How to cite this paper
Jithendra, T & Basha, S. (2024). A novel COVID-19 infection-forecasting model based on artificial neural networks.Management Science Letters , 14(2), 93-106.
Refrences
Ahmad, I., & Asad, S. M. (2020). Predictions of coronavirus COVID-19 distinct cases in Pakistan through an artificial neural network. Epidemiology & Infection, 148, e222. https://doi.org/10.1017/S0950268820002174
Al-Qaness, M. A. A., Ewees, A. A., Fan, H., Abd, M., & Aziz, E. (2020). Optimization method for forecasting confirmed cases of COVID-19 in China. Journal of Clinical Medicine, 9(3), 674. https://doi.org/10.3390/jcm9030674
Anam, S., Maulana, M. H. A. A., Hidayat, N., Yanti, I., Fitriah, Z., & Mahanani, D. M. (2021). Predicting the Number of COVID-19 Sufferers in Malang City Using the Backpropagation Neural Network with the Fletcher-Reeves Method. Applied Computational Intelligence and Soft Computing, 2021. https://doi.org/10.1155/2021/6658552
COVID-19 : Andhra Pradesh Department of Health, Medical, & Family Welfare,” hmfw.ap.gov.in, Accessed: Dec. 21, 2021.
COVID Live - Coronavirus Statistics - Worldometer. (n.d.). Retrieved June 7, 2022, from https://www.worldometers.info/coronavirus/
Hamadneh, N. N., Khan, W. A., Ashraf, W., Atawneh, S. H., Khan, I., & Hamadneh, B. N. (2021). Artificial neural networks for prediction of covid-19 in Saudi Arabia. Computers, Materials and Continua, 66(3), 2787–2796. https://doi.org/10.32604/cmc.2021.013228
Hamadneh, N. N., Tahir, M., & Khan, W. A. (2021). Using Artificial Neural Network with Prey Predator Algorithm for Prediction of the COVID-19: The Case of Brazil and Mexico. Mathematics 2021, Vol. 9, Page 180, 9(2), 180. https://doi.org/10.3390/MATH9020180
Jithendra, T., & SS, B. (2022). Artificial Intelligence (AI) Model: Adaptive Neuro-Fuzzy Inference System (ANFIS) for Diagnosis of COVID-19 Influenza. Computing, 41(4), 1114–1135. https://doi.org/10.31577/cai
Namasudra, S., Dhamodharavadhani, S., & Rathipriya, R. (2021). Nonlinear Neural Network Based Forecasting Model for Predicting COVID-19 Cases. Neural Processing Letters, 1–21. https://doi.org/10.1007/S11063-021-10495-W/FIGURES/15
Niazkar, H. R., & Niazkar, M. (2020). Application of artificial neural networks to predict the COVID-19 outbreak. Global Health Research and Policy, 5(1). https://doi.org/10.1186/s41256-020-00175-y
Niazkar, M., & Medicine, H. N. (2020). Covid-19 outbreak: application of multi-gene genetic programming to country-based prediction models. Electronic Journal of General Medicine, 17(5), em247. https://www.ejgm.co.uk/download/covid-19-outbreak-application-of-multi-gene-genetic-programming-to-country-based-prediction-models-8232.pdf
Niazkar, M., Türkkan, G. E., Niazkar, H. R., & Türkkan, Y. A. (2020). Assessment of three mathematical prediction models for forecasting the covid-19 outbreak in Iran and Turkey. Computational and Mathematical Methods in Medicine, 2020. https://doi.org/10.1155/2020/7056285
