Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Uncertain Supply Chain Management » Optimization methods applied to renewable and sustainable energy: A review

Journals

  • IJIEC (697)
  • MSL (2637)
  • DSL (631)
  • CCL (482)
  • USCM (1092)
  • ESM (398)
  • AC (547)
  • JPM (228)
  • IJDS (809)
  • JFS (81)

USCM Volumes

    • Volume 1 (22)
      • Issue 1 (4)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 2 (32)
      • Issue 1 (7)
      • Issue 2 (5)
      • Issue 3 (10)
      • Issue 4 (10)
    • Volume 3 (39)
      • Issue 1 (9)
      • Issue 2 (13)
      • Issue 3 (10)
      • Issue 4 (7)
    • Volume 4 (31)
      • Issue 1 (10)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (9)
    • Volume 5 (26)
      • Issue 1 (6)
      • Issue 2 (6)
      • Issue 3 (8)
      • Issue 4 (6)
    • Volume 6 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 7 (57)
      • Issue 1 (8)
      • Issue 2 (19)
      • Issue 3 (14)
      • Issue 4 (16)
    • Volume 8 (82)
      • Issue 1 (20)
      • Issue 2 (15)
      • Issue 3 (17)
      • Issue 4 (30)
    • Volume 9 (117)
      • Issue 1 (25)
      • Issue 2 (26)
      • Issue 3 (32)
      • Issue 4 (34)
    • Volume 10 (150)
      • Issue 1 (28)
      • Issue 2 (32)
      • Issue 3 (44)
      • Issue 4 (46)
    • Volume 11 (190)
      • Issue 1 (42)
      • Issue 2 (45)
      • Issue 3 (50)
      • Issue 4 (53)
    • Volume 12 (244)
      • Issue 1 (55)
      • Issue 2 (59)
      • Issue 3 (63)
      • Issue 4 (67)
    • Volume 13 (62)
      • Issue 1 (15)
      • Issue 2 (15)
      • Issue 3 (15)
      • Issue 4 (17)
    • Volume 14 (15)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)

Keywords

Supply chain management(158)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(112)
Supply chain(106)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(92)
SMEs(85)
optimization(83)
Financial performance(81)
Job satisfaction(78)
Factor analysis(78)
Trust(78)
Knowledge Management(76)
Genetic Algorithm(75)
Sustainability(73)
Social media(73)
TOPSIS(73)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(53)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Jumadil Saputra(35)
Muhammad Turki Alshurideh(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Dmaithan Almajali(31)
Ahmad Makui(30)
Mohammad Khodaei Valahzaghard(30)
Ni Nyoman Kerti Yasa(29)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Prasadja Ricardianto(28)
Haitham M. Alzoubi(27)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)


» Show all authors

Countries

Iran(2155)
Indonesia(1217)
India(768)
Jordan(731)
Vietnam(494)
Malaysia(418)
Saudi Arabia(411)
United Arab Emirates(210)
China(151)
Thailand(149)
United States(103)
Turkey(98)
Ukraine(97)
Egypt(90)
Canada(83)
Pakistan(81)
Peru(75)
United Kingdom(73)
Nigeria(73)
Morocco(67)


» Show all countries

Uncertain Supply Chain Management

ISSN 2291-6830 (Online) - ISSN 2291-6822 (Print)
Quarterly Publication
Volume 5 Issue 1 pp. 1-26 , 2017

Optimization methods applied to renewable and sustainable energy: A review Pages 1-26 Right click to download the paper Download PDF

Authors: Ehsan Asadi, Seyed Jafar Sadjadi

DOI: 10.5267/j.uscm.2016.6.001

Keywords: Supply chain management, Biomass, Biofuel, BSC, Review

Abstract: Nowadays the use of fossil fuels as a non-renewable energy source has become a major challenge because of the pollution and the environmental impact. Substitution of biomass as an energy source and its supply chain design is the main question. Because of difficulties such as supply chain complexity, uncertainty in variables and selecting the site of bio-refineries many studies have been conducted in this regard. Studies in the field of biomass and biofuel production are described and classified. Also the strategic decisions such as choosing the sites, selecting energy conversation technology, ensuring economic, environmental, technical, and social sustainability and tactical decisions including allocating resources to productive plants, selecting transport modes, and types of warehouses are addressed in the reviewed papers. We have reviewed 140 papers in the interval between 1997 and 2016 and classified them based on the objective functions. The articles are classified based on their being single or multi objectivity, linearity or nonlinearity. Finally, a classification based on the regions in which the studies have been done.

