doi.org/10.1016/j.ijpe.2020.107667
Nandi, M. L., Nandi, S., Moya, H., & Kaynak, H. (2020). Blockchain technology-enabled supply chain systems and supply chain performance: a resource-based view. Supply Chain Management, 25(6), 841–862. https://doi.org/10.1108/SCM-12-2019-0444
Nayal, K., Raut, R., Priyadarshinee, P., Narkhede, B. E., Kazancoglu, Y., & Narwane, V. (2021). Exploring the role of artificial intelligence in managing agricultural supply chain risk to counter the impacts of the COVID-19 pandemic. International Journal of Logistics Management. https://doi.org/10.1108/IJLM-12-2020-0493
Olan, F., Liu, S., Suklan, J., Jayawickrama, U., & Arakpogun, E. (2021). The role of Artificial Intelligence networks in sustainable supply chain finance for food and drink industry. International Journal of Production Research, 0(0), 1–16. https://doi.org/10.1080/00207543.2021.1915510
Olivier Garos. (2020). Technology Acceptance Model: Which factors drive the acceptance of AI among employees? Master Thesis.
Qrunfleh, S., & Tarafdar, M. (2014). Supply chain information systems strategy: Impacts on supply chain performance and firm performance. International Journal of Production Economics, 147(PART B), 340–350. https://doi.org/10.1016/j.ijpe.2012.09.018
Rahi, S., & Abd Ghani, M. (2021). Examining Internet banking user’s continuance intention through the lens of technology continuance theory and task technology fit model. Digital Policy, Regulation and Governance, 23(5), 456–474. https://doi.org/10.1108/DPRG-11-2020-0168
Rahi, S., Khan, M. M., & Alghizzawi, M. (2021). Extension of technology continuance theory (TCT) with task technology fit (TTF) in the context of Internet banking user continuance intention. International Journal of Quality and Reliability Management, 38(4), 986–1004. https://doi.org/10.1108/IJQRM-03-2020-0074
Rha, J. S. (2020). Trends of research on supply chain resilience: A systematic review using network analysis. Sustainability (Switzerland), 12(11). https://doi.org/10.3390/su12114343
Stentoft, J., & Rajkumar, C. (2018). Does supply chain innovation pay off? Contributions to Management Science, 237–256. https://doi.org/10.1007/978-3-319-74304-2_11
Tarafdar, M., & Qrunfleh, S. (2017). Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility. International Journal of Production Research, 55(4), 925–938.
Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021a). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122, 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009
Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021b). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122(May 2020), 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009
Uvet, H., Celik, H., Cevikparmak, S., & Adana, S. (2021). Supply chain collaboration in performance-based contracting: an empirical study. International Journal of Productivity and Performance Management, 70(4), 769–788. https://doi.org/10.1108/IJPPM-01-2019-0008
Wong, C. W. Y., Lirn, T.-C., Yang, C.-C., & Shang, K.-C. (2020). Supply chain and external conditions under which supply chain resilience pays: An organizational information processing theorization. International Journal of Production Economics, 226, 107610. https://doi.org/https://doi.org/10.1016/j.ijpe.2019.107610
Yang, J. (2014). Supply chain agility: Securing performance for Chinese manufacturers. International Journal of Production Economics, 150, 104–113. https://doi.org/10.1016/j.ijpe.2013.12.018
Zapke, M. (2019). Artificial Intelligence in Supply Chains. (January).
