How to cite this paper
Rabaai, A., Maati, S., Muhammad, N & Eljamal, E. (2024). Understanding mobile payments through the lens of innovation resistance and planned behavior theories.Uncertain Supply Chain Management, 12(1), 45-64.
Refrences
Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. In J. Kuhl & J. Beckmann (Eds.), Action Control: From Cognition to Behavior (pp. 11–39). Springer. https://doi.org/10.1007/978-3-642-69746-3_2
Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
Ajzen, I. (2005). Attitudes, Personality and Behaviour. McGraw-Hill Education (UK).
Ajzen, I. (2011). The Theory of Planned Behaviour: Reactions and Reflections. Psychology & Health, 26(9), 1113–1127. https://doi.org/10.1080/08870446.2011.613995
Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological Bulletin, 84(5), 888–918. https://doi.org/10.1037/0033-2909.84.5.888
Al Rousan, R., Khasawneh, N., Sujood, & Bano, N. (2022). Post-pandemic intention to participate in the tourism and hospitality (T&H) events: An integrated investigation through the lens of the theory of planned behavior and perception of Covid-19. International Journal of Event and Festival Management, ahead-of-print(ahead-of-print). https://doi.org/10.1108/IJEFM-04-2022-0036
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
Baklouti, F., & Boukamcha, F. (2023). Consumer resistance to internet banking services: Implications for the innovation resistance theory. Journal of Financial Services Marketing. https://doi.org/10.1057/s41264-023-00210-2
Barbera, F. L., & Ajzen, I. (2020). Control Interactions in the Theory of Planned Behavior: Rethinking the Role of Subjective Norm. Europe’s Journal of Psychology, 16(3), Article 3. https://doi.org/10.5964/ejop.v16i3.2056
Beh, P. K., Ganesan, Y., Iranmanesh, M., & Foroughi, B. (2019). Using smartwatches for fitness and health monitoring: The UTAUT2 combined with threat appraisal as moderators. Behaviour & Information Technology, 1–18. https://doi.org/10.1080/0144929X.2019.1685597
Belanche, D., Guinalíu, M., & Albás, P. (2022). Customer adoption of p2p mobile payment systems: The role of perceived risk. Telematics and Informatics, 72, 101851. https://doi.org/10.1016/j.tele.2022.101851
Chawla, D., & Joshi, H. (2019). Consumer Attitude and Intention to Adopt Mobile Wallet in India – an Empirical Study. International Journal of Bank Marketing, 37(7), 1590–1618. https://doi.org/10.1108/IJBM-09-2018-0256
Chen, C.-C., Chang, C.-H., & Hsiao, K.-L. (2022). Exploring the factors of using mobile ticketing applications: Perspectives from innovation resistance theory. Journal of Retailing and Consumer Services, 67, 102974. https://doi.org/10.1016/j.jretconser.2022.102974
Chin, W. W. (2010). Bootstrap Cross-Validation Indices for PLS Path Model Assessment. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 83–97). Springer. https://doi.org/10.1007/978-3-540-32827-8_4
Choi, H., Park, J., Kim, J., & Jung, Y. (2020). Consumer preferences of attributes of mobile payment services in South Korea. Telematics and Informatics, 51, 101397. https://doi.org/10.1016/j.tele.2020.101397
Dai, H. M., Teo, T., Rappa, N. A., & Huang, F. (2020). Explaining Chinese university students’ continuance learning intention in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. https://doi.org/10.1016/j.compedu.2020.103850
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. JSTOR. https://doi.org/10.2307/249008
de Kerviler, G., Demoulin, N. T. M., & Zidda, P. (2016). Adoption of in-store mobile payment: Are perceived risk and convenience the only drivers? Journal of Retailing and Consumer Services, 31, 334–344. https://doi.org/10.1016/j.jretconser.2016.04.011
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y
Dwivedi, Y. K., Rana, N. P., Tamilmani, K., & Raman, K. S. (2020). A meta-analysis based modified unified theory of acceptance and use of technology (Meta-UTAUT): A review of emerging literature. Current Opinion in Psychology, 36, 13–18.
Fischer, R., & Karl, J. A. (2022). Predicting Behavioral Intentions to Prevent or Mitigate COVID-19: A Cross-Cultural Meta-Analysis of Attitudes, Norms, and Perceived Behavioral Control Effects. Social Psychological and Personality Science, 13(1), 264–276. https://doi.org/10.1177/19485506211019844
Gerpott, T. J., & Meinert, P. (2017). Who Signs up for NFC Mobile Payment Services? Mobile Network Operator Subscribers in Germany. Electronic Commerce Research and Applications, 23, 1–13. https://doi.org/10.1016/j.elerap.2017.03.002
Global Finance. (2020). Kuwait Startups: Seeding Tomorrow’s Giants. https://www.gfmag.com/magazine/january-2020/kuwait-startups-seeding-tomorrows-giants
Gupta, K., & Arora, N. (2019). Investigating consumer intention to accept mobile payment systems through unified theory of acceptance model: An Indian perspective. South Asian Journal of Business Studies, 9(1), 88–114. https://doi.org/10.1108/SAJBS-03-2019-0037
Gupta, K., Manrai, R., & Goel, U. (2019). Factors influencing adoption of payments banks by Indian customers: Extending UTAUT with perceived credibility. Journal of Asia Business Studies, 13(2), 173–195. https://doi.org/10.1108/JABS-07-2017-0111
Hagger, M. S., Cheung, M. W.-L., Ajzen, I., & Hamilton, K. (2022). Perceived behavioral control moderating effects in the theory of planned behavior: A meta-analysis. Health Psychology, 41, 155–167. https://doi.org/10.1037/hea0001153
Hair, J. F., Hollingsworth, C., Randolph, A., & Chong, A. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442–458. https://doi.org/10.1108/IMDS-04-2016-0130
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hammouri, Q., Altaher, A. M., Al-Gasawneh, J. A., Rabaa’i, A. A., Aloqoo, A., & Khataybeh, H. (2022). Understanding the determinants of digital shopping features: The role of promo code on customer behavioral intention. International Journal of Data and Network Science, 6(3), 641–650. https://doi.org/10.5267/j.ijdns.2022.4.009
Heidenreich, S., & Handrich, M. (2015). What about Passive Innovation Resistance? Investigating Adoption-Related Behavior from a Resistance Perspective. Journal of Product Innovation Management, 32(6), 878–903. https://doi.org/10.1111/jpim.12161
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The Use of Partial Least Squares Path Modeling in International Marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), New Challenges to International Marketing (Vol. 20, pp. 277–319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014
Joachim, V., Spieth, P., & Heidenreich, S. (2018). Active innovation resistance: An empirical study on functional and psychological barriers to innovation adoption in different contexts. Industrial Marketing Management, 71, 95–107. https://doi.org/10.1016/j.indmarman.2017.12.011