How to cite this paper
Asadi, E & Sadjadi, S. (2017). Optimization methods applied to renewable and sustainable energy: A review.Uncertain Supply Chain Management, 5(1), 1-26.

Refrences
Ahn, Y. C., Lee, I. B., Lee, K. H., & Han, J. H. (2015). Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model. Applied Energy, 154, 528-542.
Akgul, O., Shah, N., & Papageorgiou, L. G. (2012). An optimisation framework for a hybrid first/second generation bioethanol supply chain.Computers & Chemical Engineering, 42, 101-114.
Aldana, H., Lozano, F. J., & Acevedo, J. (2014). Evaluating the potential for producing energy from agricultural residues in México using MILP optimization. biomass and bioenergy, 67, 372-389.
An, H., Wilhelm, W. E., & Searcy, S. W. (2011). A mathematical model to design a lignocellulosic biofuel supply chain system with a case study based on a region in Central Texas. Bioresource technology, 102(17), 7860-7870.
Andersen, F., Iturmendi, F., Espinosa, S., & Diaz, M. S. (2012). Optimal design and planning of biodiesel supply chain with land competition.Computers & Chemical Engineering, 47, 170-182.
Avami, A. (2012). A model for biodiesel supply chain: A case study in Iran.Renewable and Sustainable Energy Reviews, 16(6), 4196-4203.
Avami, A. (2013). Assessment of optimal biofuel supply chain planning in Iran: technical, economic, and agricultural perspectives. Renewable and Sustainable Energy Reviews, 26, 761-768.
Awudu, I., & Zhang, J. (2013). Stochastic production planning for a biofuel supply chain under demand and price uncertainties. Applied Energy, 103, 189-196.
Ayoub, N., Elmoshi, E., Seki, H., & Naka, Y. (2009). Evolutionary algorithms approach for integrated bioenergy supply chains optimization. Energy Conversion and Management, 50(12), 2944-2955.
Ayoub, N., Martins, R., Wang, K., Seki, H., & Naka, Y. (2007). Two levels decision system for efficient planning and implementation of bioenergy production. Energy conversion and management, 48(3), 709-723.
Ayoub, N., Seki, H., & Naka, Y. (2008). A methodology for designing and evaluating biomass utilization networks. Computer Aided Chemical Engineering, 25, 1053-1058.
Bai, Y., Hwang, T., Kang, S., & Ouyang, Y. (2011). Biofuel refinery location and supply chain planning under traffic congestion. Transportation Research Part B: Methodological, 45(1), 162-175.
Bai, Y., Ouyang, Y., & Pang, J. S. (2012). Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium. Energy Economics, 34(5), 1623-1633.
Bai, Y., Ouyang, Y., & Pang, J. S. (2016). Enhanced models and improved solution for competitive biofuel supply chain design under land use constraints. European Journal of Operational Research, 249(1), 281-297.
Balaman, Ş. Y., & Selim, H. (2014a). A network design model for biomass to energy supply chains with anaerobic digestion systems. Applied Energy,130, 289-304.
Balaman, S. Y., & Selim, H. (2014b). Multiobjective optimization of biomass to energy supply chains in an uncertain environment. Computer Aided Chemical Engineering, 33, 1267-1272.
Balaman, Ş. Y., & Selim, H. (2015). A decision model for cost effective design of biomass based green energy supply chains. Bioresource technology, 191, 97-109.
Bruglieri, M., & Liberti, L. (2008). Optimal running and planning of a biomass-based energy production process. Energy Policy, 36(7), 2430-2438.
Chai, L., & Saffron, C. M. (2016). Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost. Applied Energy, 163, 387-395.
Chen, C. W., & Fan, Y. (2012). Bioethanol supply chain system planning under supply and demand uncertainties. Transportation Research Part E: Logistics and Transportation Review, 48(1), 150-164.
Clancy, D., Breen, J. P., Thorne, F., & Wallace, M. (2012). A stochastic analysis of the decision to produce biomass crops in Ireland. Biomass and Bioenergy, 46, 353-365.
Cobuloglu, H. I., & Büyüktahtakın, İ. E. (2014). A mixed-integer optimization model for the economic and environmental analysis of biomass production.Biomass and Bioenergy, 67, 8-23.
