The fatigue failure around rail-end-bolt holes is particularly dangerous since it leads to derailment of trains and consequently to inevitable accidents. It is well-known that the fatigue life of structural holed components, subjected to cyclic load, can be increased by generating compressive hoop stresses around the holes. These beneficial residual compressive stresses significantly reduce the maximum values of the operating tensile stresses arising at the critical points of the components and thus impede the formation of first mode cracks. A new approach to enhancement of fatigue life of rail-end-bolt holes has been developed. The approach involves sequential drilling and reaming through a new combined tool and then slide diamond burnishing by a new device. The technology implementation was carried out on machine tool. The process of creating residual stresses has been studied both experimentally and numerically. The experimental study was conducted by means of a modified split ring method. A reliable finite element modeling approach to the slide diamond burnishing process was developed. On this basis, the process was optimized by means of a genetic algorithm. As a result, the optimal combination of the governing process parameters is established, which ensures both maximum depth of the compressive zone and maximum absolute values of the residual stresses.