Zhai, X., & Shi, L. (2020). Understanding How the Perceived Usefulness of Mobile Technology Impacts Physics Learning Achievement: a Pedagogical Perspective. Journal of Science Education and Technology, 29(6), 743–757. https://doi.org/10.1007/s10956-020-09852-6
Zhong, J., Jia, F., Chen, X., Hong, Y., & Yu, Y. (2023). Internal and external collaboration and supply chain performance: a fit approach. International Journal of Logistics Research and Applications, 26(10), 1267–1284. https://doi.org/10.1080/13675567.2022.2042226
Zhou, H., & Benton, W. C. (2007). Supply chain practice and information sharing. Journal of Operations Management, 25(6), 1348–1365. https://doi.org/https://doi.org/10.1016/j.jom.2007.01.009
Abou Kamar, M., Albadry, O. M., Sheikhelsouk, S., Ali Al-Abyadh, M. H., & Alsetoohy, O. (2023). Dynamic Capabilities Influence on the Operational Performance of Hotel Food Supply Chains: A Mediation-Moderation Model. Sustainability (Switzerland), 15(18). https://doi.org/10.3390/su151813562
Adem, S. Al, Childerhouse, P., Egbelakin, T., Wang, B., Teerlink, M., Tabassum, R., … Verma, S. (2018). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. Industrial Marketing Management, 226(0123456789), 3–5. https://doi.org/10.1016/j.ijpe.2019.107599
Al-Banna, A., Rana, Z. A., Yaqot, M., & Menezes, B. (2023). Interconnectedness between Supply Chain Resilience, Industry 4.0, and Investment. Logistics, 7(3). https://doi.org/10.3390/logistics7030050
Al-Emran, M., & Teo, T. (2020). Do knowledge acquisition and knowledge sharing really affect e-learning adoption? An empirical study. Education and Information Technologies, 25(3), 1983–1998.
Alazab, M. (2024). Industry 4 . 0 Innovation : A Systematic Literature Review on the Role of Blockchain Technology in Creating Smart and Sustainable Manufacturing Facilities.
Ali, A. A. A., Abualrejal, H. M. E., Mohamed Udin, Z. B., Shtawi, H. O., & Alqudah, A. Z. (2022). The Role of Supply Chain Integration on Project Management Success in Jordanian Engineering Companies BT - Proceedings of International Conference on Emerging Technologies and Intelligent Systems (M. Al-Emran, M. A. Al-Sharafi, M. N. Al-Kabi, & K. Shaalan, eds.). Cham: Springer International Publishing.
Ali, A. A. A., Udin, Z. B. M., & Abualrejal, H. M. E. (2023). The Impact of Artificial Intelligence and Supply Chain Resilience on the Companies Supply Chains Performance: The Moderating Role of Supply Chain Dynamism. Lecture Notes in Networks and Systems, 550 LNNS(2023), 17–28. https://doi.org/10.1007/978-3-031-16865-9_2
Aljawazneh, B. (2024). The mediating role of supply chain digitization in the relationship between supply chain agility and operational performance. Uncertain Supply Chain Management, 12(2), 669-684.
Allahham, M., Sharabati, A. A. A., Al-Sager, M., Sabra, S., Awartani, L., & Khraim, A. S. L. (2024). Supply chain risks in the age of big data and artificial intelligence: The role of risk alert tools and managerial apprehensions. Uncertain Supply Chain Management, 12(1), 399–406. https://doi.org/10.5267/j.uscm.2023.9.012
Alrifai, K., Obaid, T., Ali, A. A. A., Abulehia, A. F. S., Abualrejal, H. M. E., & Nassoura, M. B. A. R. (2023). The Role of Artificial Intelligence in Project Performance in Construction Companies in Palestine BT - International Conference on Information Systems and Intelligent Applications (M. Al-Emran, M. A. Al-Sharafi, & K. Shaalan, eds.). Cham: Springer International Publishing.
Alshawabkeh, R. O., Abu Rumman, A. R., & Al-Abbadi, L. H. (2024). The nexus between digital collaboration, analytics capability, and supply chain resilience of the food processing industry in Jordan. Cogent Business and Management, 11(1). https://doi.org/10.1080/23311975.2023.2296608
Aranyossy, M. (2022). Technology Adoption in the Digital Entertainment Industry during the COVID-19 Pandemic: An Extended UTAUT2 Model for Online Theater Streaming. Informatics, 9(3). https://doi.org/10.3390/informatics9030071
Atkinson, R. (1999). Project management: cost, time, and quality, two best guesses and a phenomenon, its time to accept other success criteria. International Journal of Project Management, 17(6), 337–342.
Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019). Supply chain risk management and artificial intelligence: state of the art and future research directions. International Journal of Production Research, 57(7), 2179–2202. https://doi.org/10.1080/00207543.2018.1530476
Belhadi, A., Kamble, S., Fosso Wamba, S., & Queiroz, M. M. (2021). Building supply-chain resilience: an artificial intelligence-based technique and decision-making framework. International Journal of Production Research, 0(0), 1–21. https://doi.org/10.1080/00207543.2021.1950935
Belhadi, A., Mani, V., Kamble, S. S., Khan, S. A. R., & Verma, S. (2021b). Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: an empirical investigation. Annals of Operations Research, (0123456789). https://doi.org/10.1007/s10479-021-03956-x
Brandon-Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. (2014). A Contingent Resource-Based Perspective of Supply Chain Resilience and Robustness. Journal of Supply Chain Management, 50(3), 55–73. https://doi.org/10.1111/jscm.12050
Briscoe, G., & Dainty, A. (2005). Construction supply chain integration: An elusive goal? Supply Chain Management, 10(4), 319–326. https://doi.org/10.1108/13598540510612794
Chen, Y. (2020). An investigation of the influencing factors of Chinese WeChat users’ environmental information-sharing behavior based on an integrated model of UGT, NAM, and TPB. Sustainability, 12(7), 2710.
Choi, T., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), 1868–1883.
Chowdhury, M. M. H., Quaddus, M., & Agarwal, R. (2019). Supply chain resilience for performance: role of relational practices and network complexities. Supply Chain Management: An International Journal, 24(5), 659-676.
Dolgui, A., Ivanov, D., Sethi, S. P., & Sokolov, B. (2019). Scheduling in production, supply chain, and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art, and applications. International Journal of Production Research, 57(2), 411–432.
Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., … Hazen, B. T. (2020). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. International Journal of Production Economics, 226, 107599. https://doi.org/10.1016/j.ijpe.2019.107599
Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Fosso Wamba, S., Giannakis, M., & Foropon, C. (2019). Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain. International Journal of Production Economics, 210(September 2018), 120–136. https://doi.org/10.1016/j.ijpe.2019.01.023
Fan, C., Zhang, C., Yahja, A., & Mostafavi, A. (2021). Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management. International Journal of Information Management, 56(March), 102049. https://doi.org/10.1016/j.ijinfomgt.2019.102049
Galbraith, J. R. (1974). Organization design: An information processing view. Interfaces, 4(3), 28–36.
Gligor, D. M., & Holcomb, M. (2014). The road to supply chain agility: An RBV perspective on the role of logistics capabilities. International Journal of Logistics Management, 25(1), 160–179. https://doi.org/10.1108/IJLM-07-2012-0062
Green, K. W., Whitten, D., & Inman, R. A. (2012). Aligning marketing strategies throughout the supply chain to enhance performance. Industrial Marketing Management, 41(6), 1008–1018. https://doi.org/10.1016/j.indmarman.2012.02.003
Guggisberg, S. (2022). Transparency in the activities of the Food and Agriculture Organization for sustainable fisheries. Marine Policy, 136(February), 104498. https://doi.org/10.1016/j.marpol.2021.104498
Gupta, R., Rathore, B., & Biswas, B. (2022). Impact of COVID-19 on supply chains: lessons learned and future research directions. International Journal of Quality and Reliability Management, 39(10), 2400–2423. https://doi.org/10.1108/IJQRM-06-2021-0161
Guzman, A. L., & Lewis, S. C. (2020). Artificial intelligence and communication: A Human–Machine Communication research agenda. New Media & Society, 22(1), 70–86.
Hair, J F, Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications. European Journal of Tourism Research, 6(2), 211–213.