Kalinić, Z., Liébana-Cabanillas, F. J., Muñoz-Leiva, F., & Marinković, V. (2019). The moderating impact of gender on the acceptance of peer-to-peer mobile payment systems. International Journal of Bank Marketing, 38(1), 138–158. https://doi.org/10.1108/IJBM-01-2019-0012
Kalinic, Z., Marinkovic, V., Molinillo, S., & Liébana-Cabanillas, F. (2019). A multi-analytical approach to peer-to-peer mobile payment acceptance prediction. Journal of Retailing and Consumer Services, 49, 143–153. https://doi.org/10.1016/j.jretconser.2019.03.016
Kaur, P., Dhir, A., Singh, N., Sahu, G., & Almotairi, M. (2020). An innovation resistance theory perspective on mobile payment solutions. Journal of Retailing and Consumer Services, 55, 102059. https://doi.org/10.1016/j.jretconser.2020.102059
Kaur, P., Dhir, A., Talwar, S., & Ghuman, K. (2021). The value proposition of food delivery apps from the perspective of theory of consumption value. International Journal of Contemporary Hospitality Management, 33(4), 1129–1159. https://doi.org/10.1108/IJCHM-05-2020-0477
Kenny, D. (2018). Moderator Variables. http://davidakenny.net/cm/moderation.htm
KFAS. (2019). FinTech: Future of Financial services. https://www.kfas.com/media/studies
Khalil, A., Shankar, A., Bodhi, R., Behl, A., & Ferraris, A. (2022). Why Do People Resist Drone Food Delivery Services? An Innovation Resistance Theory Perspective. IEEE Transactions on Engineering Management, 1–11. https://doi.org/10.1109/TEM.2022.3202485
Khanra, S., Dhir, A., Kaur, P., & Joseph, R. P. (2021). Factors influencing the adoption postponement of mobile payment services in the hospitality sector during a pandemic. Journal of Hospitality and Tourism Management, 46, 26–39. https://doi.org/10.1016/j.jhtm.2020.11.004
Kim, Y. (2023). A Study of the Integrated Model with Norm Activation Model and Theory of Planned Behavior: Applying the Green Hotel’s Corporate Social Responsibilities. Sustainability, 15(5), Article 5. https://doi.org/10.3390/su15054680
Kushwah, S., Dhir, A., & Sagar, M. (2019). Understanding consumer resistance to the consumption of organic food. A study of ethical consumption, purchasing, and choice behaviour. Food Quality and Preference, 77, 1–14. https://doi.org/10.1016/j.foodqual.2019.04.003
La Barbera, F., & Ajzen, I. (2022). Instrumental vs. experiential attitudes in the theory of planned behaviour: Two studies on intention to perform a recommended amount of physical activity. International Journal of Sport and Exercise Psychology, 0(0), 1–13. https://doi.org/10.1080/1612197X.2022.2161107
Lara-Rubio, J., Ramos De Luna, I., & Liébana-Cabanillas, F. (2020). Explanatory and predictive model of the adoption of P2P payment systems. Behaviour & Information Technology, 1–14. https://doi.org/10.1080/0144929X.2019.1706637
Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking. Journal of Business Research, 69(7), 2432–2439. https://doi.org/10.1016/j.jbusres.2016.01.013
Lee, C., Hallak, R., & Sardeshmukh, S. R. (2019). Creativity and innovation in the restaurant sector: Supply-side processes and barriers to implementation. Tourism Management Perspectives, 31, 54–62. https://doi.org/10.1016/j.tmp.2019.03.011
Lee, H. (2020). Home IoT resistance: Extended privacy and vulnerability perspective. Telematics and Informatics, 49, 101377. https://doi.org/10.1016/j.tele.2020.101377
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., & Lin, B. (2021). A meta-analysis of consumer innovation resistance: Is there a cultural invariance? Industrial Management & Data Systems, 121(8), 1784–1823. https://doi.org/10.1108/IMDS-12-2020-0741
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., & Wei, J. (2020). Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach. International Journal of Information Management, 51, 102047. https://doi.org/10.1016/j.ijinfomgt.2019.102047
Liébana-Cabanillas, F., & Lara-Rubio, J. (2017). Predictive and explanatory modeling regarding adoption of mobile payment systems. Technological Forecasting and Social Change, 120, 32–40. https://doi.org/10.1016/j.techfore.2017.04.002
Liébana-Cabanillas, F., Marinkovic, V., Ramos De Luna, I., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117–130. https://doi.org/10.1016/j.techfore.2017.12.015
Liébana-Cabanillas, F., Molinillo, S., & Japutra, A. (2021). Exploring the Determinants of Intention to Use P2P Mobile Payment in Spain. Information Systems Management, 38(2), 165–180. https://doi.org/10.1080/10580530.2020.1818897
Liébana-Cabanillas, F., Molinillo, S., & Ruiz-Montañez, M. (2019). To Use or Not to Use, That Is the Question: Analysis of the Determining Factors for Using NFC Mobile Payment Systems in Public Transportation. Technological Forecasting and Social Change, 139, 266–276. https://doi.org/10.1016/j.techfore.2018.11.012
Liébana-Cabanillas, F., Ramos De Luna, I., & Montoro-Ríos, F. J. (2015). User behaviour in QR mobile payment system: The QR Payment Acceptance Model. Technology Analysis & Strategic Management, 27(9), 1031–1049. https://doi.org/10.1080/09537325.2015.1047757
Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014). Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Computers in Human Behavior, 35, 464–478. https://doi.org/10.1016/j.chb.2014.03.022
Liu, Y., Wang, M., Huang, D., Huang, Q., Yang, H., & Li, Z. (2019). The impact of mobility, risk, and cost on the users’ intention to adopt mobile payments. Information Systems and E-Business Management, 17(2–4), 319–342. https://doi.org/10.1007/s10257-019-00449-0
Matemba, E. D., & Li, G. (2018). Consumers’ willingness to adopt and use WeChat wallet: An empirical study in South Africa. Technology in Society, 53, 55–68. https://doi.org/10.1016/j.techsoc.2017.12.001
Migliore, G., Wagner, R., Cechella, F. S., & Liébana-Cabanillas, F. (2022). Antecedents to the Adoption of Mobile Payment in China and Italy: An Integration of UTAUT2 and Innovation Resistance Theory. Information Systems Frontiers, 24(6), 2099–2122. https://doi.org/10.1007/s10796-021-10237-2
Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192–222. https://doi.org/10.1287/isre.2.3.192
Ng, S. L. (2022). Effects of Risk Perception on Disaster Preparedness Toward Typhoons: An Application of the Extended Theory of Planned Behavior. International Journal of Disaster Risk Science, 13(1), 100–113. https://doi.org/10.1007/s13753-022-00398-2
Nguyen, T. N., Cao, T. K., Dang, P. L., & Nguyen, H. A. (2016). Predicting Consumer Intention to Use Mobile Payment Services: Empirical Evidence from Vietnam. International Journal of Marketing Studies, 8(1), 117. https://doi.org/10.5539/ijms.v8n1p117
Nunnally, C., & Bernstein, H. (1994). Psychometric Theory (3rd ed.). McGrawHill.