Nishiura, H., Kobayashi, T., Yang, Y., Hayashi, K., Miyama, T., Kinoshita, R., Linton, N. M., Jung, S. M., Yuan, B., Suzuki, A., & Akhmetzhanov, A. R. (2020). The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights. Journal of Clinical Medicine 2020, Vol. 9, Page 419, 9(2), 419. https://doi.org/10.3390/JCM9020419
Pal, R., Sekh, A. A., Kar, S., & Prasad, D. K. (2020). Neural Network Based Country Wise Risk Prediction of COVID-19. Applied Sciences 2020, Vol. 10, Page 6448, 10(18), 6448. https://doi.org/10.3390/APP10186448
Pierre, Nouvellet, Anne, Corii, Tini, G. et al. (2018). A simple approach to measure transmissibility and forecast incidence. Epidemics, 22, 29–35. https://doi.org/10.1016/J.EPIDEM.2017.02.012
Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P., & Chowell, G. (2020). Short-term Forecasts of the COVID-19 Epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. Journal of Clinical Medicine 2020, Vol. 9, Page 596, 9(2), 596. https://doi.org/10.3390/JCM9020596
Sevak, J. S., Kapadia, A. D., Chavda, J. B., Shah, A., & Rahevar, M. (2018). Survey on semantic image segmentation techniques. Proceedings of the International Conference on Intelligent Sustainable Systems, ICISS 2017, 306–313. https://doi.org/10.1109/ISS1.2017.8389420
Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). The Indian Journal of Pediatrics 2020 87:4, 87(4), 281–286. https://doi.org/10.1007/S12098-020-03263-6
Tamang, S., Singh, P., & Datta, B. (2020). Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique. Global Journal of Environmental Science and Management, 6, 53–64. https://www.gjesm.net/article_39823.html
Wieczorek, M., Siłka, J., & Woźniak, M. (2020). Neural network powered COVID-19 spread forecasting model. Chaos, Solitons & Fractals, 140, 110203. https://doi.org/10.1016/J.CHAOS.2020.110203
Zhang, S., Diao, M. Y., Yu, W., Pei, L., Lin, Z., & Chen, D. (2020). Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. International Journal of Infectious Diseases, 93, 201–204. https://doi.org/10.1016/J.IJID.2020.02.033
Zisad, S. N., Hossain, M. S., Hossain, M. S., & Andersson, K. (2021). An Integrated Neural Network and SEIR Model to Predict COVID-19. Algorithms 2021, Vol. 14, Page 94, 14(3), 94. https://doi.org/10.3390/A14030094
Al-Qaness, M. A. A., Ewees, A. A., Fan, H., Abd, M., & Aziz, E. (2020). Optimization method for forecasting confirmed cases of COVID-19 in China. Journal of Clinical Medicine, 9(3), 674. https://doi.org/10.3390/jcm9030674
Anam, S., Maulana, M. H. A. A., Hidayat, N., Yanti, I., Fitriah, Z., & Mahanani, D. M. (2021). Predicting the Number of COVID-19 Sufferers in Malang City Using the Backpropagation Neural Network with the Fletcher-Reeves Method. Applied Computational Intelligence and Soft Computing, 2021. https://doi.org/10.1155/2021/6658552
COVID-19 : Andhra Pradesh Department of Health, Medical, & Family Welfare,” hmfw.ap.gov.in, Accessed: Dec. 21, 2021.
