Turning experiments were carried out on AA 7075/SiC composite workpiece in dry and spray cooling environments based on L16 Taguchi design of experiments. Multiple performance optimization of process parameters was performed using grey relational analysis. The performance characteristics considered were average surface roughness, cutting tool temperature and material removal rate. Uncoated carbide inserts were used for machining the workpiece in a high speed precision lathe. A grey relational grade obtained from grey relational analysis was used to optimize the process parameters. Optimal combination of process parameters was then determined by the Taguchi method using the grey relational grade as the performance index. Experimental results indicated that the turning in spray cooling environment was beneficial compared to that in dry environment for the quality response characteristics under consideration. Analysis of variance showed that feed was the most significant parameter for the multiple performance characteristics during turning in both the environments.