Nur, T., & Dewanto, P. A. (2022). The Influence of Attitude toward Behavior, Subjective Norms, Perceived Behavioral Control on the Behavioral Intention of using PayLater Apps moderated by Financial Literacy and Hedonic Value. 2022 10th International Conference on Cyber and IT Service Management (CITSM), 1–6. https://doi.org/10.1109/CITSM56380.2022.9936004
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404–414. https://doi.org/10.1016/j.chb.2016.03.030
Özel, Ç. H., & Çoban, E. (2022). Tourists’ intention to visit a destination where child labor is employed: An application of the theory of planned behavior (TPB). Journal of Hospitality and Tourism Insights, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JHTI-05-2022-0203
Park, J., Ahn, J., Thavisay, T., & Ren, T. (2019). Examining the role of anxiety and social influence in multi-benefits of mobile payment service. Journal of Retailing and Consumer Services, 47, 140–149. https://doi.org/10.1016/j.jretconser.2018.11.015
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Rabaa’i, A. A. (2015). An Empirical Investigation on the Adoption of e-Government in Developing Countries: The Case of Jordan. Computer and Information Science, 8(3), 83. https://doi.org/10.5539/cis.v8n3p83
Rabaa’i, A. A. (2017). Holistic Procedures for Contemporary Formative Construct Validation Using PLS: A Comprehensive Example. International Journal of Business Information Systems, 25(3), 279–318. https://doi.org/10.1504/IJBIS.2017.084436
Rabaa’i, A. A. (2022). What’s for Dinner? Factors Contributing to the Continuous Usage of Food Delivery Apps (FDAs). Asia Pacific Journal of Information Systems, 32(2), 354–380.
Rabaa’i, A. A. (in press a). An Investigation into the Acceptance of Mobile Wallets in the FinTech Era: An Empirical Study from Kuwait. International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10038422
Rabaa’i, A. A. (in press b). Factors Affecting the Adoption of Mobile Grocery Delivery Applications (MGDAs). International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10045250
Rabaa’i, A. A. (in press c). FinTech in Kuwait: A Survey Study. International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10042271
Rabaa’i, A. A., & Abu ALMaati, S. (2021). Exploring the Determinants of Users’ Continuance Intention to Use Mobile Banking Services in Kuwait: Extending the Expectation-Confirmation Model. Asia Pacific Journal of Information Systems, 3, 141–184. https://doi.org/10.14329/apjis.2021.31.2.141
Rabaa’i, A. A., Al-lozi, E., Hammouri, Q., Muhammad, N., Alsmadi, A., & Al-Gasawneh, J. (2022). Continuance intention to use smartwatches: An empirical study. International Journal of Data and Network Science, 6(4), 1643–1658.
Rabaa’i, A. A., ALmaati, S. A., Muhammad, N., & Eljamal, E. (in press). Barriers to invest in NFTs: An innovation resistance theory perspective. Uncertain Supply Chain Management. https://doi: 10.5267/j.uscm.2023.8.011
Rabaa’i, A. A., ALmaati, S. A., & Zhu, X. (2021). Students’ Continuance Intention to Use Moodle: An Expectation-Confirmation Model Approach. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 397–434. https://doi.org/10.28945/4842
Rabaa’i, A. A., Bhat, H., & Abu Al Maati, S. (2018). Theorising social networks addiction: An empirical investigation. International Journal of Social Media and Interactive Learning Environments, 6(1), 1. https://doi.org/10.1504/IJSMILE.2018.10013518
Rabaa’i, A. A., Muhammad, N., & ALMaatih, S. (2022). Information system support (IS-Support): Theoretical development and empirical validation. International Journal of Data and Network Science, 6(4), 1501–1518.
Rabaa’i, A. A., Tate, M., & Gable, G. (2015). Can’t See the Trees for the Forest? Why IS-SERVQUAL Items Matter. Asia Pacific Journal of Information Systems, 25(2), 211–238. https://doi.org/10.14329/apjis.2015.25.2.211
Rabaa’i, A. A., & Zhu, X. (2021). Understanding the Determinants of Wearable Payment Adoption: An Empirical Study. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 173–211. https://doi.org/10.28945/4746
Rabaa’i, A. A., Zhu, X., & Jayaraman, J. D. (2022). Mobile Payments Adoption: An Artificial Neural Network Approach. 4th International Computer Sciences and Informatics Conference (ICSIC-2022), 1–6.
Rabaa’i, A. A., Zhu, X., Jayaraman, J. D., Nguyen, T. D., & Jha, P. P. (2022). The use of machine learning to predict the main factors that influence the continuous usage of mobile food delivery apps. Model Assisted Statistics and Applications, 17(4), 247–258.
Rahmat, T. E., Raza, S., Zahid, H., Abbas, J., Mohd Sobri, F. A., & Sidiki, S. N. (2022). Nexus between integrating technology readiness 2.0 index and students’ e-library services adoption amid the COVID-19 challenges: Implications based on the theory of planned behavior. Journal of Education and Health Promotion, 11, 50. https://doi.org/10.4103/jehp.jehp_508_21
Ram, S. (1987). A Model of Innovation Resistance. ACR North American Advances, NA-14. https://www.acrwebsite.org/volumes/6688/volumes/v14/NA-14/full
Ram, S. (1989). Successful Innovation Using Strategies to Reduce Consumer Resistance: An Empirical Test. Journal of Product Innovation Management, 6(1), 20–34. https://doi.org/10.1111/1540-5885.610020
Ram, S., & Sheth, J. N. (1989). Consumer Resistance to Innovations: The Marketing Problem and its solutions. Journal of Consumer Marketing, 6(2), 5–14. https://doi.org/10.1108/EUM0000000002542
Ramos De Luna, I., Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2019). Mobile Payment is not All the Same: The Adoption of Mobile Payment Systems Depending on the Technology Applied. Technological Forecasting and Social Change, 146, 931–944. https://doi.org/10.1016/j.techfore.2018.09.018
Ramos-de-Luna, I., Montoro-Ríos, F., & Liébana-Cabanillas, F. (2016). Determinants of the intention to use NFC technology as a payment system: An acceptance model approach. Information Systems and E-Business Management, 14(2), 293–314. https://doi.org/10.1007/s10257-015-0284-5
Ramos-de-Luna, I., Montoro-Ríos, F., Liébana-Cabanillas, F., & Luna, J. G. de. (2017). NFC Technology Acceptance for Mobile Payments: A Brazilian Perspective. Review of Business Management, 19(63), 82–103. https://doi.org/10.7819/rbgn.v0i0.2315
Ringle, C., Wende, S., & Becker, J. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH. http://www.smartpls.com
Rogers, E. (2003). Diffusion of Innovations (5th ed.). Free Press.
