In this paper, a volume criterion based on a simple scalar quantity, the mean value of the strain energy (SED), has been used to assess the static strength of notched components made of Polymethylmethacrylate (PMMA). The local-strain-energy based approach has been applied to a well-documented set of experimental data recently reported in the literature. Data refer to blunt U-notched cylindrical specimens of commercial PMMA subjected to static loads and characterised by a large variability of notch tip radius (from 0.67 mm to 2.20 mm). Critical loads obtained experimentally have been compared with the theoretical ones, estimated by keeping constant the mean value of the strain energy in a well-defined small size volume. In addition, some new tests dealing with V-notched specimens with end holes have been carried out to investigate the effect of the notch opening angle.