Hair, Joseph F, Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632.
Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846.
Jeble, S., Kumari, S., Venkatesh, V. G., & Singh, M. (2020). Influence of big data and predictive analytics and social capital on performance of humanitarian supply chain: Developing framework and future research directions. Benchmarking, 27(2), 606–633. https://doi.org/10.1108/BIJ-03-2019-0102
Jermsittiparsert, K., & Pithuk, L. (2019). Exploring the link between adaptability, information technology, agility, mutual trust, and flexibility of a humanitarian supply chain. International Journal of Innovation, Creativity and Change, 5(2), 432–447.
Kabra, G., Ramesh, A., Brun, A., Karaosman, H., Barresi, T., Clark, J. A., … LOON, L. K. (2019). Agility and resilience as antecedents of supply chain performance under moderating effects of organizational culture within the humanitarian setting: a dynamic capability view. Production Planning and Control, 7(2), 1158–1174. https://doi.org/10.1080/09537287.2018.1542174
Kaming, P. F., Olomolaiye, P. O., Holt, G. D., & Harris, F. C. (1997). Factors influencing construction time and cost overruns on high-rise projects in Indonesia. Construction Management & Economics, 15(1), 83–94.
Kavota, J. K., Kamdjoug, J. R. K., & Wamba, S. F. (2020). Social media and disaster management: Case of the north and south Kivu regions in the Democratic Republic of the Congo. International Journal of Information Management, 52(January), 102068. https://doi.org/10.1016/j.ijinfomgt.2020.102068
Khaled, H., Yahiya, A., Ahmad, B., Allahham, M., & Al-, M. (2024). Uncertain Supply Chain Management The mediating role of ICT on the impact of supply chain management ( SCM ) on organizational performance ( OP ): A field study in Pharmaceutical Companies in Jordan. 12, 1251–1266. https://doi.org/10.5267/j.uscm.2023.11.011
Khan, A., Bakkappa, B., Metri, B. A., & Sahay, B. S. (2009). Impact of agile supply chains’ delivery practices on firms’ performance: cluster analysis and validation. Supply Chain Management: An International Journal.
Kim, J. S., & Shin, N. (2019). The impact of blockchain technology application on supply chain partnership and performance. Sustainability (Switzerland), 11(21). https://doi.org/10.3390/su11216181
Kwateng, K. O., Tetteh, F. K., Asare, N., & Manu, D. (2022). Can intercluster coordination mediate the relationship between supply chain flexibility and humanitarian supply chain performance? Journal of Humanitarian Logistics and Supply Chain Management, 12(3), 449–470. https://doi.org/10.1108/JHLSCM-09-2021-0086
Liu, C. L., Shang, K. C., Lirn, T. C., Lai, K. H., & Lun, Y. H. V. (2018). Supply chain resilience, firm performance, and management policies in the liner shipping industry. Transportation Research Part A: Policy and Practice, 110, 202–219. https://doi.org/10.1016/j.tra.2017.02.004
Moeiny, E., & Mokhlesi, J. (2011). Management of Relief Supply Chain and Humanitarian Aids through Supply Chain Resilience. Master Research Project, (18).
Moshtari, M. (2012). Understanding the Drivers and Barriers of Collaboration among Humanitarian Understanding the Drivers and Barriers of Coordination Among Humanitarian Organizations The revised version of this conference paper has been published in Organizations w ith the f. (May).