Sadiq, M., Adil, M., & Paul, J. (2021). An innovation resistance theory perspective on purchase of eco-friendly cosmetics. Journal of Retailing and Consumer Services, 59, 102369. https://doi.org/10.1016/j.jretconser.2020.102369
Shanka, M. S., & Gebremariam Kotecho, M. (2023). Combining rationality with morality – integrating theory of planned behavior with norm activation theory to explain compliance with COVID-19 prevention guidelines. Psychology, Health & Medicine, 28(2), 305–315. https://doi.org/10.1080/13548506.2021.1946571
Sharma, P., Liengaard, B. D., Hair, J. F., Sarstedt, M., & Ringle, C. M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: Extensions and guidelines for using CVPAT. European Journal of Marketing, ahead-of-print(ahead-of-print). https://doi.org/10.1108/EJM-08-2020-0636
Sharma, S. K., Mangla, S. K., Luthra, S., & Al-Salti, Z. (2018). Mobile Wallet Inhibitors: Developing a Comprehensive Theory Using an Integrated Model. Journal of Retailing and Consumer Services, 45, 52–63. https://doi.org/10.1016/j.jretconser.2018.08.008
Sharma, S. K., Sharma, H., & Dwivedi, Y. K. (2019). A Hybrid SEM-Neural Network Model for Predicting Determinants of Mobile Payment Services. Information Systems Management, 36(3), 243–261. https://doi.org/10.1080/10580530.2019.1620504
Singh, N., Sinha, N., & Liébana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50, 191–205. https://doi.org/10.1016/j.ijinfomgt.2019.05.022
Sivathanu, B. (2018). Adoption of digital payment systems in the era of demonetization in India: An empirical study. Journal of Science and Technology Policy Management, 10(1), 143–171. https://doi.org/10.1108/JSTPM-07-2017-0033
Slade, E., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2014). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending Utaut with Innovativeness, Risk, and Trust: Consumers’ Adoption Intentions of Remote Mobile Payments. Psychology & Marketing, 32(8), 860–873. https://doi.org/10.1002/mar.20823
Slade, E., Williams, M., Dwivedi, Y., & Piercy, N. (2014). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209–223. https://doi.org/10.1080/0965254X.2014.914075
Sobaih, A. E. E., & Elshaer, I. A. (2023). Risk-Taking, Financial Knowledge, and Risky Investment Intention: Expanding Theory of Planned Behavior Using a Moderating-Mediating Model. Mathematics, 11(2), Article 2. https://doi.org/10.3390/math11020453
Sobti, N. (2019). Impact of demonetization on diffusion of mobile payment service in India: Antecedents of behavioral intention and adoption using extended UTAUT model. Journal of Advances in Management Research, 16(4), 472–497. https://doi.org/10.1108/JAMR-09-2018-0086
Soh, P. Y., Heng, H. B., Selvachandran, G., Anh, L. Q., Chau, H. T. M., Son, L. H., Abdel-Baset, M., Manogaran, G., & Varatharajan, R. (2020). Perception, acceptance and willingness of older adults in Malaysia towards online shopping: A study using the UTAUT and IRT models. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-01718-4
Statista. (2019a). Kuwait: Gross domestic product (GDP) in current prices from 1984 to 2024. https://www.statista.com/statistics/438858/gross-domestic-product-gdp-in-kuwait/
Statista. (2019b). Kuwait—Statistics & Facts. https://www.statista.com/topics/4650/kuwait/
Su, P., Wang, L., & Yan, J. (2018). How users’ Internet experience affects the adoption of mobile payment: A mediation model. Technology Analysis & Strategic Management, 30(2), 186–197. https://doi.org/10.1080/09537325.2017.1297788
Sun, S., Law, R., & Schuckert, M. (2020). Mediating effects of attitude, subjective norms and perceived behavioural control for mobile payment-based hotel reservations. International Journal of Hospitality Management, 84, 102331. https://doi.org/10.1016/j.ijhm.2019.102331
Sun, S., Law, R., Schuckert, M., & Hyun, S. S. (2022). Impacts of mobile payment-related attributes on consumers’ repurchase intention. International Journal of Tourism Research, 24(1), 44–57. https://doi.org/10.1002/jtr.2481
Talwar, S., Dhir, A., Kaur, P., & Mäntymäki, M. (2020). Barriers toward purchasing from online travel agencies. International Journal of Hospitality Management, 89, 102593. https://doi.org/10.1016/j.ijhm.2020.102593
Tan, Y., Ying, X., Gao, W., Wang, S., & Liu, Z. (2023). Applying an extended theory of planned behavior to predict willingness to pay for green and low-carbon energy transition. Journal of Cleaner Production, 387, 135893. https://doi.org/10.1016/j.jclepro.2023.135893
Tandon, A., Jabeen, F., Talwar, S., Sakashita, M., & Dhir, A. (2021). Facilitators and inhibitors of organic food buying behavior. Food Quality and Preference, 88, 104077. https://doi.org/10.1016/j.foodqual.2020.104077
Tang, Z., & Chen, L. (2022). Understanding seller resistance to digital device recycling platform: An innovation resistance perspective. Electronic Commerce Research and Applications, 51, 101114. https://doi.org/10.1016/j.elerap.2021.101114
Taylor, S., & Todd, P. A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2), 144–176. https://doi.org/10.1287/isre.6.2.144
Teixeira, S. F., Barbosa, B., Cunha, H., & Oliveira, Z. (2022). Exploring the Antecedents of Organic Food Purchase Intention: An Extension of the Theory of Planned Behavior. Sustainability, 14(1), Article 1. https://doi.org/10.3390/su14010242
Upadhyay, N., Upadhyay, S., Abed, S. S., & Dwivedi, Y. K. (2022). Consumer adoption of mobile payment services during COVID-19: Extending meta-UTAUT with perceived severity and self-efficacy. International Journal of Bank Marketing, 40(5), 960–991. https://doi.org/10.1108/IJBM-06-2021-0262
Upadhyay, P., & Jahanyan, S. (2016). Analyzing user perspective on the factors affecting use intention of mobile based transfer payment. Internet Research, 26(1), 38–56. https://doi.org/10.1108/IntR-05-2014-0143
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. JSTOR. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. JSTOR. https://doi.org/10.2307/41410412
Verkijika, S. F., & Neneh, B. N. (2021). Standing up for or against: A text-mining study on the recommendation of mobile payment apps. Journal of Retailing and Consumer Services, 63, 102743. https://doi.org/10.1016/j.jretconser.2021.102743
Wixom, B. H., & Todd, P. A. (2005). A Theoretical Integration of User Satisfaction and Technology Acceptance. Information Systems Research, 16(1), 85–102. https://doi.org/10.1287/isre.1050.0042
Wulandari, N. (2017). Cashless Payment in Tourism. An Application of Technology Acceptance Model. Journal of Environmental Management & Tourism, 1550–1553. https://doi.org/10/22/Susulan%20NW%20LEMBAR%20HASIL%20PENILAIAN%20SEJAWAT%20PEER%20REVIEW%20Jurnal%20Ilmiah%20Cashless%20.docx.pdf
Zhang, J., & Mao, E. (2020). Cash, credit, or phone? An empirical study on the adoption of mobile payments in the United States. Psychology & Marketing, 37(1), 87–98. https://doi.org/10.1002/mar.21282
Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
Ajzen, I. (2005). Attitudes, Personality and Behaviour. McGraw-Hill Education (UK).