Corsano, G., Vecchietti, A. R., & Montagna, J. M. (2011). Optimal design for sustainable bioethanol supply chain considering detailed plant performance model. Computers & Chemical Engineering, 35(8), 1384-1398.
Čuček, L., Lam, H. L., Klemeš, J. J., Varbanov, P. S., & Kravanja, Z. (2010). Synthesis of regional networks for the supply of energy and bioproducts.Clean Technologies and Environmental Policy, 12(6), 635-645.
Čuček, L., Varbanov, P. S., Klemeš, J. J., & Kravanja, Z. (2012). Total footprints-based multi-criteria optimisation of regional biomass energy supply chains. Energy, 44(1), 135-145.
Cundiff, J. S., Dias, N., & Sherali, H. D. (1997). A linear programming approach for designing a herbaceous biomass delivery system. Bioresource technology, 59(1), 47-55.
d’Amore, F., & Bezzo, F. (2016). Strategic optimisation of biomass-based energy supply chains for sustainable mobility. Computers & Chemical Engineering, 87, 68-81.
Dal Mas, M., Giarola, S., Zamboni, A., & Bezzo, F. (2010). Capacity planning and financial optimization of the bioethanol supply chain under price uncertainty. Computer Aided Chemical Engineering, 28, 97-102.
Dal-Mas, M., Giarola, S., Zamboni, A., & Bezzo, F. (2011). Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty. Biomass and Bioenergy, 35(5), 2059-2071.
de Andrade, G. A., Berenguel, M., Guzmán, J. L., Pagano, D. J., & Acién, F. G. (2016). Optimization of biomass production in outdoor tubular photobioreactors. Journal of Process Control, 37, 58-69.
De Meyer, A., Cattrysse, D., & Van Orshoven, J. (2015). A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS). European Journal of Operational Research, 245(1), 247-264.
De Meyer, A., Cattrysse, D., Snoeck, M., & Van Orshoven, J. (2012, July). Generic data model to represent the biomass-to-bioenergy supply chain logistics. In International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia, 8-12 July 2012, Papers book (Vol. 120, No. 1, pp. 1-6). Geyseco.
Demirbas, M. F., Balat, M., & Balat, H. (2009). Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50(7), 1746-1760.
Duarte, A., Sarache, W., & Costa, Y. (2016). Biofuel supply chain design from Coffee Cut Stem under environmental analysis. Energy, 100, 321-331.
Dunnett, A., Adjiman, C., & Shah, N. (2007). Biomass to heat supply chains: applications of process optimization. Process Safety and Environmental Protection, 85(5), 419-429.
Ebadian, M., Sowlati, T., Sokhansanj, S., Stumborg, M., & Townley-Smith, L. (2011). A new simulation model for multi-agricultural biomass logistics system in bioenergy production. Biosystems engineering, 110(3), 280-290.
Ebadian, M., Sowlati, T., Sokhansanj, S., Townley-Smith, L., & Stumborg, M. (2013). Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production. Applied energy, 102, 840-849.
Ekşioğlu, S. D., Acharya, A., Leightley, L. E., & Arora, S. (2009). Analyzing the design and management of biomass-to-biorefinery supply chain.Computers & Industrial Engineering, 57(4), 1342-1352.
Elia, J. A., Baliban, R. C., Xiao, X., & Floudas, C. A. (2011). Optimal energy supply network determination and life cycle analysis for hybrid coal, biomass, and natural gas to liquid (CBGTL) plants using carbon-based hydrogen production. Computers & Chemical Engineering, 35(8), 1399-1430.
Fazlollahi, S., & Maréchal, F. (2013). Multi-objective, multi-period optimization of biomass conversion technologies using evolutionary algorithms and mixed integer linear programming (MILP). Applied Thermal Engineering, 50(2), 1504-1513.
Foo, D. C., Tan, R. R., Lam, H. L., Aziz, M. K. A., & Klemeš, J. J. (2013). Robust models for the synthesis of flexible palm oil-based regional bioenergy supply chain. Energy, 55, 68-73.
Freppaz, D., Minciardi, R., Robba, M., Rovatti, M., Sacile, R., & Taramasso, A. (2004). Optimizing forest biomass exploitation for energy supply at a regional level. Biomass and Bioenergy, 26(1), 15-25.
