The article is concerned with the research of the processes of formation of the structure and properties of systemically alloyed low carbon steel 10H3G3MF in initially hardened and initially cold-deformed condition at high speed thermal-cycle processing (TCP). Metallographic, dilatometric and fractographic analysis, transmission electronic microscopy and uniaxial tensile test and impact test (salt spray chamber) are used as the research methods. It is shown that the maximum fine crushing of grain structure of austenite to 1 micron with high speed TCP of the researched steel in initially cold-deformed condition occurs at the first cycle of heating to 900 ° C, at the same time nanostructural condition of martensite is realized with an average size of stick in the plane of the foil of 60 ± 10 nm, which results in a substantial increase of complex of mechanical properties. It was found that in all studied modes of high speed TCP the ? ? ?-conversion with heating in the inter-critical temperature range consists of three stages.