Ajzen, I. (2011). The Theory of Planned Behaviour: Reactions and Reflections. Psychology & Health, 26(9), 1113–1127. https://doi.org/10.1080/08870446.2011.613995
Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological Bulletin, 84(5), 888–918. https://doi.org/10.1037/0033-2909.84.5.888
Al Rousan, R., Khasawneh, N., Sujood, & Bano, N. (2022). Post-pandemic intention to participate in the tourism and hospitality (T&H) events: An integrated investigation through the lens of the theory of planned behavior and perception of Covid-19. International Journal of Event and Festival Management, ahead-of-print(ahead-of-print). https://doi.org/10.1108/IJEFM-04-2022-0036
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
Baklouti, F., & Boukamcha, F. (2023). Consumer resistance to internet banking services: Implications for the innovation resistance theory. Journal of Financial Services Marketing. https://doi.org/10.1057/s41264-023-00210-2
Barbera, F. L., & Ajzen, I. (2020). Control Interactions in the Theory of Planned Behavior: Rethinking the Role of Subjective Norm. Europe’s Journal of Psychology, 16(3), Article 3. https://doi.org/10.5964/ejop.v16i3.2056
Beh, P. K., Ganesan, Y., Iranmanesh, M., & Foroughi, B. (2019). Using smartwatches for fitness and health monitoring: The UTAUT2 combined with threat appraisal as moderators. Behaviour & Information Technology, 1–18. https://doi.org/10.1080/0144929X.2019.1685597
Belanche, D., Guinalíu, M., & Albás, P. (2022). Customer adoption of p2p mobile payment systems: The role of perceived risk. Telematics and Informatics, 72, 101851. https://doi.org/10.1016/j.tele.2022.101851
Chawla, D., & Joshi, H. (2019). Consumer Attitude and Intention to Adopt Mobile Wallet in India – an Empirical Study. International Journal of Bank Marketing, 37(7), 1590–1618. https://doi.org/10.1108/IJBM-09-2018-0256
Chen, C.-C., Chang, C.-H., & Hsiao, K.-L. (2022). Exploring the factors of using mobile ticketing applications: Perspectives from innovation resistance theory. Journal of Retailing and Consumer Services, 67, 102974. https://doi.org/10.1016/j.jretconser.2022.102974
Chin, W. W. (2010). Bootstrap Cross-Validation Indices for PLS Path Model Assessment. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 83–97). Springer. https://doi.org/10.1007/978-3-540-32827-8_4
Choi, H., Park, J., Kim, J., & Jung, Y. (2020). Consumer preferences of attributes of mobile payment services in South Korea. Telematics and Informatics, 51, 101397. https://doi.org/10.1016/j.tele.2020.101397
Dai, H. M., Teo, T., Rappa, N. A., & Huang, F. (2020). Explaining Chinese university students’ continuance learning intention in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. https://doi.org/10.1016/j.compedu.2020.103850
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. JSTOR. https://doi.org/10.2307/249008
de Kerviler, G., Demoulin, N. T. M., & Zidda, P. (2016). Adoption of in-store mobile payment: Are perceived risk and convenience the only drivers? Journal of Retailing and Consumer Services, 31, 334–344. https://doi.org/10.1016/j.jretconser.2016.04.011
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y
Dwivedi, Y. K., Rana, N. P., Tamilmani, K., & Raman, K. S. (2020). A meta-analysis based modified unified theory of acceptance and use of technology (Meta-UTAUT): A review of emerging literature. Current Opinion in Psychology, 36, 13–18.
Fischer, R., & Karl, J. A. (2022). Predicting Behavioral Intentions to Prevent or Mitigate COVID-19: A Cross-Cultural Meta-Analysis of Attitudes, Norms, and Perceived Behavioral Control Effects. Social Psychological and Personality Science, 13(1), 264–276. https://doi.org/10.1177/19485506211019844
Gerpott, T. J., & Meinert, P. (2017). Who Signs up for NFC Mobile Payment Services? Mobile Network Operator Subscribers in Germany. Electronic Commerce Research and Applications, 23, 1–13. https://doi.org/10.1016/j.elerap.2017.03.002
Global Finance. (2020). Kuwait Startups: Seeding Tomorrow’s Giants. https://www.gfmag.com/magazine/january-2020/kuwait-startups-seeding-tomorrows-giants
Gupta, K., & Arora, N. (2019). Investigating consumer intention to accept mobile payment systems through unified theory of acceptance model: An Indian perspective. South Asian Journal of Business Studies, 9(1), 88–114. https://doi.org/10.1108/SAJBS-03-2019-0037
Gupta, K., Manrai, R., & Goel, U. (2019). Factors influencing adoption of payments banks by Indian customers: Extending UTAUT with perceived credibility. Journal of Asia Business Studies, 13(2), 173–195. https://doi.org/10.1108/JABS-07-2017-0111
Hagger, M. S., Cheung, M. W.-L., Ajzen, I., & Hamilton, K. (2022). Perceived behavioral control moderating effects in the theory of planned behavior: A meta-analysis. Health Psychology, 41, 155–167. https://doi.org/10.1037/hea0001153
Hair, J. F., Hollingsworth, C., Randolph, A., & Chong, A. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442–458. https://doi.org/10.1108/IMDS-04-2016-0130
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hammouri, Q., Altaher, A. M., Al-Gasawneh, J. A., Rabaa’i, A. A., Aloqoo, A., & Khataybeh, H. (2022). Understanding the determinants of digital shopping features: The role of promo code on customer behavioral intention. International Journal of Data and Network Science, 6(3), 641–650. https://doi.org/10.5267/j.ijdns.2022.4.009
Heidenreich, S., & Handrich, M. (2015). What about Passive Innovation Resistance? Investigating Adoption-Related Behavior from a Resistance Perspective. Journal of Product Innovation Management, 32(6), 878–903. https://doi.org/10.1111/jpim.12161
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The Use of Partial Least Squares Path Modeling in International Marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), New Challenges to International Marketing (Vol. 20, pp. 277–319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014
Joachim, V., Spieth, P., & Heidenreich, S. (2018). Active innovation resistance: An empirical study on functional and psychological barriers to innovation adoption in different contexts. Industrial Marketing Management, 71, 95–107. https://doi.org/10.1016/j.indmarman.2017.12.011
Kalinić, Z., Liébana-Cabanillas, F. J., Muñoz-Leiva, F., & Marinković, V. (2019). The moderating impact of gender on the acceptance of peer-to-peer mobile payment systems. International Journal of Bank Marketing, 38(1), 138–158. https://doi.org/10.1108/IJBM-01-2019-0012