Frombo, F., Minciardi, R., Robba, M., & Sacile, R. (2009). A decision support system for planning biomass-based energy production. Energy, 34(3), 362-369.
Gan, J., & Smith, C. T. (2011). Optimal plant size and feedstock supply radius: a modeling approach to minimize bioenergy production costs.Biomass and Bioenergy, 35(8), 3350-3359.
Geraili, A., Sharma, P., & Romagnoli, J. A. (2014). A modeling framework for design of nonlinear renewable energy systems through integrated simulation modeling and metaheuristic optimization: applications to biorefineries.Computers & Chemical Engineering, 61, 102-117.
Ghaffariyan, M. R., Acuna, M., & Brown, M. (2013). Analysing the effect of five operational factors on forest residue supply chain costs: A case study in Western Australia. biomass and bioenergy, 59, 486-493.
Gholamian, E., Mahmoudi, S. M. S., & Zare, V. (2016). Proposal, exergy analysis and optimization of a new biomass-based cogeneration system.Applied Thermal Engineering, 93, 223-235.
Giarola, S., Bezzo, F., & Shah, N. (2013). A risk management approach to the economic and environmental strategic design of ethanol supply chains.Biomass and Bioenergy, 58, 31-51.
Giarola, S., Zamboni, A., & Bezzo, F. (2011). Spatially explicit multi-objective optimisation for design and planning of hybrid first and second generation biorefineries. Computers & Chemical Engineering, 35(9), 1782-1797.
Gold, S. (2011). Bio-energy supply chains and stakeholders. Mitigation and Adaptation Strategies for Global Change, 16(4), 439-462.
Golecha, R., & Gan, J. (2016a). Biomass transport cost from field to conversion facility when biomass yield density and road network vary with transport radius.Applied Energy, 164, 321-331.
Golecha, R., & Gan, J. (2016b). Effects of corn stover year-to-year supply variability and market structure on biomass utilization and cost. Renewable and Sustainable Energy Reviews, 57, 34-44.
Gómez-González, M., López, A., & Jurado, F. (2013). Hybrid discrete PSO and OPF approach for optimization of biomass fueled micro-scale energy system.Energy conversion and management, 65, 539-545.
Gonela, V., Zhang, J., & Osmani, A. (2015). Stochastic optimization of sustainable industrial symbiosis based hybrid generation bioethanol supply chains. Computers & Industrial Engineering, 87, 40-65.
Grigoroudis, E., Petridis, K., & Arabatzis, G. (2014). RDEA: A recursive DEA based algorithm for the optimal design of biomass supply chain networks.Renewable Energy, 71, 113-122.
Gronalt, M., & Rauch, P. (2007). Designing a regional forest fuel supply network. Biomass and Bioenergy, 31(6), 393-402.
Gunnarsson, H., Rönnqvist, M., & Lundgren, J. T. (2004). Supply chain modelling of forest fuel. European Journal of Operational Research, 158(1), 103-123.
Paulo, H., Barbosa-Póvoa, A. P. F.D., & Relvas, S. (2014). Energy from Lignocellulosic Biomass: Supply Chain Modeling to Maximize Net Energy Production. In 24th European Symposium on Computer Aided Process Engineering (Vol. 33, pp. 481-486).
Holmgren, K. M., Berntsson, T. S., Andersson, E., & Rydberg, T. (2015). The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems. Energy, 90, 148-162.
Huang, Y., Chen, C. W., & Fan, Y. (2010). Multistage optimization of the supply chains of biofuels. Transportation Research Part E: Logistics and Transportation Review, 46(6), 820-830.
Izquierdo, J., Minciardi, R., Montalvo, I., Robba, M., & Tavera, M. (2008, July). Particle Swarm Optimization for the biomass supply chain strategic planning. In Proceedings of the International Congress on Environmental Modelling and Software (pp. 1272-1280).
Jin, Y., & Illukpitiya, P. (2016). Cost minimization of supplying biomass for ethanol biorefineries. Energy, 96, 209-214.
Kanzian, C., Holzleitner, F., Stampfer, K., & Ashton, S. (2009). Regional energy wood logistics–optimizing local fuel supply. Silva Fennica, 43(1), 113-128.
Kanzian, C., Kühmaier, M., Zazgornik, J., & Stampfer, K. (2013). Design of forest energy supply networks using multi-objective optimization. biomass and bioenergy, 58, 294-302.