Munir, M., Jajja, M. S. S., Chatha, K. A., & Farooq, S. (2020). Supply chain risk management and operational performance: The enabling role of supply chain integration. International Journal of Production Economics, 227(May). https://doi.org/10.1016/j.ijpe.2020.107667
Nandi, M. L., Nandi, S., Moya, H., & Kaynak, H. (2020). Blockchain technology-enabled supply chain systems and supply chain performance: a resource-based view. Supply Chain Management, 25(6), 841–862. https://doi.org/10.1108/SCM-12-2019-0444
Nayal, K., Raut, R., Priyadarshinee, P., Narkhede, B. E., Kazancoglu, Y., & Narwane, V. (2021). Exploring the role of artificial intelligence in managing agricultural supply chain risk to counter the impacts of the COVID-19 pandemic. International Journal of Logistics Management. https://doi.org/10.1108/IJLM-12-2020-0493
Olan, F., Liu, S., Suklan, J., Jayawickrama, U., & Arakpogun, E. (2021). The role of Artificial Intelligence networks in sustainable supply chain finance for food and drink industry. International Journal of Production Research, 0(0), 1–16. https://doi.org/10.1080/00207543.2021.1915510
Olivier Garos. (2020). Technology Acceptance Model: Which factors drive the acceptance of AI among employees? Master Thesis.
Qrunfleh, S., & Tarafdar, M. (2014). Supply chain information systems strategy: Impacts on supply chain performance and firm performance. International Journal of Production Economics, 147(PART B), 340–350. https://doi.org/10.1016/j.ijpe.2012.09.018
Rahi, S., & Abd Ghani, M. (2021). Examining Internet banking user’s continuance intention through the lens of technology continuance theory and task technology fit model. Digital Policy, Regulation and Governance, 23(5), 456–474. https://doi.org/10.1108/DPRG-11-2020-0168
Rahi, S., Khan, M. M., & Alghizzawi, M. (2021). Extension of technology continuance theory (TCT) with task technology fit (TTF) in the context of Internet banking user continuance intention. International Journal of Quality and Reliability Management, 38(4), 986–1004. https://doi.org/10.1108/IJQRM-03-2020-0074
Rha, J. S. (2020). Trends of research on supply chain resilience: A systematic review using network analysis. Sustainability (Switzerland), 12(11). https://doi.org/10.3390/su12114343
Stentoft, J., & Rajkumar, C. (2018). Does supply chain innovation pay off? Contributions to Management Science, 237–256. https://doi.org/10.1007/978-3-319-74304-2_11
Tarafdar, M., & Qrunfleh, S. (2017). Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility. International Journal of Production Research, 55(4), 925–938.
Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021a). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122, 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009
Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021b). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122(May 2020), 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009
Uvet, H., Celik, H., Cevikparmak, S., & Adana, S. (2021). Supply chain collaboration in performance-based contracting: an empirical study. International Journal of Productivity and Performance Management, 70(4), 769–788. https://doi.org/10.1108/IJPPM-01-2019-0008
Wong, C. W. Y., Lirn, T.-C., Yang, C.-C., & Shang, K.-C. (2020). Supply chain and external conditions under which supply chain resilience pays: An organizational information processing theorization. International Journal of Production Economics, 226, 107610. https://doi.org/https://doi.org/10.1016/j.ijpe.2019.107610
Yang, J. (2014). Supply chain agility: Securing performance for Chinese manufacturers. International Journal of Production Economics, 150, 104–113. https://doi.org/10.1016/j.ijpe.2013.12.018
Zapke, M. (2019). Artificial Intelligence in Supply Chains. (January).
Zhai, X., & Shi, L. (2020). Understanding How the Perceived Usefulness of Mobile Technology Impacts Physics Learning Achievement: a Pedagogical Perspective. Journal of Science Education and Technology, 29(6), 743–757. https://doi.org/10.1007/s10956-020-09852-6
Zhong, J., Jia, F., Chen, X., Hong, Y., & Yu, Y. (2023). Internal and external collaboration and supply chain performance: a fit approach. International Journal of Logistics Research and Applications, 26(10), 1267–1284. https://doi.org/10.1080/13675567.2022.2042226
Zhou, H., & Benton, W. C. (2007). Supply chain practice and information sharing. Journal of Operations Management, 25(6), 1348–1365. https://doi.org/https://doi.org/10.1016/j.jom.2007.01.009