Kalinic, Z., Marinkovic, V., Molinillo, S., & Liébana-Cabanillas, F. (2019). A multi-analytical approach to peer-to-peer mobile payment acceptance prediction. Journal of Retailing and Consumer Services, 49, 143–153. https://doi.org/10.1016/j.jretconser.2019.03.016
Kaur, P., Dhir, A., Singh, N., Sahu, G., & Almotairi, M. (2020). An innovation resistance theory perspective on mobile payment solutions. Journal of Retailing and Consumer Services, 55, 102059. https://doi.org/10.1016/j.jretconser.2020.102059
Kaur, P., Dhir, A., Talwar, S., & Ghuman, K. (2021). The value proposition of food delivery apps from the perspective of theory of consumption value. International Journal of Contemporary Hospitality Management, 33(4), 1129–1159. https://doi.org/10.1108/IJCHM-05-2020-0477
Kenny, D. (2018). Moderator Variables. http://davidakenny.net/cm/moderation.htm
KFAS. (2019). FinTech: Future of Financial services. https://www.kfas.com/media/studies
Khalil, A., Shankar, A., Bodhi, R., Behl, A., & Ferraris, A. (2022). Why Do People Resist Drone Food Delivery Services? An Innovation Resistance Theory Perspective. IEEE Transactions on Engineering Management, 1–11. https://doi.org/10.1109/TEM.2022.3202485
Khanra, S., Dhir, A., Kaur, P., & Joseph, R. P. (2021). Factors influencing the adoption postponement of mobile payment services in the hospitality sector during a pandemic. Journal of Hospitality and Tourism Management, 46, 26–39. https://doi.org/10.1016/j.jhtm.2020.11.004
Kim, Y. (2023). A Study of the Integrated Model with Norm Activation Model and Theory of Planned Behavior: Applying the Green Hotel’s Corporate Social Responsibilities. Sustainability, 15(5), Article 5. https://doi.org/10.3390/su15054680
Kushwah, S., Dhir, A., & Sagar, M. (2019). Understanding consumer resistance to the consumption of organic food. A study of ethical consumption, purchasing, and choice behaviour. Food Quality and Preference, 77, 1–14. https://doi.org/10.1016/j.foodqual.2019.04.003
La Barbera, F., & Ajzen, I. (2022). Instrumental vs. experiential attitudes in the theory of planned behaviour: Two studies on intention to perform a recommended amount of physical activity. International Journal of Sport and Exercise Psychology, 0(0), 1–13. https://doi.org/10.1080/1612197X.2022.2161107
Lara-Rubio, J., Ramos De Luna, I., & Liébana-Cabanillas, F. (2020). Explanatory and predictive model of the adoption of P2P payment systems. Behaviour & Information Technology, 1–14. https://doi.org/10.1080/0144929X.2019.1706637
Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking. Journal of Business Research, 69(7), 2432–2439. https://doi.org/10.1016/j.jbusres.2016.01.013
Lee, C., Hallak, R., & Sardeshmukh, S. R. (2019). Creativity and innovation in the restaurant sector: Supply-side processes and barriers to implementation. Tourism Management Perspectives, 31, 54–62. https://doi.org/10.1016/j.tmp.2019.03.011
Lee, H. (2020). Home IoT resistance: Extended privacy and vulnerability perspective. Telematics and Informatics, 49, 101377. https://doi.org/10.1016/j.tele.2020.101377
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., & Lin, B. (2021). A meta-analysis of consumer innovation resistance: Is there a cultural invariance? Industrial Management & Data Systems, 121(8), 1784–1823. https://doi.org/10.1108/IMDS-12-2020-0741
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., & Wei, J. (2020). Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach. International Journal of Information Management, 51, 102047. https://doi.org/10.1016/j.ijinfomgt.2019.102047
Liébana-Cabanillas, F., & Lara-Rubio, J. (2017). Predictive and explanatory modeling regarding adoption of mobile payment systems. Technological Forecasting and Social Change, 120, 32–40. https://doi.org/10.1016/j.techfore.2017.04.002
Liébana-Cabanillas, F., Marinkovic, V., Ramos De Luna, I., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117–130. https://doi.org/10.1016/j.techfore.2017.12.015
Liébana-Cabanillas, F., Molinillo, S., & Japutra, A. (2021). Exploring the Determinants of Intention to Use P2P Mobile Payment in Spain. Information Systems Management, 38(2), 165–180. https://doi.org/10.1080/10580530.2020.1818897
Liébana-Cabanillas, F., Molinillo, S., & Ruiz-Montañez, M. (2019). To Use or Not to Use, That Is the Question: Analysis of the Determining Factors for Using NFC Mobile Payment Systems in Public Transportation. Technological Forecasting and Social Change, 139, 266–276. https://doi.org/10.1016/j.techfore.2018.11.012
Liébana-Cabanillas, F., Ramos De Luna, I., & Montoro-Ríos, F. J. (2015). User behaviour in QR mobile payment system: The QR Payment Acceptance Model. Technology Analysis & Strategic Management, 27(9), 1031–1049. https://doi.org/10.1080/09537325.2015.1047757
Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014). Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Computers in Human Behavior, 35, 464–478. https://doi.org/10.1016/j.chb.2014.03.022
Liu, Y., Wang, M., Huang, D., Huang, Q., Yang, H., & Li, Z. (2019). The impact of mobility, risk, and cost on the users’ intention to adopt mobile payments. Information Systems and E-Business Management, 17(2–4), 319–342. https://doi.org/10.1007/s10257-019-00449-0
Matemba, E. D., & Li, G. (2018). Consumers’ willingness to adopt and use WeChat wallet: An empirical study in South Africa. Technology in Society, 53, 55–68. https://doi.org/10.1016/j.techsoc.2017.12.001
Migliore, G., Wagner, R., Cechella, F. S., & Liébana-Cabanillas, F. (2022). Antecedents to the Adoption of Mobile Payment in China and Italy: An Integration of UTAUT2 and Innovation Resistance Theory. Information Systems Frontiers, 24(6), 2099–2122. https://doi.org/10.1007/s10796-021-10237-2
Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192–222. https://doi.org/10.1287/isre.2.3.192
Ng, S. L. (2022). Effects of Risk Perception on Disaster Preparedness Toward Typhoons: An Application of the Extended Theory of Planned Behavior. International Journal of Disaster Risk Science, 13(1), 100–113. https://doi.org/10.1007/s13753-022-00398-2
Nguyen, T. N., Cao, T. K., Dang, P. L., & Nguyen, H. A. (2016). Predicting Consumer Intention to Use Mobile Payment Services: Empirical Evidence from Vietnam. International Journal of Marketing Studies, 8(1), 117. https://doi.org/10.5539/ijms.v8n1p117
Nunnally, C., & Bernstein, H. (1994). Psychometric Theory (3rd ed.). McGrawHill.