Keirstead, J., Samsatli, N., Pantaleo, A. M., & Shah, N. (2012). Evaluating biomass energy strategies for a UK eco-town with an MILP optimization model.biomass and bioenergy, 39, 306-316.
Kim, J., Realff, M. J., & Lee, J. H. (2011b). Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty.Computers & Chemical Engineering, 35(9), 1738-1751.
Kim, J., Realff, M. J., Lee, J. H., Whittaker, C., & Furtner, L. (2011a). Design of biomass processing network for biofuel production using an MILP model.Biomass and bioenergy, 35(2), 853-871.
Klein, D., Wolf, C., Schulz, C., & Weber-Blaschke, G. (2016). Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change. Science of the Total Environment, 539, 45-60.
Kocoloski, M., Griffin, W. M., & Matthews, H. S. (2011). Impacts of facility size and location decisions on ethanol production cost. Energy Policy, 39(1), 47-56.
Krukanont, P., & Prasertsan, S. (2004). Geographical distribution of biomass and potential sites of rubber wood fired power plants in Southern Thailand.Biomass and bioenergy, 26(1), 47-59.
Kumar, A., & Sokhansanj, S. (2007). Switchgrass (Panicum vigratum, L.) delivery to a biorefinery using integrated biomass supply analysis and logistics (IBSAL) model. Bioresource technology, 98(5), 1033-1044.
Lam, H. L., Klemeš, J. J., & Kravanja, Z. (2011). Model-size reduction techniques for large-scale biomass production and supply networks. Energy,36(8), 4599-4608.
Lambert, D. K., & Middleton, J. (2010). Logistical design of a regional herbaceous crop residue-based ethanol production complex. Biomass and Bioenergy, 34(1), 91-100.
Leão, R. R. D. C. C., Hamacher, S., & Oliveira, F. (2011). Optimization of biodiesel supply chains based on small farmers: A case study in Brazil.Bioresource technology, 102(19), 8958-8963.
Leboreiro, J., & Hilaly, A. K. (2011). Biomass transportation model and optimum plant size for the production of ethanol. Bioresource technology,102(3), 2712-2723.
Leboreiro, J., & Hilaly, A. K. (2013). Analysis of supply chain, scale factor, and optimum plant capacity for the production of ethanol from corn stover. Biomass and Bioenergy, 54, 158-169.
Leduc, S., Lundgren, J., Franklin, O., & Dotzauer, E. (2010a). Location of a biomass based methanol production plant: a dynamic problem in northern Sweden. Applied Energy, 87(1), 68-75.
Leduc, S., Schwab, D., Dotzauer, E., Schmid, E., & Obersteiner, M. (2008). Optimal location of wood gasification plants for methanol production with heat recovery. International Journal of Energy Research, 32(12), 1080-1091.
Leduc, S., Starfelt, F., Dotzauer, E., Kindermann, G., McCallum, I., Obersteiner, M., & Lundgren, J. (2010b). Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. Energy, 35(6), 2709-2716.
Li, C., & Cremaschi, S. Optimum Facility Location and Plant Scheduling for Biofuel Production. PSE2015 ESCAPE25, 274.
Liew, W. H., Hassim, M. H., & Ng, D. K. (2014). Review of evolution, technology and sustainability assessments of biofuel production. Journal of Cleaner Production, 71, 11-29.
Lim, C. H., & Lam, H. L. (2016). Biomass supply chain optimisation via novel biomass element life cycle analysis (BELCA). Applied Energy, 161, 733-745.
Lin, T., Rodríguez, L. F., Shastri, Y. N., Hansen, A. C., & Ting, K. C. (2014). Integrated strategic and tactical biomass–biofuel supply chain optimization.Bioresource technology, 156, 256-266.
Liu, L., Ye, J., Zhao, Y., & Zhao, E. (2015). The plight of the biomass power generation industry in China–A supply chain risk perspective. Renewable and Sustainable Energy Reviews, 49, 680-692.
López, P. R., Galán, S. G., Reyes, N. R., & Jurado, F. (2008). A method for particle swarm optimization and its application in location of biomass power plants. International Journal of Green Energy, 5(3), 199-211.
Mansoornejad, B., Pistikopoulos, E. N., & Stuart, P. R. (2013). Scenario-based strategic supply chain design and analysis for the forest biorefinery using an operational supply chain model. International Journal of Production Economics,144(2), 618-634.
