Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Tags cloud » Fatigue failure

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)

Keywords

Jordan(161)
Supply chain management(160)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
Job satisfaction(79)
Social media(78)
Factor analysis(78)
TOPSIS(78)
Knowledge Management(77)
Genetic Algorithm(76)
Sustainability(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Ahmad Makui(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2162)
Indonesia(1276)
Jordan(783)
India(779)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(89)
Pakistan(84)
Peru(83)
United Kingdom(77)
Nigeria(77)
Morocco(73)


» Show all countries
Sort articles by: Volume | Date | Most Rates | Most Views | Reviews | Alphabet
1.

Enhancement of fatigue life of rail-end-bolt holes by slide diamond burnishing Pages 247-264 Right click to download the paper Download PDF

Authors: J. T. Maximov, G. V. Duncheva, A. P. Anchev, I. M. Amudjev, V. T. Kuzmanov

Keywords: Cold working, Fatigue failure, Finite element simulation, Rail-end-bolt holes, Residual stresses

Abstract:
The fatigue failure around rail-end-bolt holes is particularly dangerous since it leads to derailment of trains and consequently to inevitable accidents. It is well-known that the fatigue life of structural holed components, subjected to cyclic load, can be increased by generating compressive hoop stresses around the holes. These beneficial residual compressive stresses significantly reduce the maximum values of the operating tensile stresses arising at the critical points of the components and thus impede the formation of first mode cracks. A new approach to enhancement of fatigue life of rail-end-bolt holes has been developed. The approach involves sequential drilling and reaming through a new combined tool and then slide diamond burnishing by a new device. The technology implementation was carried out on machine tool. The process of creating residual stresses has been studied both experimentally and numerically. The experimental study was conducted by means of a modified split ring method. A reliable finite element modeling approach to the slide diamond burnishing process was developed. On this basis, the process was optimized by means of a genetic algorithm. As a result, the optimal combination of the governing process parameters is established, which ensures both maximum depth of the compressive zone and maximum absolute values of the residual stresses.
Details
  • 0
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: ESM | Year: 2014 | Volume: 2 | Issue: 4 | Views: 2331 | Reviews: 0

 

® 2010-2025 GrowingScience.Com