Nur, T., & Dewanto, P. A. (2022). The Influence of Attitude toward Behavior, Subjective Norms, Perceived Behavioral Control on the Behavioral Intention of using PayLater Apps moderated by Financial Literacy and Hedonic Value. 2022 10th International Conference on Cyber and IT Service Management (CITSM), 1–6. https://doi.org/10.1109/CITSM56380.2022.9936004
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404–414. https://doi.org/10.1016/j.chb.2016.03.030
Özel, Ç. H., & Çoban, E. (2022). Tourists’ intention to visit a destination where child labor is employed: An application of the theory of planned behavior (TPB). Journal of Hospitality and Tourism Insights, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JHTI-05-2022-0203
Park, J., Ahn, J., Thavisay, T., & Ren, T. (2019). Examining the role of anxiety and social influence in multi-benefits of mobile payment service. Journal of Retailing and Consumer Services, 47, 140–149. https://doi.org/10.1016/j.jretconser.2018.11.015
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Rabaa’i, A. A. (2015). An Empirical Investigation on the Adoption of e-Government in Developing Countries: The Case of Jordan. Computer and Information Science, 8(3), 83. https://doi.org/10.5539/cis.v8n3p83
Rabaa’i, A. A. (2017). Holistic Procedures for Contemporary Formative Construct Validation Using PLS: A Comprehensive Example. International Journal of Business Information Systems, 25(3), 279–318. https://doi.org/10.1504/IJBIS.2017.084436
Rabaa’i, A. A. (2022). What’s for Dinner? Factors Contributing to the Continuous Usage of Food Delivery Apps (FDAs). Asia Pacific Journal of Information Systems, 32(2), 354–380.
Rabaa’i, A. A. (in press a). An Investigation into the Acceptance of Mobile Wallets in the FinTech Era: An Empirical Study from Kuwait. International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10038422
Rabaa’i, A. A. (in press b). Factors Affecting the Adoption of Mobile Grocery Delivery Applications (MGDAs). International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10045250
Rabaa’i, A. A. (in press c). FinTech in Kuwait: A Survey Study. International Journal of Business Information Systems. https://doi.org/10.1504/IJBIS.2021.10042271
Rabaa’i, A. A., & Abu ALMaati, S. (2021). Exploring the Determinants of Users’ Continuance Intention to Use Mobile Banking Services in Kuwait: Extending the Expectation-Confirmation Model. Asia Pacific Journal of Information Systems, 3, 141–184. https://doi.org/10.14329/apjis.2021.31.2.141
Rabaa’i, A. A., Al-lozi, E., Hammouri, Q., Muhammad, N., Alsmadi, A., & Al-Gasawneh, J. (2022). Continuance intention to use smartwatches: An empirical study. International Journal of Data and Network Science, 6(4), 1643–1658.
Rabaa’i, A. A., ALmaati, S. A., Muhammad, N., & Eljamal, E. (in press). Barriers to invest in NFTs: An innovation resistance theory perspective. Uncertain Supply Chain Management. https://doi: 10.5267/j.uscm.2023.8.011
Rabaa’i, A. A., ALmaati, S. A., & Zhu, X. (2021). Students’ Continuance Intention to Use Moodle: An Expectation-Confirmation Model Approach. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 397–434. https://doi.org/10.28945/4842
Rabaa’i, A. A., Bhat, H., & Abu Al Maati, S. (2018). Theorising social networks addiction: An empirical investigation. International Journal of Social Media and Interactive Learning Environments, 6(1), 1. https://doi.org/10.1504/IJSMILE.2018.10013518
Rabaa’i, A. A., Muhammad, N., & ALMaatih, S. (2022). Information system support (IS-Support): Theoretical development and empirical validation. International Journal of Data and Network Science, 6(4), 1501–1518.
Rabaa’i, A. A., Tate, M., & Gable, G. (2015). Can’t See the Trees for the Forest? Why IS-SERVQUAL Items Matter. Asia Pacific Journal of Information Systems, 25(2), 211–238. https://doi.org/10.14329/apjis.2015.25.2.211
Rabaa’i, A. A., & Zhu, X. (2021). Understanding the Determinants of Wearable Payment Adoption: An Empirical Study. Interdisciplinary Journal of Information, Knowledge, and Management, 16, 173–211. https://doi.org/10.28945/4746
Rabaa’i, A. A., Zhu, X., & Jayaraman, J. D. (2022). Mobile Payments Adoption: An Artificial Neural Network Approach. 4th International Computer Sciences and Informatics Conference (ICSIC-2022), 1–6.
Rabaa’i, A. A., Zhu, X., Jayaraman, J. D., Nguyen, T. D., & Jha, P. P. (2022). The use of machine learning to predict the main factors that influence the continuous usage of mobile food delivery apps. Model Assisted Statistics and Applications, 17(4), 247–258.
Rahmat, T. E., Raza, S., Zahid, H., Abbas, J., Mohd Sobri, F. A., & Sidiki, S. N. (2022). Nexus between integrating technology readiness 2.0 index and students’ e-library services adoption amid the COVID-19 challenges: Implications based on the theory of planned behavior. Journal of Education and Health Promotion, 11, 50. https://doi.org/10.4103/jehp.jehp_508_21
Ram, S. (1987). A Model of Innovation Resistance. ACR North American Advances, NA-14. https://www.acrwebsite.org/volumes/6688/volumes/v14/NA-14/full
Ram, S. (1989). Successful Innovation Using Strategies to Reduce Consumer Resistance: An Empirical Test. Journal of Product Innovation Management, 6(1), 20–34. https://doi.org/10.1111/1540-5885.610020
Ram, S., & Sheth, J. N. (1989). Consumer Resistance to Innovations: The Marketing Problem and its solutions. Journal of Consumer Marketing, 6(2), 5–14. https://doi.org/10.1108/EUM0000000002542
Ramos De Luna, I., Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2019). Mobile Payment is not All the Same: The Adoption of Mobile Payment Systems Depending on the Technology Applied. Technological Forecasting and Social Change, 146, 931–944. https://doi.org/10.1016/j.techfore.2018.09.018
Ramos-de-Luna, I., Montoro-Ríos, F., & Liébana-Cabanillas, F. (2016). Determinants of the intention to use NFC technology as a payment system: An acceptance model approach. Information Systems and E-Business Management, 14(2), 293–314. https://doi.org/10.1007/s10257-015-0284-5
Ramos-de-Luna, I., Montoro-Ríos, F., Liébana-Cabanillas, F., & Luna, J. G. de. (2017). NFC Technology Acceptance for Mobile Payments: A Brazilian Perspective. Review of Business Management, 19(63), 82–103. https://doi.org/10.7819/rbgn.v0i0.2315
Ringle, C., Wende, S., & Becker, J. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH. http://www.smartpls.com
Rogers, E. (2003). Diffusion of Innovations (5th ed.). Free Press.