Marufuzzaman, M., Eksioglu, S. D., Li, X., & Wang, J. (2014). Analyzing the impact of intermodal-related risk to the design and management of biofuel supply chain. Transportation Research Part E: Logistics and Transportation Review, 69, 122-145.
Marvin, W. A., Schmidt, L. D., Benjaafar, S., Tiffany, D. G., & Daoutidis, P. (2012). Economic optimization of a lignocellulosic biomass-to-ethanol supply chain. Chemical Engineering Science, 67(1), 68-79.
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource technology, 83(1), 37-46.
Mobini, M., Sowlati, T., & Sokhansanj, S. (2011). Forest biomass supply logistics for a power plant using the discrete-event simulation approach.Applied Energy, 88(4), 1241-1250.
Mobini, M., Sowlati, T., & Sokhansanj, S. (2013). A simulation model for the design and analysis of wood pellet supply chains. Applied energy, 111, 1239-1249.
Mohammed, M. A. A., Salmiaton, A., Azlina, W. W., Amran, M. M., & Fakhru’l-Razi, A. (2011). Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor. Energy Conversion and Management,52(2), 1555-1561.
Murphy, R., Woods, J., Black, M., & McManus, M. (2011). Global developments in the competition for land from biofuels. Food Policy, 36, S52-S61.
Nagel, J. (2000). Determination of an economic energy supply structure based on biomass using a mixed-integer linear optimization model. Ecological Engineering, 16, 91-102.
Omu, A., Choudhary, R., & Boies, A. (2013). Distributed energy resource system optimisation using mixed integer linear programming. Energy Policy,61, 249-266.
Osmani, A., & Zhang, J. (2013). Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties.Energy, 59, 157-172.
Osmani, A., & Zhang, J. (2014). Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment. Applied Energy, 114, 572-587.
Pantaleo, A. M., Giarola, S., Bauen, A., & Shah, N. (2014). Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology. Energy Conversion and Management, 83, 347-361.
Paolucci, N., Bezzo, F., & Tugnoli, A. (2016). A two-tier approach to the optimization of a biomass supply chain for pyrolysis processes. Biomass and Bioenergy, 84, 87-97.
Papapostolou, C., Kondili, E., & Kaldellis, J. K. (2011). Development and implementation of an optimisation model for biofuels supply chain. Energy,36(10), 6019-6026.
Parker, N., Tittmann, P., Hart, Q., Nelson, R., Skog, K., Schmidt, A., ... & Jenkins, B. (2010). Development of a biorefinery optimized biofuel supply curve for the Western United States. biomass and bioenergy, 34(11), 1597-1607.
Paulo, H., Azcue, X., Barbosa-Póvoa, A. P., & Relvas, S. (2015). Supply chain optimization of residual forestry biomass for bioenergy production: the case study of Portugal. Biomass and Bioenergy, 83, 245-256.
Pérez-Fortes, M., Laínez-Aguirre, J. M., Arranz-Piera, P., Velo, E., & Puigjaner, L. (2012). Design of regional and sustainable bio-based networks for electricity generation using a multi-objective MILP approach. Energy, 44(1), 79-95.
Perpiña, C., Martínez-Llario, J. C., & Pérez-Navarro, Á. (2013). Multicriteria assessment in GIS environments for siting biomass plants. Land Use Policy,31, 326-335.
Poudel, S. R., Marufuzzaman, M., & Bian, L. (2016). Designing a reliable bio-fuel supply chain network considering link failure probabilities. Computers & Industrial Engineering, 91, 85-99.
Reche-López, P., Ruiz-Reyes, N., Galán, S. G., & Jurado, F. (2009). Comparison of metaheuristic techniques to determine optimal placement of biomass power plants. Energy conversion and management, 50(8), 2020-2028.
Rentizelas, A. A., & Tatsiopoulos, I. P. (2010). Locating a bioenergy facility using a hybrid optimization method. International Journal of Production Economics, 123(1), 196-209.
Rentizelas, A. A., Tatsiopoulos, I. P., & Tolis, A. (2009b). An optimization model for multi-biomass tri-generation energy supply. Biomass and bioenergy, 33(2), 223-233.
Rentizelas, A. A., Tolis, A. I., & Tatsiopoulos, I. P. (2014). Optimisation and investment analysis of two biomass-to-heat supply chain structures.Biosystems Engineering, 120, 81-91.
