We address a manufacturing environment with the no-wait constraint which is common in industries such as metal, plastic, and semiconductor. Setup times are modelled as uncertain with the objective of minimizing maximum lateness which is an important performance measure for customer satisfaction. This problem has been addressed in scheduling literature for the two-machine no-wait flowshop where dominance relations were presented. Recently, another dominance relation was presented and shown to be about 90% more efficient than the earlier ones. In the current paper, we propose two new dominance relations, which are less restrictive than the earlier ones in the literature. The new dominance relations are shown to be 140% more efficient than the most recent one in the literature. As the level of uncertainty increases, the newly proposed dominance relation performs better, which is another strength of the newly proposed dominance relation. Moreover, we also propose constructive heuristics and show that the best of the newly proposed heuristics is 95% more efficient than the existing one in the literature under the same CPU time.