COVID Live - Coronavirus Statistics - Worldometer. (n.d.). Retrieved June 7, 2022, from https://www.worldometers.info/coronavirus/
Hamadneh, N. N., Khan, W. A., Ashraf, W., Atawneh, S. H., Khan, I., & Hamadneh, B. N. (2021). Artificial neural networks for prediction of covid-19 in Saudi Arabia. Computers, Materials and Continua, 66(3), 2787–2796. https://doi.org/10.32604/cmc.2021.013228
Hamadneh, N. N., Tahir, M., & Khan, W. A. (2021). Using Artificial Neural Network with Prey Predator Algorithm for Prediction of the COVID-19: The Case of Brazil and Mexico. Mathematics 2021, Vol. 9, Page 180, 9(2), 180. https://doi.org/10.3390/MATH9020180
Jithendra, T., & SS, B. (2022). Artificial Intelligence (AI) Model: Adaptive Neuro-Fuzzy Inference System (ANFIS) for Diagnosis of COVID-19 Influenza. Computing, 41(4), 1114–1135. https://doi.org/10.31577/cai
Namasudra, S., Dhamodharavadhani, S., & Rathipriya, R. (2021). Nonlinear Neural Network Based Forecasting Model for Predicting COVID-19 Cases. Neural Processing Letters, 1–21. https://doi.org/10.1007/S11063-021-10495-W/FIGURES/15
Niazkar, H. R., & Niazkar, M. (2020). Application of artificial neural networks to predict the COVID-19 outbreak. Global Health Research and Policy, 5(1). https://doi.org/10.1186/s41256-020-00175-y
Niazkar, M., & Medicine, H. N. (2020). Covid-19 outbreak: application of multi-gene genetic programming to country-based prediction models. Electronic Journal of General Medicine, 17(5), em247. https://www.ejgm.co.uk/download/covid-19-outbreak-application-of-multi-gene-genetic-programming-to-country-based-prediction-models-8232.pdf
Niazkar, M., Türkkan, G. E., Niazkar, H. R., & Türkkan, Y. A. (2020). Assessment of three mathematical prediction models for forecasting the covid-19 outbreak in Iran and Turkey. Computational and Mathematical Methods in Medicine, 2020. https://doi.org/10.1155/2020/7056285
Nishiura, H., Kobayashi, T., Yang, Y., Hayashi, K., Miyama, T., Kinoshita, R., Linton, N. M., Jung, S. M., Yuan, B., Suzuki, A., & Akhmetzhanov, A. R. (2020). The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights. Journal of Clinical Medicine 2020, Vol. 9, Page 419, 9(2), 419. https://doi.org/10.3390/JCM9020419
Pal, R., Sekh, A. A., Kar, S., & Prasad, D. K. (2020). Neural Network Based Country Wise Risk Prediction of COVID-19. Applied Sciences 2020, Vol. 10, Page 6448, 10(18), 6448. https://doi.org/10.3390/APP10186448
Pierre, Nouvellet, Anne, Corii, Tini, G. et al. (2018). A simple approach to measure transmissibility and forecast incidence. Epidemics, 22, 29–35. https://doi.org/10.1016/J.EPIDEM.2017.02.012
Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P., & Chowell, G. (2020). Short-term Forecasts of the COVID-19 Epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. Journal of Clinical Medicine 2020, Vol. 9, Page 596, 9(2), 596. https://doi.org/10.3390/JCM9020596
Sevak, J. S., Kapadia, A. D., Chavda, J. B., Shah, A., & Rahevar, M. (2018). Survey on semantic image segmentation techniques. Proceedings of the International Conference on Intelligent Sustainable Systems, ICISS 2017, 306–313. https://doi.org/10.1109/ISS1.2017.8389420
Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). The Indian Journal of Pediatrics 2020 87:4, 87(4), 281–286. https://doi.org/10.1007/S12098-020-03263-6
Tamang, S., Singh, P., & Datta, B. (2020). Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique. Global Journal of Environmental Science and Management, 6, 53–64. https://www.gjesm.net/article_39823.html
Wieczorek, M., Siłka, J., & Woźniak, M. (2020). Neural network powered COVID-19 spread forecasting model. Chaos, Solitons & Fractals, 140, 110203. https://doi.org/10.1016/J.CHAOS.2020.110203
Zhang, S., Diao, M. Y., Yu, W., Pei, L., Lin, Z., & Chen, D. (2020). Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. International Journal of Infectious Diseases, 93, 201–204. https://doi.org/10.1016/J.IJID.2020.02.033
Zisad, S. N., Hossain, M. S., Hossain, M. S., & Andersson, K. (2021). An Integrated Neural Network and SEIR Model to Predict COVID-19. Algorithms 2021, Vol. 14, Page 94, 14(3), 94. https://doi.org/10.3390/A14030094