Rentizelas, A. A., Tolis, A. J., & Tatsiopoulos, I. P. (2009a). Logistics issues of biomass: the storage problem and the multi-biomass supply chain. Renewable and Sustainable Energy Reviews, 13(4), 887-894.
Roni, M. S., Eksioglu, S. D., Searcy, E., & Jha, K. (2014). A supply chain network design model for biomass co-firing in coal-fired power plants.Transportation Research Part E: Logistics and Transportation Review, 61, 115-134.
San Miguel, G., Corona, B., Ruiz, D., Landholm, D., Laina, R., Tolosana, E., ... & Cañellas, I. (2015). Environmental, energy and economic analysis of a biomass supply chain based on a poplar short rotation coppice in Spain.Journal of Cleaner Production, 94, 93-101.
Santibañez-Aguilar, J. E., González-Campos, J. B., Ponce-Ortega, J. M., Serna-González, M., & El-Halwagi, M. M. (2014). Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. Journal of cleaner production, 65, 270-294.
Shabani, N., & Sowlati, T. (2013). A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant.Applied Energy, 104, 353-361.
Shabani, N., & Sowlati, T. (2016). A hybrid multi-stage stochastic programming-robust optimization model for maximizing the supply chain of a forest-based biomass power plant considering uncertainties. Journal of Cleaner Production, 112, 3285-3293.
Shabani, N., Sowlati, T., Ouhimmou, M., & Rönnqvist, M. (2014). Tactical supply chain planning for a forest biomass power plant under supply uncertainty. Energy, 78, 346-355.
Sharifzadeh, M., Garcia, M. C., & Shah, N. (2015). Supply chain network design and operation: Systematic decision-making for centralized, distributed, and mobile biofuel production using mixed integer linear programming (MILP) under uncertainty. Biomass and Bioenergy, 81, 401-414.
Sharma, B., Ingalls, R. G., Jones, C. L., Huhnke, R. L., & Khanchi, A. (2013). Scenario optimization modeling approach for design and management of biomass-to-biorefinery supply chain system. Bioresource technology, 150, 163-171.
Singh, J., Panesar, B. S., & Sharma, S. K. (2011). Geographical distribution of agricultural residues and optimum sites of biomass based power plant in Bathinda, Punjab. Biomass and Bioenergy, 35(10), 4455-4460.
Sokhansanj, S., Kumar, A., & Turhollow, A. F. (2006). Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass and Bioenergy, 30(10), 838-847.
Sosa, A., Acuna, M., McDonnell, K., & Devlin, G. (2015a). Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland. Applied Energy, 137, 338-351.
Sosa, A., Acuna, M., McDonnell, K., & Devlin, G. (2015b). Managing the moisture content of wood biomass for the optimisation of Ireland's transport supply strategy to bioenergy markets and competing industries. Energy, 86, 354-368.
Sultana, A., & Kumar, A. (2011). Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery.Bioresource technology, 102(21), 9947-9956.
Sultana, A., & Kumar, A. (2012). Optimal siting and size of bioenergy facilities using geographic information system. Applied Energy, 94, 192-201.
Tatsiopoulos, I. P., & Tolis, A. J. (2003). Economic aspects of the cotton-stalk biomass logistics and comparison of supply chain methods. Biomass and Bioenergy, 24(3), 199-214.
Tembo, G., Epplin, F. M., & Huhnke, R. L. (2003). Integrative investment appraisal of a lignocellulosic biomass-to-ethanol industry. Journal of Agricultural and Resource Economics, 611-633.
Tong, K., Gleeson, M. J., Rong, G., & You, F. (2014). Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty. biomass and bioenergy, 60, 108-120.
Van Dyken, S., Bakken, B. H., & Skjelbred, H. I. (2010). Linear mixed-integer models for biomass supply chains with transport, storage and processing.Energy, 35(3), 1338-1350.
Velazquez-Marti, B., & Fernandez-Gonzalez, E. (2010). Mathematical algorithms to locate factories to transform biomass in bioenergy focused on logistic network construction. Renewable Energy, 35(9), 2136-2142.