Sadiq, M., Adil, M., & Paul, J. (2021). An innovation resistance theory perspective on purchase of eco-friendly cosmetics. Journal of Retailing and Consumer Services, 59, 102369. https://doi.org/10.1016/j.jretconser.2020.102369
Shanka, M. S., & Gebremariam Kotecho, M. (2023). Combining rationality with morality – integrating theory of planned behavior with norm activation theory to explain compliance with COVID-19 prevention guidelines. Psychology, Health & Medicine, 28(2), 305–315. https://doi.org/10.1080/13548506.2021.1946571
Sharma, P., Liengaard, B. D., Hair, J. F., Sarstedt, M., & Ringle, C. M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: Extensions and guidelines for using CVPAT. European Journal of Marketing, ahead-of-print(ahead-of-print). https://doi.org/10.1108/EJM-08-2020-0636
Sharma, S. K., Mangla, S. K., Luthra, S., & Al-Salti, Z. (2018). Mobile Wallet Inhibitors: Developing a Comprehensive Theory Using an Integrated Model. Journal of Retailing and Consumer Services, 45, 52–63. https://doi.org/10.1016/j.jretconser.2018.08.008
Sharma, S. K., Sharma, H., & Dwivedi, Y. K. (2019). A Hybrid SEM-Neural Network Model for Predicting Determinants of Mobile Payment Services. Information Systems Management, 36(3), 243–261. https://doi.org/10.1080/10580530.2019.1620504
Singh, N., Sinha, N., & Liébana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50, 191–205. https://doi.org/10.1016/j.ijinfomgt.2019.05.022
Sivathanu, B. (2018). Adoption of digital payment systems in the era of demonetization in India: An empirical study. Journal of Science and Technology Policy Management, 10(1), 143–171. https://doi.org/10.1108/JSTPM-07-2017-0033
Slade, E., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2014). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending Utaut with Innovativeness, Risk, and Trust: Consumers’ Adoption Intentions of Remote Mobile Payments. Psychology & Marketing, 32(8), 860–873. https://doi.org/10.1002/mar.20823
Slade, E., Williams, M., Dwivedi, Y., & Piercy, N. (2014). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209–223. https://doi.org/10.1080/0965254X.2014.914075
Sobaih, A. E. E., & Elshaer, I. A. (2023). Risk-Taking, Financial Knowledge, and Risky Investment Intention: Expanding Theory of Planned Behavior Using a Moderating-Mediating Model. Mathematics, 11(2), Article 2. https://doi.org/10.3390/math11020453
Sobti, N. (2019). Impact of demonetization on diffusion of mobile payment service in India: Antecedents of behavioral intention and adoption using extended UTAUT model. Journal of Advances in Management Research, 16(4), 472–497. https://doi.org/10.1108/JAMR-09-2018-0086
Soh, P. Y., Heng, H. B., Selvachandran, G., Anh, L. Q., Chau, H. T. M., Son, L. H., Abdel-Baset, M., Manogaran, G., & Varatharajan, R. (2020). Perception, acceptance and willingness of older adults in Malaysia towards online shopping: A study using the UTAUT and IRT models. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-01718-4
Statista. (2019a). Kuwait: Gross domestic product (GDP) in current prices from 1984 to 2024. https://www.statista.com/statistics/438858/gross-domestic-product-gdp-in-kuwait/
Statista. (2019b). Kuwait—Statistics & Facts. https://www.statista.com/topics/4650/kuwait/
Su, P., Wang, L., & Yan, J. (2018). How users’ Internet experience affects the adoption of mobile payment: A mediation model. Technology Analysis & Strategic Management, 30(2), 186–197. https://doi.org/10.1080/09537325.2017.1297788
Sun, S., Law, R., & Schuckert, M. (2020). Mediating effects of attitude, subjective norms and perceived behavioural control for mobile payment-based hotel reservations. International Journal of Hospitality Management, 84, 102331. https://doi.org/10.1016/j.ijhm.2019.102331
Sun, S., Law, R., Schuckert, M., & Hyun, S. S. (2022). Impacts of mobile payment-related attributes on consumers’ repurchase intention. International Journal of Tourism Research, 24(1), 44–57. https://doi.org/10.1002/jtr.2481
Talwar, S., Dhir, A., Kaur, P., & Mäntymäki, M. (2020). Barriers toward purchasing from online travel agencies. International Journal of Hospitality Management, 89, 102593. https://doi.org/10.1016/j.ijhm.2020.102593
Tan, Y., Ying, X., Gao, W., Wang, S., & Liu, Z. (2023). Applying an extended theory of planned behavior to predict willingness to pay for green and low-carbon energy transition. Journal of Cleaner Production, 387, 135893. https://doi.org/10.1016/j.jclepro.2023.135893
Tandon, A., Jabeen, F., Talwar, S., Sakashita, M., & Dhir, A. (2021). Facilitators and inhibitors of organic food buying behavior. Food Quality and Preference, 88, 104077. https://doi.org/10.1016/j.foodqual.2020.104077
Tang, Z., & Chen, L. (2022). Understanding seller resistance to digital device recycling platform: An innovation resistance perspective. Electronic Commerce Research and Applications, 51, 101114. https://doi.org/10.1016/j.elerap.2021.101114
Taylor, S., & Todd, P. A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2), 144–176. https://doi.org/10.1287/isre.6.2.144
Teixeira, S. F., Barbosa, B., Cunha, H., & Oliveira, Z. (2022). Exploring the Antecedents of Organic Food Purchase Intention: An Extension of the Theory of Planned Behavior. Sustainability, 14(1), Article 1. https://doi.org/10.3390/su14010242
Upadhyay, N., Upadhyay, S., Abed, S. S., & Dwivedi, Y. K. (2022). Consumer adoption of mobile payment services during COVID-19: Extending meta-UTAUT with perceived severity and self-efficacy. International Journal of Bank Marketing, 40(5), 960–991. https://doi.org/10.1108/IJBM-06-2021-0262
Upadhyay, P., & Jahanyan, S. (2016). Analyzing user perspective on the factors affecting use intention of mobile based transfer payment. Internet Research, 26(1), 38–56. https://doi.org/10.1108/IntR-05-2014-0143
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. JSTOR. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. JSTOR. https://doi.org/10.2307/41410412
Verkijika, S. F., & Neneh, B. N. (2021). Standing up for or against: A text-mining study on the recommendation of mobile payment apps. Journal of Retailing and Consumer Services, 63, 102743. https://doi.org/10.1016/j.jretconser.2021.102743
Wixom, B. H., & Todd, P. A. (2005). A Theoretical Integration of User Satisfaction and Technology Acceptance. Information Systems Research, 16(1), 85–102. https://doi.org/10.1287/isre.1050.0042
Wulandari, N. (2017). Cashless Payment in Tourism. An Application of Technology Acceptance Model. Journal of Environmental Management & Tourism, 1550–1553. https://doi.org/10/22/Susulan%20NW%20LEMBAR%20HASIL%20PENILAIAN%20SEJAWAT%20PEER%20REVIEW%20Jurnal%20Ilmiah%20Cashless%20.docx.pdf
Zhang, J., & Mao, E. (2020). Cash, credit, or phone? An empirical study on the adoption of mobile payments in the United States. Psychology & Marketing, 37(1), 87–98. https://doi.org/10.1002/mar.21282