Venema, H. D., & Calamai, P. H. (2003). Bioenergy systems planning using location–allocation and landscape ecology design principles. Annals of Operations Research, 123(1-4), 241-264.
Vera, D., Carabias, J., Jurado, F., & Ruiz-Reyes, N. (2010). A Honey Bee Foraging approach for optimal location of a biomass power plant. Applied Energy, 87(7), 2119-2127.
Walla, C., & Schneeberger, W. (2008). The optimal size for biogas plants.Biomass and bioenergy, 32(6), 551-557.
Wang, X., Ouyang, Y., Yang, H., & Bai, Y. (2013). Optimal biofuel supply chain design under consumption mandates with renewable identification numbers.Transportation Research Part B: Methodological, 57, 158-171.
Woo, Y. B., Cho, S., Kim, J., & Kim, B. S. (2016). Optimization-based approach for strategic design and operation of a biomass-to-hydrogen supply chain. International Journal of Hydrogen Energy, 41(12), 5405-5418.
Wu, C. B., Huang, G. H., Li, W., Xie, Y. L., & Xu, Y. (2015). Multistage stochastic inexact chance-constraint programming for an integrated biomass-municipal solid waste power supply management under uncertainty. Renewable and Sustainable Energy Reviews, 41, 1244-1254.
Xie, F., Huang, Y., & Eksioglu, S. (2014). Integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California. Bioresource technology, 152, 15-23.
Xie, Y., Zhao, K., & Hemingway, S. (2009, October). Optimally locating biorefineries: a GIS-based mixed integer linear programming approach. In 51st Transportation Research Forum (Vol. 1, pp. 540-561).
Yagi, K., & Nakata, T. (2011). Economic analysis on small-scale forest biomass gasification considering geographical resources distribution and technical characteristics. Biomass and bioenergy, 35(7), 2883-2892.
You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input–output analysis. AIChE Journal,58(4), 1157-1180.
Zamar, D. S., Gopaluni, B., Sokhansanj, S., & Newlands, N. K. (2015). Robust Optimization of Competing Biomass Supply Chains Under Feedstock Uncertainty. IFAC-PapersOnLine, 48(8), 1222-1227.
Zamboni, A., Shah, N., & Bezzo, F. (2009). Spatially explicit static model for the strategic design of future bioethanol production systems. 1. Cost minimization. Energy & fuels, 23, 5121-5133.
Zhang, F., Johnson, D. M., & Johnson, M. A. (2012). Development of a simulation model of biomass supply chain for biofuel production. Renewable Energy, 44, 380-391.
Zhang, F., Johnson, D. M., & Sutherland, J. W. (2011). A GIS-based method for identifying the optimal location for a facility to convert forest biomass to biofuel. Biomass and Bioenergy, 35(9), 3951-3961.
Zhang, F., Johnson, D. M., & Wang, J. (2016a). Integrating multimodal transport into forest-delivered biofuel supply chain design. Renewable Energy, 93, 58-67.
Zhang, F., Johnson, D., Johnson, M., Watkins, D., Froese, R., & Wang, J. (2016b). Decision support system integrating GIS with simulation and optimisation for a biofuel supply chain. Renewable Energy, 85, 740-748.
Zhang, J., Osmani, A., Awudu, I., & Gonela, V. (2013). An integrated optimization model for switchgrass-based bioethanol supply chain. Applied Energy, 102, 1205-1217.
Zhang, L., & Hu, G. (2013). Supply chain design and operational planning models for biomass to drop-in fuel production. Biomass and bioenergy, 58, 238-250.
Zhu, X., Li, X., Yao, Q., & Chen, Y. (2011). Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry. Bioresource technology, 102(2), 1344-1351.
  • 51
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Uncertain Supply Chain Management | Year: 2017 | Volume: 5 | Issue: 1 | Views: 16604 | Reviews: 0

Related Articles:
  • Identifying and ranking the factors affecting the adoption of biofuels
  • A simulation-based Data Envelopment Analysis (DEA) model to evaluate wind p ...
  • The application of particle swarm optimization algorithm in forecasting ene ...
  • An extension of compromise ranking method with interval numbers for the eva ...
  • Ranking provinces based on development scale in agriculture sector using ta ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com